
USENIX Association

Proceedings of the
5th Symposium on Operating Systems

Design and Implementation

Boston, Massachusetts, USA
December 9–11, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

The Design and Implementation of Zap:
A System for Migrating Computing Environments

Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh
Department of Computer Science

Columbia University
{sto8, dinesh, gongsu, nieh}@cs.columbia.edu
Abstract
We have created Zap, a novel system for transparent migration of legacy and networked applications. Zap provides a
thin virtualization layer on top of the operating system that introduces pods, which are groups of processes that are pro-
vided a consistent, virtualized view of the system. This decouples processes in pods from dependencies to the host oper-
ating system and other processes on the system. By integrating Zap virtualization with a checkpoint-restart mechanism,
Zap can migrate a pod of processes as a unit among machines running independent operating systems without leaving
behind any residual state after migration. We have implemented a Zap prototype in Linux that supports transparent mi-
gration of unmodified applications without any kernel modifications. We demonstrate that our Linux Zap prototype can
provide general-purpose process migration functionality with low overhead. Our experimental results for migrating
pods used for running a standard user’s X windows desktop computing environment and for running an Apache web
server show that these kinds of pods can be migrated with subsecond checkpoint and restart latencies.

1 Introduction
Process migration is the ability to transfer a process from
one machine to another. It is a useful facility in distrib-
uted computing environments, especially as computing
devices become more pervasive and Internet access be-
comes more ubiquitous. The potential benefits of process
migration, among others, are fault resilience by migrating
processes off of faulty hosts, data access locality by mi-
grating processes closer to the data, better system re-
sponse time by migrating processes closer to users, dy-
namic load balancing by migrating processes to less
loaded hosts, and improved service availability and ad-
ministration by migrating processes before host mainte-
nance so that applications can continue to run with mini-
mal downtime.

Although process migration provides substantial
potential benefits and many approaches have been con-
sidered [24], achieving process migration functionality
has been difficult in practice. Toward this end, there are
four important goals that need to be met. First, given the
large number of widely used legacy applications, applica-
tions should be able to migrate and continue to operate
correctly without modification, without requiring that
they be written using uncommon languages or toolkits,
and without restricting their use of common operating
system services. For example, networked applications
should be able to maintain their network connections
even after being migrated. Second, migration should
leverage the large existing installed base of commodity
operating systems. It should not necessitate use of new
operating systems or substantial modifications to existing
ones. Third, migration should maintain the independence

of independent machines. It should avoid creating resid-
ual dependencies that limit the utility of process migra-
tion by requiring machines where a process was
previously executed to continue to service a process even
after it has migrated to another machine. Fourth, migra-
tion should be fast and efficient. Overhead should be
small for normal execution and migration.

To overcome limitations in previous approaches to
general-purpose process migration, we have created Zap.
Zap provides a thin virtualization layer on top of the
operating system that introduces a PrOcess Domain
(pod) abstraction. A pod provides a group of processes
with a private namespace that presents the process group
with the same virtualized view of the system. This virtu-
alized view associates virtual identifiers with operating
system resources such as process identifiers and network
addresses. This decouples processes in a pod from depen-
dencies on the host operating system and from other pro-
cesses in the system.

Zap virtualization is integrated with a checkpoint-
restart mechanism that enables processes within a pod to
be migrated as a unit to another machine. Since pods are
independent and self-contained they can be migrated
freely without leaving behind any residual state after
migration, even when migrating network applications
while preserving their network connections. Zap can
therefore allow applications to continue executing after
migration even if the machine on which they previously
executed is no longer available. In using a checkpoint-
restart approach, Zap not only supports process migra-
tion, but also allows processes to be suspended to second-
ary storage and transparently resumed at a later time.

Going beyond simple migration, this functionality can be
useful in many ways, including fast creation of user ses-
sions and simpler, more dynamic system configuration.

Zap is designed to support migration of unmodified
legacy applications while minimizing changes to existing
operating systems. This is done by leveraging loadable
kernel module functionality in commodity operating sys-
tems that allows Zap to intercept system calls as needed
for virtualization and save and restore kernel state as
needed for migration. Zap’s compatibility with existing
applications and operating systems makes it simple to
deploy and use. We have implemented a Zap prototype as
a loadable kernel module in Linux that supports transpar-
ent migration, without any kernel modifications, among
separate machines running independent Linux operating
systems; it does not require a single-system image across
all machines. Our experimental results on our Linux Zap
prototype demonstrate that it can provide general-pur-
pose process migration functionality with low overhead.

This paper focuses on the design and implementation
of the Zap virtualization and migration mechanisms.
Section 2 describes related work. Section 3 describes the
pod abstraction provided by Zap. Section 4 describes the
architecture of Zap and the mechanisms that support the
pod abstraction. Section 5 presents an overview of our
implementation of Zap in Linux. Section 6 presents
experimental results evaluate the overhead associated
with Zap virtualization and migration mechanisms and
demonstrate the utility of Zap for migrating legacy and
network applications. Finally, we present concluding
remarks and directions for future work.

2 Related Work
Many research operating systems have been developed
that implemented process migration mechanisms, with a
focus on using migration for load balancing. These sys-
tems include Accent [31], Amoeba [25], Charlotte [6],
Chorus [33], MOSIX [7], Sprite [12], and V [11]. These
operating systems provided a single system image across
a cluster of machines and providing migration throughout
the cluster through careful kernel design to provide a glo-
bal namespace and location-transparent execution. Pro-
cess state such as IPC, open files, and system calls in
some cases are typically handled by forwarding requests
to a home node on which the process originated. If the
home node fails, migrated processes running on other
nodes may fail as well. Although providing a single clus-
ter operating system can simplify system management,
these kinds of systems require new operating systems or
substantial changes to existing ones, which have limited
their deployment. Furthermore, these approaches do not
work in the context of increasingly common clusters of
independent machines, each with its own operating sys-
tem.

Several systems have been developed to support pro-
cess migration at the user-level and can be run on unmod-
ified commercial operating systems. These systems
include Condor [22], CoCheck [29], libckpt [28], and
MPVM [10]. These systems are primarily intended for
executing long-running applications on a cluster of
machines. However, because there is no kernel support
for process migration, these systems require processes to
be well-behaved in order to migrate, which means that
such processes cannot use common operating system ser-
vices such as inter-process communication. This severely
limits the kind of applications that can be used with such
systems.

Several systems have been developed that provide
migration using object-based approaches. These systems
include Abacus [5], Emerald [19], Globus [13], Legion
[14], and Rover [18]. These systems are designed as pro-
gramming languages or middleware toolkits that typi-
cally require explicit programmer control to utilize
migration. By operating at a higher-level of abstraction,
these systems can reduce the amount of state that needs
to be recorded and moved to migrate an application.
However, these systems require applications to be re-
written using new programming language environments.
As a result, they cannot migrate legacy applications.

Virtualization at the operating system level has been
proposed as a mechanism for supporting process migra-
tion. Zap virtualization was inspired in part by capsules
[36], an abstraction that provided a private namespace to
a group of processes that can be migrated as a unit. How-
ever, capsules did not support migration of networked
applications while preserving their open network connec-
tions. Unlike Zap, implementing capsules required exten-
sive operating system changes. Whereas the capsule
approach restructured the operating system to achieve its
goals, Zap seeks to be compatible with existing operating
systems by virtualizing the operating system interface
while minimizing changes to the operating system. Oper-
ating system virtualization has also been explored in vOS
[9] to provide process migration for simple, non-net-
worked Windows applications.

Virtual machine monitors (VMMs) can also be used as
a mechanism for process migration [21, 35]. Virtual
machine monitors such as VMware [1] virtualize at the
hardware level to encapsulate an entire operating system
environment such that it can be suspended and resumed.
The operating system environment can be migrated from
one machine to another assuming sufficient similarities in
those system architectures. By leveraging VMware, even
Microsoft Windows applications can be migrated without
operating system or application changes, though the
problem of migrating networked applications with open
connections has not yet been addressed. Capsules have
been recently applied in this context [35]. Because

VMMs operate below the operating system, they cannot
take advantage of mechanisms specific to a given operat-
ing system to reduce the cost of migration and are limited
to migrating an entire machine as opposed to a few pro-
cesses. Furthermore, all applications to be migrated must
be run using a VMM. Section 6 shows that the resulting
cost of using VMMs can be substantially higher migra-
tion and runtime overhead.

Previous approaches to process migration do not effec-
tively support networked applications. However, a variety
of other approaches have been proposed to provide
mobility for network communications. These approaches
can be loosely categorized as network layer solutions [8,
17, 26], transport layer solutions [38], proxy-based solu-
tions [23], and socket library wrapper solutions [30, 41].
Network layer solutions do not provide mobility for indi-
vidual end-to-end transport connections; they only allow
mobility at the level of an entire host. The proposed trans-
port layer solution requires changes in the transport pro-
tocol and therefore is difficult to deploy. Existing proxy-
based solutions are usually tied to a specific transport
protocol (e.g., TCP) and their “connection switching and
splicing” function incurs high overhead. Socket library
wrapper solutions duplicate many transport protocol
functions that result in high overhead.

3 The Pod Abstraction
The goal of Zap is to support migratable computing envi-
ronments in the context of today's networked computing
infrastructure. In this infrastructure, network file servers
are typically used to store applications and user data.
These servers are then accessible to personal computers
or compute servers, where application processing takes
place. A key characteristic of this computing environ-
ment is that the compute machines typically run com-
pletely independently of one another, each running its
own independent operating system. Zap seeks to enable
users to continue to use such a computing infrastructure
as they normally do, but with the added feature of being
able to have their computing sessions migrate across ma-
chines.

To support transparent process migration from one
independent machine to another, Zap must address three
key requirements regarding resource consistency,
resource conflicts, and resource dependencies. The first
requirement is the need to preserve resource naming con-
sistency. An operating system contains numerous identi-
fiers for its resources, including process IDs (PIDs), file
names, and socket ports. Since neither the operating sys-
tem nor the typical application were designed to support
process migration, they both assume that these identifiers
will remain constant throughout the life of the process. It
is not unusual for a process to take note of an identifier
given to it and store it in memory or on a file. In migrat-

ing a process from one machine to another, it is important
to maintain consistent names for these resource identifi-
ers to ensure that the process continues to function cor-
rectly.

The second requirement is the need to avoid potential
resource naming conflicts in the presence of migrating
processes. Since operating system resource identifiers are
unique only at the system level, it is a trivial task for an
operating system to produce unique identifiers merely by
examining its current state and picking a candidate identi-
fier that is not in use. The problem that can arise when a
process is migrated to a new host system is that its pro-
cess identifier could already be in use at the new host sys-
tem. For example, a conflict will arise if a process with
PID 20 is migrated into a system that already contains a
process with PID 20. Besides aborting the migration,
there are only two approaches at this point: (1) violate
resource naming consistency and change the PID, which
can cause common applications which have already
stored their previous PIDs to fail because PID value has
changed unexpectedly, or (2) wait and try again later after
the PID resource becomes free, which can result in the
migration never being able to occur since there is no way
to know how long it will be before the resource becomes
free.

The third requirement is the need to avoid creating
dependencies among components of the system that can-
not be easily severed when a process is migrated. For
example, a process could attempt to share an area of
memory with an operating system component such as
another process, making it impossible to migrate the par-
ticular process unless: (1) the other component sharing
memory is also migrated simultaneously, or (2) a proxy is
left behind on the original host so that any updates of this
particular shared memory area will be relayed through a
network connection. The first approach may require
larger and larger portions of the operating system to
migrate at once. As the number of cross dependencies
grows, the number of independently migratable processes
decreases. The second approach is also unfavorable
because application developers assume that accessing a
shared memory area will be fast compared to network
speeds. In addition, reliance on the original host machine
is never removed, so that some of the potential advan-
tages of process migration, such as freeing up a machine
for maintenance, are lost.

To address these three requirements, Zap introduces a
pod (PrOcess Domain) abstraction, which provides a col-
lection of processes with a host-independent virtualized
view of the operating system. Pods are self-contained
units that can be suspended to secondary storage,
migrated to another machine, and transparently resumed.
A pod can contain any number of processes. For exam-
ple, a pod can encapsulate all of the processes corre-

sponding to a user's computing session. The abstraction
provides the same application interface as the underlying
operating system so that legacy applications can execute
in the context of a pod without any modification. Pro-
cesses within a pod can make use of all available operat-
ing system services, just like processes executing in a
traditional operating system environment.

The main difference between a pod and a traditional
operating system environment is that each pod has its
own private, virtual namespace. The idea of a private, vir-
tual namespace is surprisingly simple but has significant
implications for supporting migratable computing envi-
ronments. The pod namespace provides two key charac-
teristics that facilitate the independence and mobility of
pods.

First, the namespace provides consistent, virtual
resource names in place of host-dependent resource
names such as PIDs. Names within a pod are trivially
assigned in a unique manner in the same way that tradi-
tional operating systems assign names, but such names
are localized to the pod. Since the namespace is private to
a given pod, there are no resource naming conflicts for
processes in different pods. There is no need for the pod
namespace to change when the pod is migrated, which
allows pods to ensure that identifiers remain constant
throughout the life of the process, as required by legacy
applications that use such identifiers. Because pod
namespaces are private, allowing a process to move from
one pod to another could result in naming conflicts. As a
result, processes are created inside of a pod and spend
their entire lifetimes in the context of that pod; they are
not allowed to leave one pod and join another.

Consider the following simple example of how the pod
namespace aids in supporting process migration. The fol-
lowing excerpt of a C program is not atypical of a multi-
threaded application:
int iChildPID;

if (iChildPID=fork()) {
/* parent does some work */
waitpid(iChildPID);/* Wait for the child

process to exit */
} else {
/* child does some work */
exit(0);

}

Migrating this program from a system A to a system B
is trivial in the context of pods. If the child had a virtual
PID of 172 in a pod on system A, it will still have the
same PID in the same pod after it is migrated to system
B. Since the pod namespace is private, there is no possi-
ble naming conflict. However, migrating even this simple
program without pods could be problematic. Without
pods, the PID namespace is global on a system. If system
B already had a process running with PID 172, the child

process in the above program would need to be assigned
a new PID when it moves from system A. The parent pro-
cess, however, expects the child process to have a PID of
172. When it calls waitpid(iChildPID), it will be
waiting for the wrong process.

Second, the private namespace masks out resources
that are not contained within the pod, including processes
outside of the pod. Pod namespace masking creates inde-
pendence among elements that can migrate to avoid cre-
ating ties between components of the system that cannot
be easily severed when an environment is migrated. A
pod logically groups processes running on an operating
system into three classes: processes inside the pod, spe-
cial system processes outside the pod, and other pro-
cesses outside the pod. Processes inside a pod appear to
one another as normal processes that can communicate
using traditional IPC mechanisms. Special system pro-
cesses outside the pod that are consistently named across
different machines, such as the init process in Linux, are
viewable from within a pod but cannot interact with pro-
cesses within the pod using IPC. In particular, the init
process, or its equivalent system process that serves as
the parent of orphaned children, is made viewable within
a pod to serve as the parent of processes within a pod that
have no parent process within the pod. Other processes
outside a pod do not appear in the namespace and are
therefore not able to interact with processes inside a pod
using IPC mechanisms such as shared memory and sig-
nals. Instead, processes outside the pod can only interact
with processes inside the pod using network communica-
tion and shared files that are normally used to support
process communication across machines. Unlike IPC
mechanisms, these communications mechanisms can
avoid imposing host-specific dependencies that would
limit the ability to migrate a pod.

4 Zap Architecture
Zap provides an architecture that supports the pod ab-
straction in the context of commodity operating systems.
This is difficult to achieve because there are important
mismatches and conflicts between the pod abstraction
needed for process migration and current operating sys-
tem design. For example, PIDs are determined by the
host operating system which has no knowledge of pods,
whereas pods require their own private PIDs for their re-
spective processes. Processes running on the same oper-
ating system are free to communicate using IPC, whereas
pods disallow such communication across pods to avoid
creating host dependencies.

Zap provides pod functionality using commodity oper-
ating systems by inserting a thin virtualization layer
between applications and the operating system. This vir-
tualization layer is used to translate between pod
namespaces and the underlying host operating system

namespace, and protect processes within a pod from
dependencies on processes outside the pod. We refer to
pod resource names as virtual names and operating sys-
tem resource names as physical names. Each pod virtual
name corresponding to an operating system resource is
mapped to an underlying operating system physical
name. For example, a process is given a pod virtual PID
that must be mapped to the physical PID used by the
operating system. Zap virtualization is done by intercept-
ing system calls and translating their arguments and
return values as needed. When pod virtual names such as
PIDs are passed to the operating system via system calls,
Zap first translates those names to the corresponding
operating system resource names then passes those phys-
ical resource names to the operating system. Similarly,
when operating system resource names are returned via
system calls to processes in a pod, Zap first translates
those names to the corresponding pod resource names
then passes those pod virtual names up to applications.
Operating system resources without corresponding pod
virtual names are masked out of the respective pod's
namespace. Although Zap virtualization provides the
flexibility of using virtual names that are distinct from the
corresponding physical names, it does not preclude using
virtual names that are the same as physical names. For
instance, the virtual and physical PID for the init process
are the same since the physical PID for init is always 1.

Zap virtualization is coupled with a checkpoint-restart
mechanism to suspend, migrate, and resume pods and
their associated processes. Zap uses a checkpoint-restart
approach for the following four reasons. First, it is sim-
pler to implement than other migration mechanisms such
as demand paging. Second, it avoids leaving behind
residual components after migration since all of the
required state is in a checkpointed image that is simply
moved for migration. Third, it enables flexible mecha-
nisms for migrating the pod state, whether it be by send-
ing it over a network or storing it on a disk that is moved
from one place to another. Fourth, it enables pods to be
checkpointed, suspended to secondary storage, and stored
for future use.

To migrate a pod, Zap first suspends the pod by stop-
ping all processes in the pod, saving the virtualization
mappings, and saving all process state, including mem-
ory, CPU registers, open file handles, etc. The saved pod
state can be digitally signed to avoid tampering and can
then be moved to a new host in any number of ways. Zap
defines an abstract I/O interface that is used for check-
pointing and restarting a pod. The I/O interface has been
defined specifically to allow only sequential writing (for
checkpoint) and reading (for restart) of the image data.
This ensures that checkpoint-restart can occur through
the largest set of mediums, including ones which may not
necessarily support two-way communication or which

have extremely slow random-access speed. This allows
data to be streamed to and from a tape or a network
socket during migration, enabling pipelining of check-
point-restart operations. On the new host, Zap resumes
the pod by first restoring the pod virtualized environment,
then restoring processes in a stopped state. Zap must then
create necessary virtualization mappings pertaining to the
stopped processes, such as remapping the virtual PID of a
process to its new physical PID on the host. Finally, Zap
enables the processes to continue executing in the
restored pod environment.

The Zap architecture consistently applies the principles
of pod namespaces, virtualization, and migration to a
complete set of operating system resources. Table 1 pro-
vides an overview of how pod principles are applied to
different resources. Section 4.1 discusses process identi-
fiers and IPC resources. Section 4.2 considers memory
resources. Section 4.3 focuses on file system resources.
Section 4.4 introduces device resources. Section 4.5
overviews network resources. Section 4.6 describes pod
administration and how pods are created and used.

4.1 Process IDs and IPC Virtualization and
Migration

For each pod, Zap provides unique namespaces for pro-
cess resources, including PIDs and keys for IPC mecha-
nisms such as semaphores, shared memory, and message
queues. Values from within these spaces are assigned the
same way that they are by the operating system and are
maintained consistently across migration.

Zap virtualization employs two types of hash tables
that can be quickly indexed to translate these resource

Resource Virtual Names Migration State

Process
State and
IPC

Process and group
IDs, IPC keys and
IPC IDs

Process and group IDs, CPU
registers, signal handlers, IPC
keys and state, pipes and
written, but not yet read by
peer data in pipes

Memory Memory addresses
(already supported
by OS)

Memory mappings and
contents of data pages

File
System

Directory
structure, per-pod
private directory,
per-pod /proc

Opened files which have been
unlinked, directories and files
not mounted on a network file
system

Devices Per-pod /dev Device names and state
(device specific)

Network Per-pod IP
address, virtual
network
connections

Socket state, remote endpoint
and virtual address pairs,
queued but unsent data at the
transport layer

Table 1: Pod principles applied to resources

names between private pod namespaces and the operating
system namespace. One is a system-wide hash table
indexed by physical identifiers on the host operating sys-
tem that returns the corresponding pod and virtual identi-
fier. The other is a per-pod hash table indexed by virtual
identifiers specific to a pod that returns the corresponding
physical identifiers. When a system call is made that uses
one of the identifiers in question, Zap replaces all the
parameters that refer to virtual identifiers for the current
pod with physical identifiers. Zap then invokes the sys-
tem call, and upon return from the call replaces all physi-
cal identifiers returned by the system with virtual ones by
looking them up in the system-wide physical-to-virtual
hash table.

Consider PID virtualization as an example. Zap pro-
vides a host system-wide process identifier hash table
indexed by the physical process PID and a process identi-
fier hash table for each pod indexed by the virtual process
PID provided by the respective pod. System calls that
manipulate PIDs are intercepted, including getpid,
getgid, fork, kill, etc. In system calls like getpid, the
returned physical PID is translated into a virtual one and
in system calls like kill, the virtual PID argument is
translated into the physical one before passing it on to the
kernel for processing.

Since Zap intercepts system calls that would manipu-
late process resource identifiers, such as the call to attach
to a particular area of shared memory or to send a signal
to a process, Zap can trivially limit the successful calls to
those that use valid identifiers within their context.
Within a pod, a valid identifier is a virtual identifier that
was created within the pod. Outside of the pod environ-
ment, the system call will reject any requests to physical
resources which belong to pods. This disallows a process
on the host operating system from creating dependencies
between pods and the host operating system.

To migrate a pod and its processes, Zap checkpoints
data that pertains to process resources which is then used
to restart the pod after migration. The data that is saved
includes Zap virtualization state contained in the hash
tables, process state for processes in the pod, and state
associated with IPC mechanisms used by processes in the
pod. Process state saved includes CPU registers, process
credentials, process signal handlers and any pending sig-
nals, and process, group and session identifiers as well as
the process's controlling terminal.

IPC mechanism state saved includes data associated
with mechanisms used to access external entities, such as
TCP/IP sockets, as well as IPC mechanisms used to com-
municate with other processes within the pod, such as
Unix sockets, semaphores, shared memory areas, and
unnamed pipes. Shared memory migration is only
slightly different from typical memory migration dis-
cussed in Section 4.2. They are similar in that shared

memory contains an address range as well as contents to
fit within that range, however, shared memory requires a
little more attention. First, a shared memory region, like
many of the other IPC mechanisms is identified by a key
that allows disparate processes to connect to the same
resource. In addition, if multiple processes refer to the
same shared memory region, they refer to the same con-
tents as well. It is sufficient to save and restore the con-
tents for the first process in the pod that uses the memory
area, then for all other processes and mappings of that
area, only a reference is needed.

When a pod is migrated and restarted on a target
machine, Zap recreates the pod virtual environment and
its processes. Zap creates new processes on the machine
into which it restores the checkpointed process data. Zap
keeps track of the new operating system identifiers corre-
sponding to the new resources created and updates its
system-wide and per-pod hash tables with this informa-
tion to reconstruct the Zap virtualization state in the con-
text of new operating system resources used by the pod
on the target machine. Zap ensures that the pod environ-
ment is updated before enabling the processes in the pod
to start executing again.

4.2 Memory Virtualization and Migration
Because memory state associated with processes is in
general implicitly virtualized by the operating system,
Zap only needs to provide virtualization support for
mechanisms which allow a particular area of memory to
be shared by multiple processes. Specifically, a memory
location can be mapped to a file, shared as a result of pro-
cess creation, and shared through IPC shared memory.
File-mapped memory is handled implicitly by Zap’s file
namespaces, discussed in Section 4.3. Memory shared
due to process creation is handled implicitly by automati-
cally including child processes in the same pod as the
parent so that they both share the same namespace. IPC
shared memory is handled by pod virtualization as previ-
ously discussed in Section 4.1.

To migrate a pod, Zap checkpoints the memory areas
allocated by processes within the pod. As discussed fur-
ther in Section 4.3, Zap assures that the same view of the
file system is available to a pod on whatever machine the
pod is executed. As a result, Zap need not checkpoint the
contents code segments that belong to an executable. This
includes the text pages of the process as well as those of
dynamically linked libraries in use by the process. Migra-
tion of text pages is accomplished through saving refer-
ences to the executable files as well as the virtual
memory addresses to which they are mapped.

When a pod is restarted, the checkpointed memory
data needs to be restored. For efficiency reasons, when-
ever possible, Zap maps the checkpointed data directly to
memory, allowing the pages to be read in as they are

touched by the process. This can greatly improve the
restart performance. If the checkpointed data is stored on
a network file server, this can also reduce the network uti-
lization of a process that will not necessarily touch all of
its pages after restart.

4.3 File System Virtualization and Migration
To support migration of processes within pods, Zap must
provide each pod with a consistent, location-independent
view of the file system that is available on all hosts. One
way this could be done would be to associate each pod
with its own complete file system, which is migrated
whenever the pod is migrated. Given that file systems can
be many gigabytes, this would result in a substantial
amount of state having to be migrated each time a pod
moves from one machine to another making the approach
impractical. Another way this could be done would be to
have a global file system across all machines where a pod
could be located. This removes the need to copy files
from one machine to another since all files would be net-
work accessible. However, ensuring a consistent global
root file system across all machines is impractical as most
machines are not configured this way in practice.

Zap takes a different approach to providing each pod
with a consistent, location-independent view of the file
system. Zap provides each pod with its own virtualized
file system and corresponding private file system
namespace. Zap then leverages widely used distributed
file systems such as NFS [2] to store file data and mount
such systems within the pod’s virtual file system hierar-
chy. More specifically, when a pod is created or moved to
a host, a private directory named according to a pod iden-
tifier is created on the host to serve as a staging area for
the pod's virtual file system. Zap ensures that this direc-
tory is not accessible by processes on the host machine
that are not in the given pod. Within this directory, the
various network-accessible directories that the pod is
configured to access will be mounted from a network file
server. Minimally from a Unix-centric viewpoint, this set
of directories would include /etc, /lib, /bin, and /usr.
Each pod must also be configured with a /tmp that is pri-
vate to the pod and is discussed further below. Zap then
uses the chroot call to set the staging area as the root
directory for the pod, thereby achieving file system virtu-
alization with modest performance overhead. Zap virtual-
izes chroot to prevent processes within a pod from
breaking out of their virtual file system environment.
This approach takes advantage of distributed file systems
to reduce file state that would need to be moved during
migration without requiring a global file system across all
host machines.

Zap can use network file servers to support many pods
running on many machines at the same time. This is sim-
ple to do for files such as common executables which are
used in the same way by processes in all pods. In some

cases though, it is desirable and necessary to have files
and directories that are specific to a given pod. For this
purpose, Zap introduces private pod directories. A private
pod directory is created when a pod is initially created
and destroyed once the pod is finally destroyed. The pri-
vate directory is only used by the given pod. The direc-
tory can be created on the network file server then
mounted within the pod virtual file system as /private-
pod. When a private pod directory is created, it may
optionally be pre-populated with data from a template
directory.

Private pod directories can be useful for supporting
directories such as /tmp or /local that are typically local
to a machine. It is important that such directories are pri-
vate to avoid naming conflicts that would otherwise arise
in the file system due to the way some legacy applications
name files. For example, some server applications store
their PIDs in the /tmp directory in a file with the server
name as the filename and .pid as the file extension. If
/tmp is shared by two pods that happen to both have
instances of such a server running, a filename conflict
will result. These conflicts arise due to processes in sepa-
rate pod namespaces sharing the same file namespace and
occur with directories such as /tmp that are typically
local to a machine. Zap avoids this problem by storing
/tmp and /local in the private pod directory when a pod
and its virtual file system are created. Whereas /tmp is
initially empty, /local can be populated by transferring
over files from a template directory on the file server.
Note that Zap does not have to use a network file server
for such these private directories but could instead store
them locally on the host machine as a subdirectory of the
pod’s virtual file system. However, this would require
that the files be migrated as well when the pod is
migrated.

Private pod directories can also be useful for allowing
per-pod application configurations without having to
duplicate the application file hierarchy. When some files
or subdirectories used by a common application need to
be specific to a given pod, these files can be easily config-
ured as symbolic links to files in the respective private
pod directories. For example, to install a web server that
is available to all pods, an administrator could install the
web server in a global /usr/local/apache directory, and
make the conf directory within it a symbolic link to
/privatepod/apache/conf. This will allow multiple
pods to share one copy of the web server, which can be
centrally managed and upgraded periodically to fix bugs
and close up security holes, while each pod maintains its
own configuration, allowing pods to point to log files and
web pages anywhere on their file system.

In addition to network accessible files and private pod
files, Zap must also consider special file systems such as
the proc file system [27] in /proc and devices in /dev.

We briefly discuss /proc here and defer devices to
Section 4.4. Each pod is given its own /proc by creating
a special per-pod directory, specifically
/proc/zap/pods/<pod_id>/proc, under the proc file
system of the host machine and loopback mounting that
area as /proc in the pod’s virtual file system. The per-pod
directory registers its own set of file operations with the
proc file system for accessing files and directories instead
of using the generic operations used when accessing files
in /proc directly from the host. These pod /proc file
functions are similar to the generic /proc functions
except that they translate as needed to return system
information in the context of the pod namespace. For
example, the process directories in the pod /proc are
listed by virtual pod PIDs instead of physical PIDs. All of
the information in the Zap-specific area of /proc is cre-
ated dynamically by combining pod virtualization infor-
mation with system information from the operating
system.

When a pod migrates, Zap flushes all cached data to
disk and saves and restores the information it needs to
reconstruct the pod virtual file system, including a list of
all files opened by the processes within a pod and the
access rights with which the files were opened. Zap in
general does not need to save file contents because it
leverages the use of a distributed file system to make the
files available at the machine where the pod is resumed.
Dynamically generated files in /proc also do not need to
be saved since they can be recreated at the machine
where the pod is resumed. In environments where a pod
cannot access distributed file systems from all locations,
Zap could easily be extended to package up the contents
of the file system along with the checkpointed image of
the pod.

Zap does checkpoint the contents of files that have
been opened by a pod process and have been subse-
quently unlinked. This is because as soon as the pod pro-
cesses are checkpointed, opened files are closed and the
file system will free up the inodes associated with the
files, losing the data that they contained. Unlinked files
will no longer exist and will not be available when a pod
is restarted. To address this problem, Zap checks the ref-
erence counters of inodes belonging to files opened by
processes in a pod. If a pod has an unlinked file open, Zap
saves the contents of the file and recreates the file when
the pod is restarted, once again unlinking it after it has
been opened.

4.4 Device Virtualization and Migration
Zap provides each pod with its own virtual /dev direc-

tory to provide a framework for supporting device virtu-
alization and migration. Creating a unique /dev directory
for a pod helps achieve two goals: first, it ensures that the
pod cannot accidentally use any host-specific devices
which may be difficult to migrate because they may be in

an awkward interim state (such as the CD recording
device while recording), or impossible to migrate because
they are unavailable elsewhere (for example, just because
one host is attached to an electron microscope, one can-
not assume that all hosts will be attached to one). The
second goal it achieves is naming resolution for certain
files, for example, virtual tty names. When the system
assigns a new tty to a process, it merely selects the next
available tty number (for example, /dev/pts/2 or
/dev/tty02). Without virtualizing the /dev namespaces,
there would be no guarantee that the particular tty will be
available for a given pod at its new location.

Each pod is given its own /dev by creating a special
per-pod directory on the host machine and loopback
mounting that area as /dev in the pod’s virtual file sys-
tem. Zap employs a device-specific plugin for each
device, which registers a particular device within the vir-
tual /dev directory and provides appropriate support for
the given device. Device support needs to be addressed
on a per-device basis; full migration support of devices is
a difficult problem that is beyond the scope of this paper.
Devices that are not explicitly supported by Zap are not
included in a pod /dev directory, preventing processes
within a pod from accessing them.

Zap defines three types of device support that could be
provided as emulation, virtualization, and non-migrat-
able. Emulation could be used to emulate a device in soft-
ware. For example, a virtual console could be created and
registered as /dev/console. When data is written to
/dev/console, it could be redirected to a pre-defined text
file accessible within the pod. Virtualization could be
used to utilize an equivalent device on the host system
from within the pod. For example, a virtual /dev/audio
could be created. As the virtual /dev/audio is accessed,
the virtual device driver would make note of any configu-
ration changes requested of the audio device and pass
them on to the host's audio device. When the pod is
migrated to a new host, the audio device on the original
host is closed and reset and the audio device on the new
host is opened and configured with whatever state
changes were invoked previously. Finally, non-migratable
device driver could be created that passes all requests to
the device on the host machine, but disallows migration
so long as the device is in use. For example, when using a
CD recording device, migrating in the middle of record-
ing a CD would result in a CD with half its contents on
being recorded on the original host and the other half on
the new host. A non-migratable device driver could sim-
ply cause the pod migration to fail until the CD recorder
device has been closed.

Device virtualization and migration greatly depend on
the device and its capabilities. Currently, Zap explicitly
supports pseudo-terminal devices, which allow one to log
in remotely as well as have multiple terminals open

through such programs as xterm. Zap provides virtual
ttys which require that, when a tty is opened, rather than
the next available virtual tty for the host being returned,
the next available virtual tty for the pod is returned. Upon
migration, the migration process specifies the desired vir-
tual tty number and the virtualization system will auto-
matically map between the host's tty number and the
pod's tty number.

4.5 Network Virtualization and Migration
Zap is designed to support migration of unmodified net-
work applications running in pods using the existing net-
work infrastructure without any modifications. Toward
this end, Zap provides mechanisms to address three key
issues: (1) enabling remote systems to locate and com-
municate with processes in the pod, (2) exposing applica-
tion layer network interfaces to support persistent com-
munication in the presence of migration, and (3)
preserving consistent state at the transport layer to main-
tain an application’s open connections persistently even
after the application migrates.

To enable remote systems to locate and communicate
with processes in the pod, Zap allows each pod to be
assigned an external IP address that can be known to enti-
ties outside of a pod. The address is distinct from the IP
address of the host machine where the pod is currently
located. This external address changes as the given pod
moves from host to host in the same way that a host
machine's IP address changes when it changes network
locations. The external IP address can be a routable one
to enable a pod to provide network services such as a web
server that can be accessed from an outside-initiated con-
nection.

To allow a pod’s network services to be accessed even
if its external address changes due to migration, Zap
leverages dynamic DNS [40] to maintain a name-to-IP
relationship so that a pod's network services can be
accessed by the same name even after migration. To
avoid downtime due to migration, Zap can install a tem-
porary proxy process just before a pod migrates, stall cur-
rent and pending connections for a few seconds without
negative effect, and then restart them once the pod is
resumed on the new host machine. The number of incom-
ing connections to the proxy will drop off as the TTL
expires and when it gets below a defined threshold, the
proxy terminates. The proxy only needs to run for a short
time with a TTL of a few minutes, which does not
adversely affect DNS caching performance [20].

To provide network interfaces for applications in a pod
to support persistent communication in the presence of
migration, Zap distinguishes between the external IP
address and internal IP address perceived by a process
running within the pod. Pods only allow applications
within a pod to perceive the internal IP address directly.

Pods can provide two types of network interfaces for
determining the internal address seen by processes run-
ning within the pod: transient and persistent. Transient
network interfaces assign the internal address equal to the
current external IP address, which exposes the movement
of a pod to applications within the pod. This is the default
behavior, which works fine for most network applications
because they do not require a fixed IP address for their
connections to persist and function correctly even after a
pod migrates. This default behavior also supports con-
text-aware applications such as network discovery tools
that need to know about IP addresses changes to operate
correctly.

Persistent network interfaces assign the internal
address equal to a static value that does not change due to
pod migration. This is useful for applications that require
the IP address that they see to remain unchanged in order
for their open network connections to continue to func-
tion correctly. Although such applications are in the
minority, one such application that is widely-used is FTP,
which explicitly checks the source and destination IP
addresses used for consistency for its protocol interac-
tion. The static value that is used can be assigned in
almost any manner. By default, the internal address seen
by a connection is equal to the external IP address in use
when the connection was first opened and persists for the
lifetime of the given connection. Alternatively, the inter-
nal address can be statically assigned to a predefined
value that is constant across all connections. This would
be useful for a multi-homed web server, which is config-
ured with multiple IP addresses and performs a different
action depending on the IP address from which a request
is made. By having predefined internal addresses, the
web server can be started in a pod with the same configu-
ration regardless of the host machine on which the pod is
located. This can simplify web server administration for
web hosting providers running web servers on a cluster of
homogeneous machines.

To maintain an application's open connections persis-
tently even after the application migrates, Zap needs to
ensure that the network state perceived by the transport
protocol for a given connection remains the same before
and after migration, even though the pod’s external IP
address needs to change when its location changes. To
address this problem, Zap incorporates a novel virtual
networking mechanism that transparently supports per-
sistent open end-to-end connections among migrating
pods. The mechanism is based on the Virtual Network
Address Translation (VNAT) architecture presented in
[39], tailored specifically for Zap.

The idea behind VNAT is surprisingly simple. A vir-
tual address, rather than a physical address, is introduced
to identify a pod for its end-to-end connections. We use
the term “address” loosely to refer to both an IP address

and port number, both of which are virtualized by VNAT.
To send data over the connection, the virtual address is
then translated into an appropriate physical address after
packets leave the transport protocol and before they are
injected into the network. Conversely, to receive data
over the connection, a physical address is translated back
into the corresponding virtual address before packets are
returned to the transport protocol layer. Using these con-
nection virtualization and translation mechanisms, a pod
can migrate from place to place without changing the net-
work connection state visible to the transport protocol.
Note that Zap network virtualization differs somewhat
from other resource virtualization as Zap must virtualize
resources not just below the application layer, but below
the transport layer as well.

Connection virtualization works by intercepting sys-
tem calls for connection setup requests from the applica-
tion to the transport protocol and replacing relevant
physical addresses with virtual addresses. The result is
that the transport protocol stack on both the client and the
server will perceive a virtual connection with virtual
addresses rather than a physical connection with the
actual physical addresses of the machines. This virtual
connection identification will stay unchanged for the life
of the connection no matter where the pod containing the
client or the server moves.

Connection translation works by intercepting packets
below the transport protocol layer and translating the vir-
tual addresses in the packet headers to physical
addresses. A packet with a virtual address header is not
routable on the physical network. Using connection
translation, Zap translates a packet with a virtual address
header sent by the client transport protocol into a packet
with a physical address header so it can reach the
intended server. Although this is similar to Network
Address Translation (NAT), a key difference is that con-
nection translation works entirely within the endpoint
without introducing any connection state inside the net-
work. Therefore connection translation does not suffer
from many pitfalls experienced by traditional NAT [15,
16, 37].

To migrate a pod with open network connections, Zap
checkpoints network state pertinent to its open network
connections including standard operating system states
such as socket structures and transport protocol states
such as TCP PCB, as well as connection virtualization
and translation states created by Zap. During the restart,
the standard operating system states and transport proto-
col states are simply restored to their original values and
the restarted pod can trivially locate the server location
using the existing connection state. However, connection
virtualization and translation states need to be updated on
both endpoints to reflect the mapping between the (con-
stant) internal address and the new external address of the

migrated pod. When a connection endpoint resumes after
migration, Zap notifies the endpoint on the other side of
the connection that the migrated endpoint is at a new
physical address. Both endpoints of the connection then
update their virtualization state so that their virtual
address pairs map to the new physical address pair. The
protocol used to update the endpoints is detailed in [39].
Note that the virtual connection perceived by the trans-
port protocol stays intact across the migration and the
transport layer is completely unaware of the change of
the underlying physical address of the client. So with the
addition cost of translating a virtual connection to and
from a physical connection, Zap will seamlessly migrate
a transport end-to-end connection regardless of where the
client moves.

Zap selects the virtual address for a connection to be
the same as the current physical address for the connec-
tion, which corresponds to the current external IP address
of the pod. This choice of virtual address provides two
key advantages. First, it eliminates the need for the client
and server to exchange their virtual addresses at connec-
tion setup time. Second, it eliminates connection transla-
tion overhead for connections that are not migrated. As a
result, no translation overhead will ever be imposed on a
connection so long as the pod does not move. After a pod
migrates, only existing connections that have migrated
along with the pod will incur connection translation over-
head. New connections from the migrated pod will not
incur such overhead since the virtual address used for the
new connections will always be based on the current
external address of the pod.

Zap distinguishes between the virtual address seen by
the transport layer and the internal address seen by appli-
cations running within a pod. Since Zap intercepts system
calls that return network addresses to applications, Zap
can return any network address that it chooses. This
makes it simple to support both transient and persistent
network interfaces as discussed previously. For transient
network interfaces, Zap returns the underlying external IP
address to applications. For default persistent network
interfaces, Zap propagates the virtualization up to appli-
cations and returns the virtual address seen by the trans-
port layer when a connection was first established; for
persistent network interfaces with statically assigned
internal addresses, Zap simply remembers the static
assignment and returns that value as the internal address.

In addition to providing connection persistency
between applications running in pods, Zap can also pro-
vide support for preserving connections between pods
and traditional processes running outside of pods assum-
ing that such connections are made through a proxy. The
network virtualization and migration mechanism of Zap
can be installed separately from pods on a proxy. Zap net-
work virtualization preserves a connection between a pod

and such a proxy the same way it preserves a connection
between two pods. When the pod migrates, the connec-
tions between the pod and the proxy continue to be
“spliced” with the connections between the proxy and the
legacy applications behind the proxy. Since the proxy
doesn’t detect the movement of the pod due to Zap net-
work virtualization, there is no need to “switch” the con-
nections between the pod and the proxy. As a result, the
complete proxied connections between the pod and tradi-
tional processes without pods are migrated without any
modifications to applications or system environments
without pods.

4.6 Pod Administration and Usage
Zap enables any user to create a pod, either explicitly or
by incorporating pod creation into system utilities such as
login to encapsulate a user's computing session within a
pod. Once a pod is created, access to the pod is controlled
by an access control list (ACL). Only the host system ad-
ministrator on the system where the pod is currently exe-
cuting or a user on the ACL are allowed to manipulate the
pod, including suspending and resuming a pod for migra-
tion purposes. The five primary commands provided by
Zap for users and system administrators to create and ma-
nipulate pods are:

create_pod enables a user to create a new pod with
various options that can be specified in a pod configura-
tion file. These options include the network configuration
and file system configuration for the pod, what applica-
tions if any should be launched once the pod is created,
and access control permissions for the pod. create_pod
assigns a numerical identifier to the pod and creates a
corresponding entry for the pod in a list maintained by
Zap that contains a list of pods currently running on the
host machine and associated information about each pod.
The pod identifier may change when a pod migrates to
another machine. Pod creation does not nest, so that cre-
ating a pod from within an existing pod will create a new
pod on the host machine. Some examples of how
create_pod can be used include: with login to create a
user session in a pod, with /etc/init.d for automati-
cally starting up services like a web server in a pod, or
with inetd to spawn incoming connection handlers into a
new pod, such as creating a separate pod for each telnet
session.

kill_pod takes a pod identifier and terminates the
respective pod, killing all processes in the pod, freeing all
associated resources, and removing the pod itself from
the system.

addproc_pod takes an executable and a pod identifier
and creates a new process running the given executable in
context of the respective pod. Note that addproc_pod
only creates a new process in the pod; it will not move an
already existing process into the pod to avoid creating

naming conflicts. To add a process to a pod, Zap must
first create a new process. In Unix systems, process cre-
ation is done using fork, which creates a child process
that is a copy of the parent by allocating a kernel process
structure and populating it with information from the par-
ent. Zap creates a process in a similar fashion but does
not use the same kind of information from the parent in
the new process to ensure that there are no dependencies
on the parent process or the host system or pod in which
the parent process resides. Instead, Zap takes several
steps to avoid creating any such dependencies in the new
process, including setting its parent process to init, mak-
ing it the process group leader, and relinquishing the con-
trol terminal.

Because adding a process to a pod is done in a system
call, all of the necessary steps can be done in the kernel
before the process is made runnable. In particular, the
executable that addproc_pod specifies to run is overlaid
on the new process before returning from the system call,
not as a separate exec system call. Furthermore, the exe-
cutable that addproc_pod executes is specified in the con-
text of the virtual file system of the pod into which the
process is being added, not the file system of the environ-
ment from which the addproc_pod command was issued.
Finally, addproc_pod also creates an entry for the new
process in the pod’s process list. Although special care
must be taken in adding a process to a pod, process cre-
ation inside of a pod is simply done in the normal manner
with a created child process inheriting the attributes of its
parent. Once a process has been added to a pod, all its
operations occur inside of the pod, and all of its children
will also be created inside of the pod.

suspend_pod takes a pod identifier and filename,
stops the pod and all of its processes, checkpoints the
state of the pod to the respective file.

resume_pod takes a filename for a file that contains a
checkpointed pod and restarts the pod and its processes
starting at the point at which the pod was checkpointed.
resume_pod assigns a new numerical identifier to the
pod.

To simplify administration, Zap provides a view of the
host machine outside of the context of pods that shows
everything running on the given machine in the same
manner used in existing operating system environments.
An administrator can access the host machine directly to
obtain this administrative view. Processes within pods are
viewable from this administrative view, but they cannot
be accessed from this view using traditional IPC mecha-
nisms to avoid creating host dependencies. We note that
pods introduce interesting security considerations, but
due to space constraints, these security issues are not dis-
cussed here.

5 Implementation
The Zap architecture was designed to provide transparent
process migration while minimizing changes to the oper-
ating system by leveraging the loadable kernel module
interface available in many commodity operating sys-
tems. We have implemented a Zap prototype as a Linux
kernel module. Our implementation builds on previous
work of one of the authors on a Linux kernel module
called CRAK [42] that provided a restricted process mi-
gration mechanism but did not support the general pod
abstraction. Our Zap implementation can be dynamically
loaded on a running Linux system to provide Zap func-
tionality without modifying, recompiling, or reinstalling
the Linux kernel. We highlight some key mechanisms
that were used for implementing Zap virtualization and
migration in a kernel module.

Zap virtualization was largely implemented by provid-
ing a mechanism for intercepting system calls to translate
between pod and operating system namespaces. Inter-
cepting a system call within a Linux module is fairly sim-
ple. The module need only replace the appropriate system
call handler pointer in the system call table by a pointer
to the new system call handler. In order to invoke the pre-
vious system call handler, the new handler need only call
the old function pointer. This results in a small amount of
additional overhead due to the extra procedure call. For
simple system calls like getpid, the only extra cost
beyond the procedure call is a hash table lookup for trans-
lation. For more complex system calls like fork, Zap also
needs to allocate pod-specific structures for keeping track
of necessary process state for processes running in a pod.
Note that when pods are running, system calls are also
intercepted for processes running outside of any pod to
check to make sure that those processes are not attempt-
ing to communicate directly with processes in a pod
using local mechanisms.

Our Zap virtualization implementation also uses NFS
for file system virtualization and Linux netfilter for net-
work virtualization. Zap creates the virtual file system of
a pod by mounting various NFS mount points from a file
server for pods to a staging directory on the local
machine. Zap uses the netfilter system in the Linux 2.4
series kernel, which is a packet filtering and mangling
system [34]. Netfilter instruments the IP protocol stack at
well-defined points during the traversal of the stack by a
packet. It provide hooks that invoke user-registered func-
tions to process the packet at these well-define points.
Zap uses these hooks for source and destination address
translation on both incoming and outgoing network traf-
fic.

Zap migration was implemented by providing mecha-
nisms to read and write kernel state to checkpoint and
restart pods. Since kernel modules run in kernel mode, a
Zap kernel module will have the necessary privileges to

read and write kernel state that must be saved and
restored for checkpointing and restarting pods. However,
locating the process-related data structures that needed to
be saved and restored was more difficult because Linux
does not export all of the kernel structures to kernel mod-
ules. As it turns out, when the Linux kernel is built and
distributed, there is a file called System.map which con-
tains a list of all symbols, both exported and not, and their
locations in the kernel memory space. Therefore, Zap
simply queries this file to identify the addresses of struc-
tures which contained data to be checkpointed for the
processes, as well as functions which were integral to the
restoration of the processes.

One interesting decision we encountered while devel-
oping Zap’s migration mechanism was whether the ker-
nel structures should be saved in their native format or the
individual elements from the structures saved. We
decided to save the individual elements to enable Zap to
migrate processes across minor version changes of ker-
nels, even if the layout of their structures change slightly.
In order to achieve cross-version migration, Zap must be
able to translate the process and kernel state from the for-
mat provided by the source host to the format required by
the target host. Not only must Zap be able to ensure com-
patibility between the versions, but it must also be capa-
ble of populating the target host with whatever values that
were not provided by the source host. Although we have
successfully used Zap to migrate pods across Linux ker-
nels with minor version differences, a more complete
examination of this issue is the subject of future work.

6 Experimental Results
We present some experimental results using our Linux
Zap prototype on various applications. We conducted our
experiments on a trio of IBM Netfinity 4500R machines,
each with a 933 MHz Intel Pentium-III CPU, 512 MB
RAM, 9.1 GB SCSI HD, and 100 Mbps Ethernet con-
nected to a 3Com Superstack II 3900 switch. One of the
machines was used as an NFS server from which directo-
ries were mounted to construct the virtual file system for
a pod. All of the machines were installed with the RedHat
Linux 7.1 distribution and the Linux 2.4.10 kernel.

Since VMMs have been proposed for migration, we
also performed our experiments with VMware Worksta-
tion 3.2 for Linux with the same RedHat distribution and
Linux kernel running in a VM. This provides a conserva-
tive comparison of our unoptimized prototype against a
tuned commercial product. Unless otherwise indicated,
the VM was configured with raw disk mode, bridged net-
working, and the recommended 384 MB of memory.
While VMware did not allow us to configure the VM
with the same memory size as the host RAM, we ensured
that memory size was not a limitation for our experi-
ments.

Section 6.1 describes some simple experiments to
measure the cost of Zap virtualization compared with a
vanilla Linux system and VMware. Section 6.2 describes
examples of how pods can be used to provide mobile
thin-client computing sessions and web servers, and mea-
sures the cost of migrating these sessions using Zap ver-
sus VMware.

6.1 Zap Virtualization
To measure the cost of Zap virtualization, we used a

range of micro benchmarks and application benchmarks
to measure both individual system call performance as
well as real application performance. The nine bench-
marks we used are described in Table 2. All of the bench-
marks measure the time it takes to run the respective
benchmark. volano is VolanoMark 2.1.2, an industry stan-
dard Java chat server benchmark configured in accor-
dance with the rules of the Volano Report [4], but reports
the average time per message transferred rather than the
message transfer rate.

To obtain accurate measurements, we rebooted the sys-
tems between measurements and directly used the TSC
register [3] available on Pentium CPUs to record times-
tamps at the significant measurement events. The average
cost of each timestamp was 32 ns. The files for these
benchmarks were stored on the NFS server for all of our
experiments to provide a consistent comparison. We mea-
sured the performance of these benchmarks on four dif-

ferent Linux 2.4.10 system configurations:

• Linux - benchmarks are run on a vanilla Linux system
to measure baseline system performance.

• VMware - benchmarks are run on vanilla Linux (guest
OS) inside a VM on a vanilla Linux system to measure
performance using a VM.

• With Pod - benchmarks are run on a Linux system with
Zap installed and a pod created to measure perfor-
mance on the host outside of a pod.

• Inside Pod - benchmarks are run in a pod on a Linux
system with Zap installed to measure performance
inside of a pod.

Table 2 shows the results of running the nine bench-
marks on the vanilla Linux system. Figure 1 shows the
results of running the benchmarks on the other three sys-
tem configurations, the results normalized to the vanilla
Linux system with the value one representing the normal-
ized vanilla Linux results. Since all benchmarks measure
the time to run the benchmark, a small number is better
for all benchmark results in Figure 1.

The results in Figure 1 show that VMware performs
the worst on all of the benchmarks. The simple getpid
benchmark takes more than twice as long using VMware
compared to vanilla Linux. fork+exit gives the worst per-
formance on VMware, running more than eight times
slower than vanilla Linux. VMware does better on the
benchmarks that are not dominated by system calls, but
still runs 100% slower on fork+/bin/sh, 20% slower on
volano, 50% slower on make compared to vanilla Linux.
The only benchmark on which VMware does not perform
worse is apache, where a web browser on another
machine downloads and displays a sequence of 54 web
pages from an Apache server running inside VMware.
For apache, all of the system configurations delivered
essentially the same performance.

Figure 1 shows that Zap virtualization overhead is
quite small, especially compared with using a virtual
machine monitor like VMware. When running inside a

Name Description Linux

getpid
getpid run in a loop 10000 times,
measure average iteration time

352 ns

shmget
+shmctl

IPC shared memory segment holding an
integer is created and removed

42 µs

semget
+semctl

IPC semaphore variable is created and
removed

19 µs

fork+
exit

process forks and waits for child which
calls exit immediately

111 µs

fork+
execve

process forks and waits for child to run
C program that prints “hello world” then
exits

1811 µs

fork+
/bin/sh

process forks and waits for child to run
/bin/sh to run C program that prints
“hello world” then exits

7963 µs

volano
VolanoMark 2.1.2 using Java 2 Runtime
Environment SE 1.4.1

219 µs/
mesg

make
Linux kernel compile with up to ten
processes active at one time

440 s

apache
Netscape browser downloads Java-
script-controlled sequence of 54 web
pages from Apache 2.0.35 web server

16 s

Table 2: Application benchmarks

Figure 1: Virtualization cost

0

0.5

1

1.5

2

2.5

3

ge
tp

id

 s
hm

ge
t+

sh
m

ct
l

 s
em

ge
t+

se
m

ct
l

fo
rk

+
ex

it

fo
rk

+
ex

ec
ve

fo
rk

+
/b

in
/s

h

vo
la

no

m
ak

e

ap
ac

he

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

8.49

VMwareVMware

0

0.5

1

1.5

2

2.5

3

ge
tp

id

 s
hm

ge
t+

sh
m

ct
l

 s
em

ge
t+

se
m

ct
l

fo
rk

+
ex

it

fo
rk

+
ex

ec
ve

fo
rk

+
/b

in
/s

h

vo
la

no

m
ak

e

ap
ac

he

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

8.49

VMware

with podwith pod

0

0.5

1

1.5

2

2.5

3

ge
tp

id

 s
hm

ge
t+

sh
m

ct
l

 s
em

ge
t+

se
m

ct
l

fo
rk

+
ex

it

fo
rk

+
ex

ec
ve

fo
rk

+
/b

in
/s

h

vo
la

no

m
ak

e

ap
ac

he

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

8.49

VMware

with pod

inside pod

pod, Zap overhead for the simple system call getpid
benchmark was only 8% compared to vanilla Linux,
reflecting the fact that Zap virtualization for these kinds
of system calls only requires an extra procedure call and a
hash table lookup. The most expensive benchmark for
Zap was semget+semctl, which took 32% longer than
vanilla Linux. The cost reflects the fact that our untuned
Zap prototype needs to allocate memory and do a number
of namespace translations. semget+semctl and
shmget+shmctl both take 6 µs longer with Zap than
vanilla Linux, but this accounts for a higher percentage of
time for semget+semctl because it takes roughly half as
much time overall. volano overhead with Zap is 5% more
than vanilla Linux due to the overhead of using clone to
generate high thread counts. There was no additional
overhead for running make inside a pod compared to run-
ning on vanilla Linux.

Figure 1 also shows that the cost of running pods is
also quite small for processes that are running on a host
system outside of pods. With pods present, Zap must
intercept system calls made by processes outside pods to
ensure that they do not attempt to manipulate processes
inside pods. The overhead of this pod protection was less
than 10% compared to vanilla Linux for the benchmarks
dominated by system call cost, namely getpid,
shmget+shmctl, semget+semctl, and fork+exit. More
importantly, there was no difference in overall perfor-
mance between running with pods and vanilla Linux for
any of the other larger application benchmarks that we
tested.

6.2 Zap Migration
To illustrate how Zap can be used for different applica-

tions and measure the cost of migration using Zap, we
used two different applications listed in Table 3, a VNC
thin-client computing user session and a web server. The
VNC [32] thin-client computing user session provides an
example of how Zap can be used to provide mobility of a
user’s computing session. Table 3 shows that eleven leg-
acy and network X applications were run as part of the
VNC session for our experiments. The apache session
provides an example of how Zap can be used to provide
web server mobility. We encapsulated each of the two
sessions in a pod and measured the cost of suspending
each pod and resuming it on another host machine, both
in terms of the time to checkpoint and restart the pods
and in terms of the amount of state that needs to be saved
for migration. For comparison, we also measured the cost
of suspending and resuming these two application ses-
sions on the same machine using VMware. We did not
actually migrate the sessions using VMware because it
does not support migration of networked applications.

The results of migrating the application sessions using
Zap and suspending and resuming them using VMware
are shown in Figure 2. For these experiments, the ses-

sions were checkpointed to and restarted from an image
on the local disk. For VMware, we ran experiments with
two VM configurations, one with 128 MB of memory
and the other with 384 MB of memory. In all cases, the
resulting checkpoint image was always a little more than
the memory size given to the VM, regardless of what
applications were running. The time to suspend the ses-
sions grew disproportionately with the memory size
given to the VM, taking about 2 seconds per session for a
128 MB VM, but more than 25 seconds per session for a
384 MB VM.

Our results show that Zap saves much less state and is
much faster than VMware in suspending and resuming a
running application session. Figure 2 shows that check-
point and restart times for each pod were less than a sec-
ond. Checkpointing the VNC pod took 963 ms and
resulted in 23 MB of image data, whereas checkpointing
the apache pod took 373 ms and resulted in 9 MB of
image data. Memory contents accounted for over 99% of
the checkpoint image file sizes, but only grow with the
applications actually used, as opposed to VMware in

Name Applications

VNC

Xvnc 3.3.3 - VNC virtual X server
twm - window manager
Netscape communicator 4.76 - web browser
telnet - telnet client inside xterm window,
connected to another machine on the same LAN
xterm+bash - shell running in xterm window
xview - image viewer w/ 13 KB GIF loaded
xcalc - X-based calculator
xclock - analog clock
xman - X-based man page browser
xelvis - vi text editor w/ 870 byte text file loaded
xpdf - PDF viewer w/ 293 KB 14-page file PDF
loaded

apache
Apache 2.0.35 - web server, default number of
worker processes used

Table 3: Application sessions

Figure 2: Migration cost

0.1

1

10

100

1000

 s
us

pe
nd vn

c

re
su

m
e

vn
c

 s
us

pe
nd

ap
ac

he

re
su

m
e

ap
ac

he

im
ag

e
vn

c

im
ag

e
ap

ac
he

0.1

1

10

100

1000

T
im

e
(s

ec
on

ds
)

S
iz

e
(M

B
)

podpod

0.1

1

10

100

1000

 s
us

pe
nd vn

c

re
su

m
e

vn
c

 s
us

pe
nd

ap
ac

he

re
su

m
e

ap
ac

he

im
ag

e
vn

c

im
ag

e
ap

ac
he

0.1

1

10

100

1000

T
im

e
(s

ec
on

ds
)

S
iz

e
(M

B
)

pod
VMware(128MB)VMware(128MB)

0.1

1

10

100

1000

 s
us

pe
nd vn

c

re
su

m
e

vn
c

 s
us

pe
nd

ap
ac

he

re
su

m
e

ap
ac

he

im
ag

e
vn

c

im
ag

e
ap

ac
he

0.1

1

10

100

1000

T
im

e
(s

ec
on

ds
)

S
iz

e
(M

B
)

pod
VMware(128MB)
VMware(384MB)

0.1

1

10

100

1000

 s
us

pe
nd vn

c

re
su

m
e

vn
c

 s
us

pe
nd

ap
ac

he

re
su

m
e

ap
ac

he

im
ag

e
vn

c

im
ag

e
ap

ac
he

0.1

1

10

100

1000

T
im

e
(s

ec
on

ds
)

S
iz

e
(M

B
)

pod
VMware(128MB)

0.1

1

10

100

1000

 s
us

pe
nd vn

c

re
su

m
e

vn
c

 s
us

pe
nd

ap
ac

he

re
su

m
e

ap
ac

he

im
ag

e
vn

c

im
ag

e
ap

ac
he

0.1

1

10

100

1000

T
im

e
(s

ec
on

ds
)

S
iz

e
(M

B
)

pod
VMware(128MB)

0.1

1

10

100

1000

 s
us

pe
nd vn

c

re
su

m
e

vn
c

 s
us

pe
nd

ap
ac

he

re
su

m
e

ap
ac

he

im
ag

e
vn

c

im
ag

e
ap

ac
he

0.1

1

10

100

1000

T
im

e
(s

ec
on

ds
)

S
iz

e
(M

B
)

pod
VMware(128MB)

0.1

1

10

100

1000

 s
us

pe
nd vn

c

re
su

m
e

vn
c

 s
us

pe
nd

ap
ac

he

re
su

m
e

ap
ac

he

im
ag

e
vn

c

im
ag

e
ap

ac
he

0.1

1

10

100

1000

T
im

e
(s

ec
on

ds
)

S
iz

e
(M

B
)

pod
VMware(128MB)

which the sizes grow with the RAM allocated to the VM.
If the medium over which the checkpoint images are
transferred for migration were slow or somehow limited
in capacity, the checkpointed pod images could be com-
pressed further using gzip, resulting in a 4.6 MB VNC
pod image and a 0.9 MB apache pod image. Restarting
the pods was slightly faster. Restarting the VNC pod took
811 ms and restarting the apache pod took 231 ms. The
restart times are faster than checkpoint times in part
because parts of the image files are mapped directly to
memory during restart and are loaded by the operating
system as they fault, whereas the checkpoint process
needs to save all state.

We further analyzed the amount of time that Zap spent
checkpointing and restarting each application within the
VNC pod. The time to checkpoint an application in a pod
was generally bound by the resulting image size. The
application with the largest checkpoint time was
Netscape, which had 10 MB of memory contents which
needed to be saved. Most other application checkpoint
times varied with the amount of memory pages which
needed to be saved, suggesting that the checkpoint times
are primarily I/O bound. However, the telnet application
restart time accounted for a disproportionate amount of
the time to restart the VNC pod, especially given its mod-
est contribution of 363 KB to the 23 MB pod image size.
The reason for this is because restarting this network
application required a round-trip message to the remote
end of the connection to inform it of the new location and
set up translation rules. Nevertheless, the overall cost of
restarting telnet in its xterm window was still modest at
only about 140 ms. This time is not accounted for in the
VMware measurements since the VMware could not
migrate the VNC session and maintain the telnet connec-
tion.

Our results for migrating pods running realistic appli-
cations show that pod migration costs were modest over-
all, with subsecond checkpoint and restart times for the
VNC and apache pods. More importantly, our results
demonstrate the ability of Zap to migrate legacy applica-
tions without modification, including graphical X appli-
cations and networked applications such as telnet.

7 Conclusions and Future Work
Zap is the first system that we are aware of that provides
transparent migration of legacy and networked applica-
tions across machines running independent operating sys-
tems without requiring any changes to the operating sys-
tems. Zap achieves this behavior by leveraging loadable
kernel module technology and introducing a thin virtual-
ization layer that decouples applications from host depen-
dencies in the operating system. Zap introduces and sup-
ports a pod abstraction, which encapsulates groups of
processes in a virtualized environment that can be mi-

grated as a unit. We have implemented Zap as a Linux
kernel module to demonstrate the viability of our ap-
proach. Our experimental results on real applications us-
ing our Linux Zap prototype show that Zap can provide
general-purpose process migration functionality with low
overhead. We hope that Zap will provide a useful tool and
building block for exploring the benefits and applications
of migratable computing environments.

Zap raises a number of interesting follow-up research
areas. First, Zap raises many interesting questions, both
in terms of security mechanisms that should be imple-
mented within Zap itself as well as security mechanisms
and policies that should be considered for systems host-
ing pods. Current security schemes do not generally take
into account process migration; as such, more work
should be done to properly understand the issues and how
they may be addressed. In addition, process migration is
most beneficial when used under the appropriate circum-
stances. This raises the question of when to migrate a
pod, and which pod to migrate. Finally, support for addi-
tional devices remains an open question because each
device has its own requirements. As such, additional
study into how common devices should be handled is
warranted.

8 Acknowledgments
Eric Brewer, our paper shepherd, Brian Schmidt, and
Erez Zadok provided many helpful comments on earlier
drafts of this paper. Shaya Potter contributed to Zap de-
sign discussions and parts of the Linux Zap implementa-
tion. This work was supported in part by NSF grants
EIA-0071954 and ANI-0117738, an NSF CAREER
Award, and an IBM SUR Award.

9 References
[1] http://www.vmware.com, VMware, Inc.
[2] NFS: Network File System Protocol Specification,

RFC1094, Sun Microsystems, Inc., March 1989.
[3] Using the RDTSC Instruction for Performance Monitoring,

Pentium II Processor Application Notes, Intel Corporation,
1997.

[4] The Volano Report, Volano LLC, December 2001. ht-
tp://www.volano.com/report

[5] K. Amiri, D. Petrou, G. Ganger, and G. Gibson, Dynamic
Function Placement in Active Storage Clusters, Technical
Report CMU-CS-99-140, School of Computer Science,
Carnegie Mellon University, June 1999.

[6] Y. Artsy, Y. Chang, and R. Finkel, Interprocess Communi-
cation in Charlotte, IEEE Software:22-28, January 1987.

[7] A. Barak and R. Wheeler, MOSIX: An Integrated Multipro-
cessor UNIX, Proceedings of the USENIX Winter 1989
Technical Conference, pp. 101-112, San Diego, CA, Febru-
ary 1989.

[8] P. Bhagwat, C. Perkins, and S. K. Tripathi, Network Layer
Mobility: an Architecture and Survey, IEEE Personal Com-
munication, 3(3):54-64, June 1996.

[9] T. Boyd and P. Dasgupta, Process Migration: A General-
ized Approach Using a Virtualized Operating System, Pro-

ceedings of the 22nd International Conference on
Distributed Computing Systems (ICDCS 2002), Vienna,
Austria, July 2002.

[10] J. Casas, D. L. Clark, R. Conuru, S. W. Otto, R. M. Prouty,
and J. Walpole, MPVM: A Migration Transparent Version
of PVM, Computing Systems, 8(2):171-216, 1995.

[11] D. Cheriton, The V Distributed System, Communications of
the ACM, 31(3):314-333, March 1988.

[12] F. Douglis and J. Ousterhout, Transparent Process Migra-
tion: Design Alternatives and the Sprite Implementation,
Software - Practice and Experience, 21(8):757-785, August
1991.

[13] I. Foster and C. Kesselman, Globus: A Metacomputing In-
frastructure Toolkit, Proceedings of the Workshop on En-
vironments and Tools for Parallel Scientific Computing,
Lyon, France, August 1996.

[14] A. Grimshaw and W. Wulf, The Legion Vision of a World-
wide Virtual Computer, Communications of the ACM,
40(1):39-45, January 1997.

[15] T. Hain, Architectural Implications of NAT, RFC2993,
IETF, November 2000.

[16] M. Holdrege and P. Srisuresh, Protocol Complications with
the IP Network Address Translator, RFC3027, IETF, Janu-
ary 2001.

[17] D. B. Johnson and C. Perkins, Mobility Support in IPv6,
draft-ietf-mobileip-ipv6-16.txt, IETF, March 2002.

[18] A. D. Joseph, J. A. Tauber, and M. F. Kaashoek, Mobile
Computing with the Rover Toolkit, IEEE Transactions on
Computers, 46(3):337-352, March 1997.

[19] E. Jul, Migration of Light-weight Processes in Emerald,
IEEE Technical Committee on Operating Systems News-
letter, 3(1):20-23, 1989.

[20] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, DNS Per-
formance and the Effectiveness of Caching, Proceedings of
ACM SIGCOMM Internet Measurement Workshop, pp.
153-167, San Francisco, CA, November 2001.

[21] M. Kozuch and M. Satyanarayanan, Internet Suspend/Re-
sume, Fourth IEEE Workshop on Mobile Computing Sys-
tems and Applications, Calicoon, NY, June 2002.

[22] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny,
Checkpoint and Migration of UNIX Processes in the Con-
dor Distributed Processing System, Technical Report
#1346, University of Wisconsin Madison Computer Sci-
ences, April 1997.

[23] D. A. Maltz and P. Bhagwat, MSOCKS: An Architecture for
Transport Layer Mobility, Proceedings of the IEEE INFO-
COM'98, pp. 1037-1045, San Francisco, CA, 1998.

[24] D. Milojicic, F. Douglis, and R. Wheeler, Mobility: Pro-
cesses, Computers, and Agents, Addison Wesley Longman,
February 1999.

[25] S. J. Mullender, G. v. Rossum, A. S. Tanenbaum, R. v. Re-
nesse, and H. v. Staveren, Amoeba – A Distributed Operat-
ing System for the 1990s, IEEE Computer, 23(5):44-53,
May 1990.

[26] C. Perkins, IP Mobility Support for IPv4, revised, draft-ietf-
mobileip-rfc2002-bis-08.txt, Internet Draft, September
2001.

[27] R. Pike, D. Presotto, K. Thompson, and H. Trickey, Plan 9
from Bell Labs, Proceedings of the Summer 1990 UKUUG
Conference, pp. 1-9, London, July 1990.

[28] J. S. Plank, M. Beck, G. Kingsley, and K. Li, Libckpt:
Transparent Checkpointing under Unix, Proceedings of

Usenix Winter 1995 Technical Conference, pp. 213-223,
New Orleans, LA, January 1995.

[29] J. Pruyne and M. Livny, Managing Checkpoints for Paral-
lel Programs, 2nd Workshop on Job Scheduling Strategies
for Parallel Processing (In Conjunction with IPPS '96), Ho-
nolulu, Hawaii, April 1996.

[30] X. Qu, J. X. Yu, and R. P. Brent, A Mobile TCP Socket, In-
ternational Conference on Software Engineering (SE ‘97),
San Francisco, CA, November 1997.

[31] R. Rashid and G. Robertson, Accent: a Communication
Oriented Network Operating System Kernel, Proceedings
of the 8th Symposium on Operating System Principles, pp.
64–75, December 1984.

[32] T. Richardson, Q. Stafford-Fraser, K. Wood, and A. Hop-
per, Virtual Network Computing, IEEE Internet Comput-
ing, 2(1):33-38, January 1998.

[33] M. Rozier, V. Abrossimov, F. Armand, M. Gien, M.
Guillemont, F. Hermann, and C. Kaiser, Chorus (Overview
of the Chorus Distributed Operating System), Proceedings
of the USENIX Workshop on Micro-Kernels and other
Kernel Architectures, Seattle, WA, April 1992.

[34] R. Russell, Linux 2.4 Packet Filtering HOWTO, Linux Net-
filter Core Team, November 2001. http://netfilter.sam-
ba.org/

[35] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S.
Lam, and M. Rosenblum, Optimizing the Migration of Vir-
tual Computers, Proceedings of the 5th Operating Systems
Design and Implementation, Boston, MA, December 2002.

[36] B. K. Schmidt, Supporting Ubiquitous Computing with
Stateless Consoles and Computation Caches, Ph.D Thesis,
Computer Science Department, Stanford University, Au-
gust 2000.

[37] D. Senie, Network Address Translator (NAT)-Friendly Ap-
plication Design Guidelines, RFC3235, IETF, January
2002.

[38] A. C. Snoeren and H. Balakrishnan, An End-to-End Ap-
proach to Host Mobility, Proceedings of 6th International
Conference on Mobile Computing and Networking (Mobi-
Com'00), Boston, MA, August 2000.

[39] G. Su and J. Nieh, Mobile Communication with Virtual Net-
work Address Translation, Technical Report CUCS-003-
02, Department of Computer Science, Columbia Universi-
ty, February 2002.

[40] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound, Dynamic
Updates in the Domain Name System (DNS UPDATE),
RFC2136, IETF, April 1997.

[41] Y. Zhang and S. Dao, A “Persistent Connection” Model for
Mobile and Distributed Systems, 4th International Confer-
ence on Computer Communications and Networks (IC-
CCN), Las Vegas, NV, September 1995.

[42] H. Zhong and J. Nieh, CRAK: Linux Checkpoint/Restart As
a Kernel Module, Technical Report CUCS-014-01, Depart-
ment of Computer Science, Columbia University, Novem-
ber 2001.

	Abstract
	1 Introduction
	2 Related Work
	3 The Pod Abstraction
	4 Zap Architecture
	4.1 Process IDs and IPC Virtualization and Migration
	4.2 Memory Virtualization and Migration
	4.3 File System Virtualization and Migration
	4.4 Device Virtualization and Migration
	4.5 Network Virtualization and Migration
	4.6 Pod Administration and Usage
	create_pod
	kill_pod
	addproc_pod
	suspend_pod
	resume_pod

	5 Implementation
	6 Experimental Results
	6.1 Zap Virtualization
	6.2 Zap Migration

	7 Conclusions and Future Work
	8 Acknowledgments
	9 References

	The Design and Implementation of Zap:
	A System for Migrating Computing Environments

