USENIX Association

Proceedings of the
5th Symposium on Operating Systems
Design and Implementation

Boston, M assachusetts, USA
December 9-11, 2002

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

CMC: A Pragmatic Approach to Model Checking Real Code

Madanlal Musuvathi?

David Y.W. Park!
Dawson R. Engler,

Andy Chou,
David L. Dill

{madan, parkit, acc, engler, dill}@cs.stanford.edu
Computer Systems Laboratory
Stanford University
Stanford, CA 94305, U.S.A

Abstract

Many system errors do not emerge unless some in-
tricate sequence of events occurs. In practice, this
means that most systems have errors that only trig-
ger after days or weeks of execution. Model check-
ing [4] is an effective way to find such subtle errors.
It takes a simplified description of the code and ex-
haustively tests it on all inputs, using techniques to
explore vast state spaces efficiently. Unfortunately,
while model checking systems code would be won-
derful, it is almost never done in practice: building
models is just too hard. It can take significantly
more time to write a model than it did to write the
code. Furthermore, by checking an abstraction of
the code rather than the code itself, it is easy to
miss errors.

The paper’s first contribution is a new model checker,
CMC, which checks C and C++ implementations
directly, eliminating the need for a separate abstract
description of the system behavior. This has two
major advantages: it reduces the effort to use model
checking, and it reduces missed errors as well as
time-wasting false error reports resulting from in-
consistencies between the abstract description and
the actual implementation. In addition, changes
in the implementation can be checked immediately
without updating a high-level description.

The paper’s second contribution is demonstrating
that CMC works well on real code by applying it
to three implementations of the Ad-hoc On-demand
Distance Vector (AODV) networking protocol [7].
We found 34 distinct errors (roughly one bug per
328 lines of code), including a bug in the AODV
specification itself. Given our experience building

*Supported by GSRC/MARCO Grant No:SA3276JB
tSupported under a National Science Foundation Gradu-
ate Research Fellowship

systems, it appears that the approach will work well
in other contexts, and especially well for other net-
working protocols.

1 Introduction

Complex systems have complex errors. Real sys-
tems have a variety of mishandled corner cases trig-
gered by intricate sequences of events. In practice,
this leaves a residue of errors that cause system
crashes but only after days or weeks of continuous
execution. When detected, such problems are often
very difficult to diagnose because the errors are not
reproducible and the sequence of events leading to
them cannot be reconstructed.

Formal verification methods are a possible way to
find and diagnose such deep errors [23, 24, 29]. One
option is explicit model checking, which systemati-
cally enumerates the possible states of the system.
A basic model checker starts from an initial state
and recursively generates successive system states
by executing the nondeterministic events of the sys-
tem. States are stored in a hash table to ensure
that each state is explored at most once. This pro-
cess continues either until the whole state space is
explored, or until the model checker runs out of re-
sources. When it works, this style of state graph
exploration can achieve the effect of impractically
massive testing by avoiding the redundancy that
would occur in conventional testing.

Conventional model checkers usually assume that
the design is described at a high level that abstracts
away many details of the actual implementation.
Verifying actual code using such a tool requires re-
constructing this abstract description from the code.
This process requires a great deal of manual effort,

hampering the use of model checking in actual sys-
tem design. Moreover, human errors in the manual
abstraction process result in missing bugs and cause
false alarms during verification, further increasing
the cost and reducing the usefulness of model check-
ing. Such errors can be introduced both when con-
structing the model and as a result of “drift” as the
actual system evolves [5]. For these reasons, it is
a notable curiosity when software is model checked,
rather than an everyday occurrence.

We introduce CMC (C Model Checker) to address
some of these issues. CMC works on unmodified C
or C++ implementations and explores large state
spaces efficiently by storing states. Like traditional
model checkers, CMC achieves the equivalent of ex-
ecuting astronomical numbers of tests in reasonable
time. However, CMC does not require writing a
separate high-level model of the code, nor extract-
ing such a model from an implementation. More
importantly, it finds the bugs that are actually in
the implementation: it does not miss implementa-
tion bugs that would be omitted from a model, nor
does it waste the user’s time with bugs that appear
in the model but not in the implementation.

The idea of model checking actual implementation
code has been advocated in a small number of other
tools. Verisoft [15], for instance, systematically ex-
ecutes C implementation code but does not store
states. Other software model checking tools such
as [3] [25] are specialized to work only with certain
classes of Java programs. CMC was designed to
combine effective techniques from various research
efforts within the verification community and apply
them to software written in C and C++, the pre-
dominant programming languages in industry.

The ultimate goal of this work is to check systems
code in general, but the initial focus is on network-
ing code. Such code naturally follows an “event-
driven” execution model which makes it a good fit
for model checkers. The correctness of networking
protocol implementations is especially important,
since they are not only at the core of many services,
but also the first target of external security attacks.
Unfortunately, network protocols are difficult to de-
sign, implement and test because they involve com-
plex interactions among multiple machines across a
network and deal with various network failures such
as packet losses or link failures, which are difficult
to control in a test environment. Model checkers
excel at checking such interactions.

CMC works well on real code, as demonstrated by
the results of applying it to three implementations of
the AODV networking protocol [7]. The first imple-

mentation, mad-hoc [21], was released two years ago
and has since been under active development. The
second implementation, Kernel AODV [20], derives
from the mad-hoc implementation and was released
less than a year ago. The third implementation,
AODV-UU [13] was released a year ago. The AODV
specification is also in active development: the first
version came out in 1997 and has subsequently un-
dergone ten revisions. While it is difficult to mea-
sure quality absolutely, one measure is that there
is a formal group devoted to testing AODV imple-
mentations that has used their testbed to check the
mad-hoc and the AODV-UU implementations [12].

CMC found 34 unique errors in total (as of the date
of this publication), a rate of roughly one bug per
328 lines of code. Several bugs were non-trivial ones,
difficult to find by any other method. In an ironic
twist, model checking the implementation found a
bug in the specification of AODV itself (this last er-
ror was confirmed by the authors of the AODV spec-
ification [26]). Many protocol implementations are
similar to that of AODV, and CMC has enhance-
ments that will broaden its applicability to other
concurrent systems. Hence, there is good reason to
believe that CMC will be useful for many systems
that are difficult to debug by any other means.

2 Model Checking Overview

Fundamentally, explicit state model checking is a
systematic search for error states in a state graph,
which represents the behavior of some system. It
is usually best to generate the graph on the fly so
that the search can find and report errors even if the
state graph is too large to search completely. This
is especially important since the state graphs of sys-
tems with errors are often much larger than those
of correct systems. As with most search algorithms,
newly discovered states are stored in a queue. Ac-
cording to some policy (e.g., depth-first, breadth-
first, or best-first), states are removed from this
queue and the successors generated are expanded
and themselves enqueued (there are usually mul-
tiple successors because of nondeterminism in the
system). States that have already been searched
are stored in a hash table so that their successors
are not expanded more than once.

Model checking is sometimes used to prove that a
system satisfies a specified property. However, it
is usually more practical to use it as a bug-finding
method. When model checking is applicable, it can
be more effective than conventional testing in dis-

covering bugs because of its thoroughness at explor-
ing the state space of the system, including corner
cases that might otherwise be overlooked. Model
checking can be more efficient than random testing
because the former searches each state at most once.

Given some code to model check, it is necessary to
model the environment (e.g., the relevant aspects
of the network and operating system calls). The
environment model is necessary to avoid false error
reports resulting from illegal inputs or state changes
that would never occur in actual system execution.
Many parts of the environment model would be nec-
essary even for unit testing.

Even after the system to be checked is put into a
model checker, one of the most apparent problems
with model checking is that a relatively small system
description can result in a huge state graph. This
is called the state explosion problem. It has been
addressed in many ways, including various methods
of suppressing details of the input description (ab-
straction) and various optimizations to save time
and, even more importantly, space. Nevertheless,
the state explosion problem remains a serious diffi-
culty in most applications of model checking. (Note
that without state pruning, randomized testing will
typically fare significantly worse in such situations.)

By addressing the issues described above, this paper
presents an approach to pragmatically apply model
checking to actual implementation code (in C or
C++) to find bugs. To this end, we implemented a
tool called CMC that was used to find bugs in net-
work protocol implementations, as described in the
following sections.

3 Design of CMC

CMC is a model checker that generates the state
space of a given system by directly executing its C
or C++ implementation. This section describes the
design of CMC, beginning with a description of the
tool’s infrastructure. The steps required to set up
a system for checking are described and illustrated
with an example. The actual model checking algo-
rithm then follows. Finally, some techniques to cope
with the state explosion problem are discussed.

3.1 CMC Infrastructure

CMC models a system as a collection of interact-
ing concurrent agents called processes. Each process

runs unmodified C or C++ code from the imple-
mentation, but the CMC model checker is respon-
sible for scheduling and executing the processes of
the system being checked. CMC along with all the
processes of the system run as a single operating sys-
tem process. Unlike an operating system, however,
CMC tries to search many possible system states
that can be reached by alternative scheduling deci-
sions and other nondeterministic events. To search
these different possibilities, CMC must be able to
save and restore the complete state of the modelled
system.

Every process of the system executes in its own heap
and stack. At any instant, the state of a process
consists of a copy of its global (and static) vari-
ables, heap, stack and its context registers. The
processes communicate with each other through a
shared memory that is accessible in the context of
all processes. The state of the system is defined as
the union of the states of all processes along with
the contents of the shared memory.

Once scheduled, a process is allowed to execute a
deterministic and non-blocking set of instructions
defined as a transition. A transition is an atomic
step the system can take and determines the de-
gree of interleaving among processes. The protocols
to which CMC has been applied follow an event-
driven execution model, where a set of event han-
dler routines process incoming events such as packet
arrivals and timeouts. In an event-driven protocol,
each event handler can be mapped to a transition in
CMC. Moreover, as each event handler preserves the
state of the stack and registers, only the global vari-
ables and the heap need to be saved and restored.

Many protocols are written in an event-driven style,
so the event-driven model may not be as restric-
tive as it may seem. However, it is feasible to save
and restore full states (including the stack) of mod-
elled processes as well. This feature has been imple-
mented and is currently being evaluated, but was
not necessary for the results reported in this paper.

3.2 Creating a CMC Model from the
Implementation

Figure 1 shows a skeleton event-driven implementa-
tion of a routing protocol, very similar to the AODV
protocol that was actually checked (see section 4).
This implementation is used as a running example
in the following discussion. The main() function of
the implementation calls the initialization function
(line 34), and then enters an event dispatch loop
(line 35). Depending on the input event, it calls

one of four event handlers defined in lines 1 through
26. Each handler processes an event: a user request
for a route to a destination, a request from another
node, a response from another node to one of its
previous requests, and a timer event requiring the
protocol to invalidate its old routes.

This subsection describes the three steps that the
user must perform to apply CMC to a protocol.
Steps 1 and 2 essentially provide a unit test scaffold,
which would be required for most test environments,
such as running the implementation in a simulator.
Step 3 is the only additional requirement for CMC.

Step 1: Specifying Correctness Properties.
Before any system can be tested, the user must spec-
ify some correctness properties. Some properties
are domain independent; for example, the program
should not access illegal memory and should not
leak memory. Some domain-specific properties can
be specified as assertions at particular points in the
implementation (e.g., the example protocol should
never return an invalid route in line 4). In many
cases, a careful implementer will have placed these
assertions in the code long before CMC is applied.
Other properties are inherently global, such as the
requirement that there are no loops in the routing
table. Such properties are specified as Boolean func-
tions (written in C) that access the datastructures
of process contexts.

Step 2: Specifying the Environment. Next, the
user must build a test environment that adequately
represents the behavior of the actual environment
in which the protocol is executed. For networking
protocols, the environment model fakes an operat-
ing system and anything outside of the protocol that
is necessary for it to function. (The decision as to
which part of the system is to be checked and which
is the environment is decided by the user.) The en-
vironment model is a collection of substitute API
functions and data structures to emulate its state.
The environment should be modelled in as little de-
tail as possible — otherwise, many superfluous states
will be generated to model environmental behavior
irrelevant to checking the protocol.

Many functions can be replaced by simple “stubs.”
For example, gettimeofday () might return a con-
stant or contain a counter. In the example, the
model requires a network for exchanging routing
packets. A simple network could be modelled as
an unordered queue of bounded length. The model
would include its own versions of interface func-
tions, such as the broadcast_request() function
that sends packets to the network. The environ-
ment may also contain several processes. For ex-

1 /* event handlers */

2 on_user_request (dest_ip) {

3 if (route_table has a route for dest_ip)
4 return route for dest_ip

5 else

6 broadcast_request(dest_ip)

73}

8

9 on_recv_request (dest_ip) {

10 if (route_table has a route for dest_ip)
11 send_response (route for dest_ip)
12 else

13 broadcast_request (dest_ip)

14 }

15

16 on_recv_response (route) {

17 install route in route_table

18 if (route needs to be forwarded)

19 send_response (route)

20 }

21

22 on_timeout () {

23 for each route in route_table
24 if (route too o0ld)

25 remove route from route_table
26 }

27

28 initO{

29 route_table = null

30 insert self route for my_ip
31}

32

33 main(){

34 init(Q)

35 while(1){

36 /* event dispatch loop */
37 depending on event, call one of
38 on_user_request(...)

39 on_recv_request(...)

40 on_recv_response(...)

41 on_timeout(...)

42}

43 }

44

Figure 1: A simple routing protocol implementa-
tion.

void* malloc(size_t n){
if (CMCChoose(2) == 0)
return 0; //nondeterministic failure

// alloc n bytes from heap and return

}

Figure 2: Implementation of malloc() in CMC.
malloc() nondeterministically fails to allocate
memory.

ample, a process that nondeterministically removes
a packet from the network can be used to model a
lossy network.

To represent nondeterminism in the environment,
CMC provides a CMCChoose () function (similar to
V' S_toss in Verisoft[15]). CMCChoose takes an inte-
ger argument n and returns an integer in the range
(0...n—1). CMCChoose arbitrarily selects one out
of the n possibilities in the environment. An exam-
ple, shown in Figure 2, is the malloc () implementa-
tion that can either allocate the requested memory
from the CMC heap or fail by returning NULL. CM-
CChoose is used to make one of these two choices.
CMC will attempt to try all possible return values
for each call to CMCChoose. Since calls to CMC-
Choose appear in the environment code or in imple-
mentations of standard system functions (such as
malloc() and select()), it is generally not nec-
essary to modify the actual implementation.

Providing an environment model can be time con-
suming. It is therefore important to reduce the mod-
elling effort required to apply CMC to a previously
unchecked protocol. A first obvious step is to en-
gineer the models so that they are as re-usable as
possible, reducing the incremental effort of checking
a new protocol. This is especially beneficial when
related protocols are checked (which is a large part
of the reason this paper checks three different im-
plementations of the same protocol). Finding other
ways to reduce the cost of environmental modelling
is an interesting area for future work.

Step 3: Identifying the Initialization Func-
tions and Event Handlers. Given an event driven
system, the user should provide the initialization
functions and the event handlers for each process in
the system.

The user should also provide a guard function for
each event handler, which is a Boolean function that
determines when that event handler is enabled in a
given state. For instance, the guard function for
the on_recv_request () handler returns true only if
a request is pending for this particular process in

the network.
3.3 CMC Model Checking Algorithm

Given a model of the system built as described above,
CMC explores the state space of the system by exe-
cuting various traces of interleaving transitions. The
pseudocode for the algorithm is shown in Figure 3.
The algorithm maintains two data structures: a
hash table of states seen during the search, and a
queue of states seen but whose successors are yet to
be generated. The hash table guarantees that the
algorithm explores the subgraph rooted at a state
at most once.

3.3.1 Generating the Initial State

CMC computes the initial state as follows. Starting
from a copy of the global variables (as initialized
by the linker), CMC calls the initialization function
for each process. The initial state consists of the
states of the processes immediately after their ini-
tialization functions have been called, along with
the values of the initialized shared memory.

3.3.2 Generating Successor States

To generate the state graph on-the-fly, CMC needs
to be able to compute the set of possible immediate
successors of a state. Each state in the state space
of the system may have several successors because of
nondeterminism, which arises from several sources:
the choice of which process to execute, the choice of
which enabled transition within the process to exe-
cute, and nondeterministic values returned by calls
to CMCChoose.

From a given state, CMC chooses a process and
one of its enabled event handlers to schedule. Next,
CMC restores the context of the process by copying
the contents of the heap and the global variables
of the process from the state. The event handler
is then called. This function eventually returns be-
cause it is guaranteed to be atomic. At this point,
the context of the process state is saved, yielding a
new system state. CMC generates all successors of
a state by repeating the above process for all non-
deterministic choices.

3.3.3 Checking Correctness Properties

During model checking, CMC checks for a range of
correctness properties, from simple pointer access

void modelCheck(){
SystemStateq{
sharedMem; // Contains Network
procState[N];// N processes
} initial, current, successor;

Queue StateQ;
Hash VisitedStates;

// Build initial state.
forall processes (0 <= pid < N{
call pid’s initFnQ);
initial.procState[pid] = saveCtxt();
}
call sharedMem’s initFn();
initial.sharedMem = getSharedMem() ;

StateQ.insert(initial);
while(current = StateQ.pop()) {
VisitedStates.add(current);

//Repeat forall nondeterministic choices
forall processes (0 <= pid < N)
forall event handlers e of pid
forall return values of CMCChoose calls{

// set proc context and sharedMem
restoreCtxt (current.procState[pid]);
setSharedMem(current .sharedMem) ;

if (e is not enabled)
continue;

e(); // Call event handler

// Construct next state

successor.sharedMem = getsharedMem() ;

successor.procState[pid] = saveCtxt();

forall processes with pid’ != pid{
// the state did not change
successor.procState[pid’]

= current.procState[pid’];

}

if (successor in VisitedStates)
continue;

if (successor fails assertions)
generate error

StateQ.insert (successor);

Figure 3: Pseudocode for the CMC model checking
algorithm.

violation errors to complex protocol bugs.

During the execution of an event handler, CMC
runs the implementation code directly, automati-
cally catching errors such as pointer access viola-
tions and program assertion failures present in the
code. In addition, CMC detects use-after-free bugs
by overwriting any freed memory with a random
value.

Once a state is generated, CMC checks for violations
of user-provided system invariants (such as the ab-
sence of global routing loops). Also, CMC detects
memory leaks in each generated state. While this
can be achieved by a standard mark-and-sweep al-
gorithm to find all reachable memory, such an al-
gorithm is not yet implemented in CMC. Instead,
in our case study, CMC detects memory leaks as
follows: starting from a copy of the current state,
CMC calls various cleanup functions present in the
implementation itself. Any heap memory that is
left allocated is reported as leaked. This approach,
while requiring additional manual effort, can also
potentially find bugs in the cleanup code.

In the future, the CMC approach could easily be
coupled with other dynamic debugging tools such as
Purify[27] or StackGuard[6]. These tools can catch
run-time errors such as uses of uninitialized mem-
ory, stack overflows, etc. Such tools would be more
effective when used with CMC than with ordinary
testing, because CMC would achieve greater effec-
tive test coverage for a given level of user effort than
conventional software testing methods.

3.4 Handling State Space Explosion

One of the most serious problems with model check-
ing in practice is the so-called “state explosion prob-
lem.” The state space of a system can be very large,
or even infinite. Thus, at the outset, it is impossi-
ble to explore the entire state space with limited
resources of time and memory. However, CMC pro-
vides various techniques to search the state space
efficiently before running out of resources. Though
unable to formally prove the correctness of the im-
plementation, CMC is able to catch a wide range of
errors, including errors involving intricate interac-
tions among multiple processes.

For model checkers, memory is more critical a re-
source than time. During model checking, most of
the memory is consumed by the hash table contain-
ing the states visited and the queue of states whose
successors are yet to be generated.

CMC uses hash compaction [28] to reduce the mem-

ory requirements in the hash table by several orders
of magnitude. For each state, CMC computes a
small signature (usually four to eight bytes). In-
stead of storing the entire state, which can be on
the order of kilobytes, its signature is stored in the
hash table. Compacting states can lead to conflicts
in the hash table where two different states compute
to the same signature. However, for state spaces
on the order of hundred million states with practi-
cal hash table sizes of several hundred megabytes,
the probability of missing even a single state due
to a signature conflict can be reduced to 0.1% or
lower [28].

The states in the queue cannot be compacted be-
cause all the information in them is needed to com-
pute successor states. However, the queue has good
locality of reference, so much of it can be swapped
to disk during model checking. Moreover, successive
states in the queue usually have a lot of common-
ality and can thus be compressed. For instance,
every transition in CMC changes at most one pro-
cess state; therefore, it is sufficient to store only this
difference when generating a successor state.

Standardizing Data Structures: CMC, by de-
fault, interprets states as streams of bits. However,
two equivalent data structures in memory might
have different representations. For example, if two
states differ only in the order in which objects were
allocated on the heap, they should be considered
effectively the same. CMC can automatically trans-
form states by deterministically traversing pointer
data structures, arranging objects in the heap by
the order they are visited. The signature for the
transformed state can then be saved in the state
table. This process could be performed simultane-
ously with the mark-and-sweep algorithm used to
detect memory leaks. A mostly automatic tool for
this traversal is under development using the MC
framework [11]. For the case study discussed in Sec-
tion 5, the traversal code was written manually.

There may be additional equivalences between states
that depend on the particular use of data structures
in a program. For example, when an implementa-
tion uses a linked list to store an unordered collec-
tion of objects, the behavior of the implementation
is independent of the order of objects in the list. In
this case, the user can provide a function to sort the
list before the automatic standardization transfor-
mations are applied.

Finally, some of the most effective reductions in the
state space are achieved through methods that risk
missing some errors for the benefit of catching the
remaining ones more efficiently.

Down-scaling: One obvious approach is to reduce
the scale of the system being described [10]. In fig-
ure 1, for instance, the model might restrict the
number of routing nodes in the network to, say,
three or four. Hard-to-find bugs usually involve
complex interactions among a small number of pro-
cesses, and are therefore preserved even after down-
scaling. Of course, this may miss bugs that only
occur for larger instances of the system.

Abstraction of States: In addition to standardiz-
ing distinct but equivalent states, it is also possible
to eliminate information that the user judges to be
unimportant for the properties checked. This ab-
straction process is done by ignoring certain mem-
ory locations when computing the hash signature
of the state. By abstracting states, it is possible
to miss errors. However, as the abstraction is done
during the hash computation, and not on the actual
(concrete) state, this does not produce any false pos-
itives.

Heuristics: When exhaustive checking of the en-
tire state space is infeasible and all else fails, CMC
can act as an automated testing framework whereby
a large number of scenarios can be checked intelli-
gently. The mere fact that CMC is able to cache
states already prevents redundant simulations. The
goal, however, is to exercise as many interesting sce-
narios as possible before memory is exhausted.

To that end, we have done some preliminary work in
using heuristics to prioritize the state space search.
The first class of heuristics involves dropping states
altogether if they are deemed uninteresting. The
second class of heuristics involves exploring more
interesting states first using best-first search. CMC
contains a module to monitor state variables to keep
a history of which state bits have changed during
checking. The basic idea is that if the number of bit
positions that have changed since the initial state
suddenly increases or if variables take on less fre-
quented values, the state is considered more inter-
esting and explored earlier. This heuristic tends to
bias the search toward cases where outliers occur or
where states seem to diverge from the norm. This
idea was adapted from DIDUCE [17], a tool that
flags such divergent cases and reports them to the
user during program testing.

Preliminary results indicate that all the errors dis-
covered with the use of the heuristics could be dis-
covered with simple depth-first search. But, the use
of heuristics often accelerated the discovery of er-
rors and produced shorter examples of executions
leading to a given error. However, much more ex-
perimentation with various heuristics is needed on

a wider range of protocols to arrive at reliable con-
clusions.

The next three sections describe the application and
results of using CMC to check three AODV protocol
implementations.

4 Description of the AODV Protocol

AODV (Ad-hoc On-demand Distance Vector)[7] is a
loop-free routing protocol for ad-hoc networks. It is
designed to be self-starting in an environment of mo-
bile nodes, withstanding a variety of network behav-
iors such as node mobility, link failures and packet
losses. This section describes the AODV protocol
in brief; the reader is referred to [7] for complete
details of the protocol.

At each node, AODV maintains a routing table.
The routing table entry for a destination contains
three essential fields: a next hop node, a sequence
number and a hop count. All packets destined to
the destination are sent to the next hop node. The
sequence number acts as a form of time-stamping,
and is a measure of the freshness of a route. The
hop count represents the current distance to the des-
tination node.

Suppose we have two nodes a and b such that b is the
next hop of a to some destination d. Also, suppose
the sequence number and hop count of the routes
to d at a and b are (seqq, hent,) and (seqy, henty)
respectively. Then the AODV protocol maintains
the following property at all times:

(seqq < seqy) V (seqq = seqy A henty > henty)

In other words, b either has a newer route to d than
a, or b has a shorter route that is equally recent.
Under this partial order constraint, the protocol is
guaranteed to be free of routing loops [2].

In AODV, nodes discover routes in request-response
cycles. A node requests a route to a destination
by broadcasting an RRFE(Q message to all its neigh-
bors. When a node receives an RREQ message but
does not have a route to the requested destination,
it in turn broadcasts the RREQ message. Also, it
remembers a reverse-route to the requesting node
which can be used to forward subsequent responses
to this RREQ. This process repeats until the RREQ
reaches a node that has a valid route to the desti-
nation. This node (which can be the destination it-
self) responds with an RREP message. This RREP
is unicast along the reverse-routes of the interme-
diate nodes until it reaches the original requesting

node. Thus, at the end of this request-response cy-
cle a bidirectional route is established between the
requesting node and the destination. When a node
loses connectivity to its next hop, the node inval-
idates its route by sending an RERR to all nodes
that potentially received its RREP.

On receipt of the three AODV messages: RREQ,
RREP and RERR, the nodes update the next hop,
sequence number and the hop counts of their routes
in such a way as to satisfy the partial order con-
straint mentioned above [7].

5 The AODYV model

This section describes the AODV model for three
implementations of the AODV protocol: mad-hoc
(Version 1.0) [21], Kernel AODV (Version 1.5) [20],
and AODV-UU (Version 0.5) [13]. The mad-hoc
implementation runs as a user space daemon and
contains approximately 5500 lines of code. The Ker-
nel AODV implementation is built by NIST and is
based on the mad-hoc implementation. It contains
7500 lines of code and runs as a loadable kernel mod-
ule in Linux and ARM based PDAs. The AODV-
UU implementation runs as a user space daemon on
Linux and has been ported to the ns-2 [22] simula-
tor. It contains roughly 7700 lines of code.

The AODV model was reused with minor modifica-
tions for all three implementations. The model is
built as follows:

Correctness Properties: Table 1 lists the cor-
rectness properties checked by the AODV model.
Apart from the generic assertions checked by CMC,
the model contains a global invariant that checks
for routing loops. The model also performs sanity
checks on the routing table entries and the network
messages, such as range violations of the fields.

The Environment: The environment of the model
consists of a network modelled as a bounded-length,
unordered message queue. The model simulates a
message loss by nondeterministically dequeuing a
message. The message queue is shared by all of
the nodes and thus models a completely connected
topology.

The implementations use a wrapper function to send
network packets. The model provides an alternate
definition to the wrapper function to copy packets
to the network model. Additionally, for the Kernel
AODYV implementation, the model provides imple-
mentations for twenty-two kernel functions (such as

Types of Checks Examples

Generic Assertions

Segmentation violations, memory leaks, dangling pointers.

Routing Loop Invariant

The routing tables of all nodes do not form a routing loop.

Assertions on Routing Table Entries

At most one routing table entry per destination.

No route to self in the AODV-UU implementation.

The hop count of the route to self is 0, if present.

The hop count is either infinity or less than the number of
nodes in the network.

Assertions on Message Fields

All reserved fields are set to 0.
The hop count in the packet can not be infinity.

Table 1: Properties checked in AODV.

Enabling Condition

Event

Invalid or no route to destination

Initiation of route request

Pending message in the network

Receipt of AODV message

Pending message in the network

Message loss

Valid route in the routing table

Timeout of a route

Always enabled

Detection of link failure

Always enabled

Node reboot

Table 2: The set of event handlers used in AODV model checking.

kmalloc and printk) and a user space version of the
socket buffer library.

Initialization Functions and the Event Han-
dlers: All three implementations have an event dis-
patch loop that calls various event handlers. The
initialization functions of the model are obtained by
executing the code before the event dispatch loop.
The model maps every event handler called from the
dispatch loop to a transition. The model simulates
a node reboot by calling the initialization function
which implicitly resets the contents of the routing
table. The list of transitions and their respective
enabling conditions is shown in Table 2.

Table 3 shows the lines of code from the three imple-
mentations executed within our framework against
the lines of code for the model itself. The correct-
ness specifications are mostly shared by the three
implementations. AODV-UU uses a different rep-
resentation of the routing table and thus required
additional correctness specifications. The network
model of the environment is shared by all imple-
mentations.

Dealing with State Space Explosion

The state space of the AODV protocol is essentially
infinite. The protocol allows an arbitrary number of
nodes in a network. Also, each node has two types
of unbounded counters, a sequence number to mea-

sure the freshness of a route and a broadcast id that
is incremented by a node on each broadcast. To do
any effective search in such an infinite state space,
it is necessary to bound the search. In our experi-
ments, we downscaled the AODV model to run with
2 to 4 processes. The model discarded any state in
which the sequence numbers or the broadcast ids ex-
ceeded a predefined limit. Also, the size of the mes-
sage queue in the network was bounded to sizes of
1 to 3. These processes may cause CMC to miss er-
rors. However, even after applying such bounds, the
remaining state space contained enough interesting
behavior to uncover numerous bugs (Section 6).

Time values stored in the state are another source
of state space explosion. For instance, every route
response (RREP) contains a lifetime field that de-
termines the freshness of the route. On receipt of
this packet, a node adds the lifetime to the cur-
rent clock value to determine the time at which the
route becomes stale. This absolute value is stored
in the routing table and can thus increase the state
space size. The AODV model gets around this prob-
lem by modelling route timeouts as nondeterminis-
tic events and setting all time variables to predefined
constants. Also, the environment of the model con-
tains a definition of the gettimeofday() function
that always returns a constant value. The handling
of time in the model can miss timing related errors

Protocol Checked | Correctness Environment State
Code Specification | network | stubs | skbuff | Canonicalization
mad-hoc 3336 301 400 100 - 165
Kernel AODV 4508 301 400 266 1210 179
AODV-UU 5286 332 400 128 - 185

Table 3: Lines of implementation code vs. CMC modelling code.

and can potentially lead to false positives when an
error reported can be caused by a sequence of time-
outs that is impossible in the real protocol.

Also, the AODV model contains hand-written code
to traverse the routing table (implemented as a linked
list in the mad-hoc and Kernel AODV implementa-
tions, and as a hash table in the AODV-UU imple-
mentation). This traversal code created a canon-
icalized representation of the routing table, which
along with the global variables formed the state of
an AODYV node of the model. The amount of lines
required for this traversal code is shown in the last
column of Table 3.

6 Results

Table 4 summarizes the set of bugs found using
CMC in the three AODV implementations. The
bugs range from simple memory errors to protocol
invariant violations. We found a total of 40 bugs of
which 34 were unique. The Kernel AODV imple-
mentation has 5 bugs (shown in parenthesis in the
table) that are instances of the same bug in mad-
hoc. Also, the AODV specification bug causes a
routing loop in all three implementations.

Currently, CMC stops after finding the first bug in
the model. It prints the failed assertion and a trace
of events starting from the initial state to the error
state. After a bug is fixed, CMC is run again to
find bugs iteratively. Most bugs were found within
minutes of model checking time; the longest took
roughly 40 minutes.

We describe the bugs below at a high level to give a
feel for the breadth of coverage and focus on four of
the more interesting bugs to give a feel for its depth.

Memory errors. The first three error classes il-
lustrate the mishandling of dynamically allocated
memory: not checking for allocation failure (12 er-
rors), not freeing allocated memory (8 errors), and
using memory after freeing it (2 errors).

All implementations checked that the pointer re-

/*aodv_deamon. c:aodv_recv_message:*/

for(rerri=0; rerri<rerrhdr_msg.dst_cnt;rerri++)

{
if (! (tp = malloc(sizeof (*¥tp))))
break; /* Skip to next packet */
tp->next = rerrhdr_msg.unr_dst;
rerrhdr_msg.unr_dst = tp;

}

// BUG: assumes rerrhdr_msg.dst_cnt buffers
// were allocated!

rec_rerr(info_msg, &rerrhdr_msg);

// Free the list of structs sent to rec_rerr()
for(rerri=0; rerri<rerrhdr_msg.dst_cnt;rerri++)

{
// BUG: Can be NULL if malloc failed above!
tp = rerrhdr_msg.unr_dst;
rerrhdr_msg.unr_dst=rerrhdr_msg.unr_dst->next;
free(tp);

Figure 4: Mishandled malloc failure: if malloc
fails, the loop will exit after allocating less than
rerrhdr msg.dst_cnt buffers. The two errors are
in code that assumes rerrhdr msg.dst_cnt buffers
were allocated. Both lead to segmentation faults.

turned by malloc was not null. However, func-
tions that call malloc can also indirectly return null
pointers when allocations fail. The code only errat-
ically checked such cases. Since CMC directly ex-
ecutes the implementation, such errors were mani-
fested as segmentation faults.

Most of the memory-related bugs were straightfor-
ward. However, there were several interesting er-
rors where the code would correctly check for alloca-
tion failure, but its recovery code was broken. Fig-
ure 4 gives a representative error. Here, the code at-
tempts to allocate rerrhdr msg.dst_cnt temporary
message buffers. It correctly checks for malloc fail-
ure and breaks out of the loop. However, the code
after the loop assumes that rerrhdr msg.dst_cnt
list entries were indeed allocated. This assumption
leads to two bugs. The first (intraprocedural) error

mad-hoc | Kernel AODV | AODV-UU
Mishandling malloc failures 4 6 2
Memory Leaks 5 3 0
Use after free 1 1 0
Invalid Routing Table Entry 0 0 1
Unexpected Message 2 0 0
Generating Invalid Packets 3 2 (2 1
Program Assertion Failures 1 1 (1 1
Routing Loops 2 3 (2 1 (1)
Total 18 16 (5) 6 (1)

Table 4: Number of bugs of each type in the three implementations of AODV. The figures in parenthesis
show the number of bugs that are instances of the same bug in the mad-hoc implementation.

attempts to dequeue rerrhdr msg.dst_cnt buffers
off of the rerrhdr msg.unr_dst list in order to free
them. Since the list has fewer entries than expected,
the code will attempt to use a null pointer and get
a segmentation fault. The second (interprocedural)
error, in rec_rerr, similarly tries to walk over the
rerrhdr msg.dst_cnt list entries and seg faults be-
cause the list is too short.

Most of the memory leaks were similarly caused
by mishandled allocation failures. Commonly, code
would attempt to do two memory allocations and, if
the first allocation succeeded but the second failed,
would return with an error, leaking the first pointer.

Unexpected messages. CMC detected two places
where unexpected messages would cause mad-hoc
to crash with a segmentation violation. Figure 5(a)
shows one of the errors. The error happens because
AODV encodes state in its messages. In this error:

1. The current node n receives a Route Request
(RREQ) message from node reg requesting a
route to node dst.

2. Node n inserts a reverse route to req in its
routing table.

3. Then, n looks up the route to dst in its routing
table.

4. If the route is not there, n re-broadcasts the
RREQ message. The RREQ message contains
the IP address of both the destination node dst
and the requesting node req.

5. The response to this request, a Route Response
(RREP) message, includes both the route to
dst and the TP address of req.

6. Node n inserts the new route to dst in its rout-
ing table. It then attempts to relay this route

to req by looking up the route to req. In the
normal case, this lookup will return the re-
verse route inserted in Step 2.

This last step causes the error. The code assumes
the normal case and uses the result of the routing
table lookup for req without checking for null. How-
ever, the lookup could fail for two reasons. First, if
the machine has rebooted, the implementation will
start with an empty routing table. If an old RREP
message arrives after the reboot, the lookup of req
will return a null pointer. Second, an attacker could
send a bogus RREP with a node address that does
not exist, crashing the router.

Invalid messages. There were 4 cases of invalid
packets being created, 2 cases of using uninitialized
variables (these could not be detected by gee -Wall),
and 2 cases where invalid routes were used to send
routing updates, violating the AODV specification
(Figure 5(b) gives a representative example). CMC
also detected 2 instances of integer overflow which
resulted in program assertion failures. The imple-
mentations use an 8 bit integer to store the hop
counts and use 255 to represent a hopcount of infin-
ity. In these error cases, an infinite hopcount was
erroneously incremented to 0.

Routing loops. CMC found three routing loops.
Two of these bugs are caused by implementation
errors. The third routing loop is due to an error in
the AODV protocol specification.

The first routing loop is caused when the implemen-
tation fails to increment a sequence number while
processing specific RERR messages.

Another loop is caused when the implementation
performs a sequence number comparison before a
subsequent increment, while the AODV specifica-
tion requires the comparison to be done after the
increment.

/* madhoc:rrep.c:rec_rrep */

/* If I’m not the destination of the RREP
I forward it */
if (my_rrep->src_ip != my_info->ip_pkt_my_ip) {

// Get the entry to the source from RT.
rt_src = getentry(my_rrep->src_ip);

// BUG: rt_src may not exist!
if (add_precursor(rt_src, rt->nxt_hop) == -1)
// Send gratuitous RREP to destination
// BUG: rt_src can be invalid
// (i.e rt_src->hop_cnt == 255)
// must check after getentry.
my_rrep.hop_cnt = rt_src->hop_cnt;
if (send_datagram(my_info, &my_rrep,
sizeof (my_rrep)) == -1)

Figure 5: Two bugs: an unexpected message and an
invalid route response. (a) An unexpected route-
response (RREP) message causes getentry to re-
turn null, crashing the machine. (b) If a route re-
turned by getentry has been invalidated the hop-
count will be 255. However, the code does not check
for this and sends the message.

The specification bug. This bug involved the
handling of RERR (“route error”) messages. When
a node receives an RERR from its next hop, it sets
the sequence number of its route to the sequence
number in an RERR message. Under normal con-
ditions this is the right thing to do. However, when
the underlying link layer can reorder messages, the
RERR message might have an outdated sequence
number resulting in the node setting its sequence
number to an older version. This can ultimately
result in a routing loop. This bug was mentioned
to the authors of the protocol with a suggested fix.
Both the bug and the fix were accepted by the pro-
tocol authors[26]. Figure 6 gives both the error and
the fix.

The specification bug was found by running 4 AODV
nodes using a depth-first search of the state space.
CMC came up with an error trace of length 93. Us-
ing best-first search, it was possible to find traces as
short as 27. Performing a breadth-first search of the
state space would give the shortest trace. However,
breadth-first search on AODV ran out of resources
without finding the bug. A carefully hand-crafted
simulation of the bug required at least 20 transi-
tions. Such a complex error would be very difficult
to catch using conventional means of testing.

/* madhoc:rerr.c:rec_rerr */

// Get pointer to route table for destination IP
tmp_rtentry = getentry(tmp_unr_dst->unr_dst_ip);
if (tmp_rtentry != NULL && ...) {

// BUG: uses sequence number from incoming

// message in tmp_unr_dst without validation.

// Should check:

// if(tmp_rtentry->dst_seq >=

// tmp_unr_dst->unr_dst_seq)

// return -1;

tmp_rtentry->dst_seq = tmp_unr_dst->unr_dst_seq;

Figure 6: The specification bug: the sequence num-
ber from an incoming message is used without vali-
dation, causing “time” to go backwards when mes-
sages are reordered. Fortunately, while the error
was not obvious (surviving 6 rounds of specification
revisions) the fix is trivial.

7 Related Work

This paper proposes an initial approach to system-
atically and efficiently verify a large class of C and
C++ software without having to create abstract
models in a different language. The following com-
pares our work using CMC to other efforts in tra-
ditional model checking, software model checking,
and static analysis.

Traditional Model Checking: The basic idea of
using state graph search to verify network and com-
munication protocols is quite old, dating back to at
least 1978 [16, 30]. In recent decades, model check-
ing has made significant progress in tackling the ver-
ification of complex, concurrent systems. Tools such
as SMVJ19], SPIN[18], and Murphi[10] have been
used to verify hardware and software protocols by
exhaustively searching the state space. By caching
states and employing sound state reduction tech-
niques, these tools can detect non-trivial bugs.

The drawback of traditional model checkers is that
the system to be verified must be modeled in a par-
ticular description language, requiring a significant
amount of manual effort that can easily be error
prone. CMC was specifically designed with the goal
of reducing the amount of work that is required to
go from software development to systematic verifi-
cation.

Software Model Checking: Some recent formal
verification tools have already used the idea of exe-
cuting and checking systems at the implementation
level. Verisoft [15], for instance, systematically exe-
cutes and verifies actual code and has been used to

successfully check communication protocols written
in C.

However, Verisoft does not store states and can thus
potentially explore a state more than once. This
problem is alleviated to some degree by partial order
reduction, a sound state space reduction technique
implemented in Verisoft that eliminates the explo-
ration of redundant interleavings of transitions cre-
ated by commutative operations. Nevertheless, this
technique requires hints to be provided by the user
and /or some static analysis of the code to determine
dependencies between transitions; indeed, when the
set of possible transitions in a system have a high
degree of interdependence, as is the case with the
handlers in the protocol code we verified, partial
order methods become less effective. Finally, inter-
esting systems almost always have state spaces with
cycles and in such cases Verisoft is limited to check-
ing only up to a fixed depth.

Java PathFinder [3] uses model checking to ver-
ify concurrent Java programs for deadlock and as-
sertion failures. It relies on a specialized virtual
machine that is tailored to automatically extract
the current state of a Java program. Much like
CMC, Java PathFinder compresses and stores states
in a table to prevent redundant searches and re-
lies on various abstraction techniques to curb the
state space explosion problem. The infrastructure
on which JPF relies, however, can not be applied
to software written in C or C+4++, which are still
the predominant languages used in system software
development.

SLAM [1] is a tool that converts C code into ab-
stracted skeletons that contain only Boolean types.
SLAM then model checks the abstracted program
to see if an error state is reachable. One difficulty
in using a tool like SLAM is giving a specification of
the correct behavior of the system. Because SLAM
is a static tool, writing a specification that “no rout-
ing loops are possible” would be difficult because it
depends on the interleaved event behavior of multi-
ple nodes. Furthermore, SLAM does not deal with
concurrent environments that contain multiple pro-
cesses, queues, etc.

Static Analysis: Static analysis has also gained
ground in recent years in detecting bugs in software.
Tools such as ESC [9], LCLint [14], ESP [8], and the
MC Checker [11] have been used to check source
code for errors that can be statically detected with
minimal manual effort. While static techniques are
good for finding a specific set of errors, the CMC
approach can find deep conceptual errors in the code
such as emergent routing loops that are difficult to

find statically. In addition, CMC does not suffer
from too many false positives since every scenario
checked is a valid execution path.

8 Conclusion and Future Work

This paper has described CMC, a model checker tar-
getting subtle bugs in systems code, and experimen-
tal results from using CMC to check three imple-
mentations of the AODV routing protocol. The key
features of CMC are that it checks implementation
code directly and stores states to avoid redundant
state explorations. Initial experiences with CMC
are very encouraging: CMC is powerful enough to
discover non-trivial bugs both in the implementa-
tion and the specification of protocols.

We are currently using CMC to verify larger and
more complex protocols. For wider use, it is essen-
tial to automate the process of converting an imple-
mentation of a system to its CMC model as much as
possible. While the results reported here did require
considerable manual effort, future improvements to
CMC should significantly reduce this.

We are also exploring the use of heuristics to effi-
ciently search the state space. Our initial findings
suggest that simple heuristics provide huge improve-
ments in the state space search. For instance, we
have implemented a monitor that detects counters
and other “rogue” variables (such as uninitialized
variables and statistics variables). This monitor ab-
stracts away such variables from the system state,
automatically pruning an otherwise infinite state
space. Another interesting avenue for research is
to use simple facts discovered through static anal-
ysis of the code to direct the search to interesting
parts of the state space.

9 Acknowledgments

We thank Satyaki Das for thoughtful discussions
on the paper. Also, we thank Miguel Castro and
various anonymous reviewers for providing valuable
comments and suggesting improvements on previous
versions of this paper.

References

1]

2]

3

[4]

[5]

6

[7]

9

(10]

(11]

(12]
(13]

(14]

(15]

[16]

Thomas Ball, Rupak Majumdar, Todd Millstein, and
Sriram K. Rajamani. Automatic predicate abstraction
of C programs. In Proceedings of the SIGPLAN 01
Conference on Programming Language Design and Im-
plementation, 2001.

K. Bhargavan, D. Obradovic, and C. Gunter. Formal
verification of standards for distance vector routing pro-
tocols, 1999.

G. Brat, K. Havelund, S. Park, and W. Visser. Model
checking programs. In IEEE International Conference
on Automated Software Engineering (ASE), 2000.

E.M. Clarke, O. Grumberg, and D. Peled. Model Check-
ing. MIT Press, 1999.

J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.S.
Pasareanu, Robby, and H. Zheng. Bandera: Extracting
finite-state models from java source code. In ICSE 2000,
2000.

Crispan Cowan, Calton Pu, Dave Maier, Jonathan
Walpole, Peat Bakke, Steve Beattie, Aaron Grier, Perry
Wagle, Qian Zhang, and Heather Hinton. StackGuard:
Automatic adaptive detection and prevention of buffer-
overflow attacks. In Proc. 7th USENIX Security Con-
ference, pages 63-78, San Antonio, Texas, jan 1998.

C.Perkins, E. Royer, and S. Das. Ad Hoc
On Demand Distance Vector (AODV) Routing.
IETF Draft, http://www.ietf.org/internet-drafts/draft-
ietf-manet-aodv-10.txt, January 2002.

Manuvir Das, Sorin Lerner, and Mark Seigle. Esp: Path-
sensitive program verification in polynomial time. In
Conference on Programming Language Design and Im-
plementation, 2002.

David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and
James B. Saxe. Extended static checking, 1998.

David L. Dill, Andreas J. Drexler, Alan J. Hu, and
C. Han Yang. Protocol verification as a hardware design
aid. In IEEE International Conference on Computer
Design: VLSI in Computers and Processors, pages 522—
525, 1992.

D.R. Engler, B. Chelf, A. Chou, and S. Hallem. Check-
ing system rules using system-specific, programmer-
written compiler extensions. In Proceedings of the
Fourth Symposium on Operating Systems Design and
Implementation, October 2000.

Erik Nordstrom et al. Ad hoc protocol evaluation
testbed. http://apetestbed.sourceforge.net/.

Erik Nordstrom et al. AODV-UU Implementation.
http://user.it.uu.se/ henrikl/aodv/.

David Evans, John Guttag, James Horning, and
Yang Meng Tan. LCLint: A tool for using specifica-
tions to check code. In Proceedings of the ACM SIG-
SOFT 94 Symposium on the Foundations of Software
Engineering, pages 87-96, 1994.

P. Godefroid. Model Checking for Programming Lan-
guages using VeriSoft. In Proceedings of the 24th ACM
Symposium on Principles of Programming Languages,
1997.

J. Hajek. Automatically verified data transfer protocols.
In Proceedings of the 4th ICCC, pages 749-756, 1978.

(17]

(18]
(19]
20]
(21]

(22]

23]

24]

25]

(26]

27]

(28]

29]

(30]

Sudheendra Hangal and Monica S. Lam. Tracking down
software bugs using automatic anomaly detection. In
Proceedings of the International Conference on Software
Engineering, May 2002.

Gerard J. Holzmann. The model checker SPIN. Software
Engineering, 23(5):279-295, 1997.

McMillan K. Symbolic Model Checking. Kluwer Aca-
demic Publishers, 1993.

Luke Klein-Berndt and et.al. Kernel AODV Implemen-
tation. http://w3.antd.nist.gov/wctg/aodv _kernel/.

F. Lilieblad and et.al. Mad-hoc AODV Implementation.
http://mad-hoc.flyinglinux.net/.

S. McCanne and S. Floyd.
network simulator - ns (version 2),
http://www.isi.edu/nsnam/ns/.

K.L. McMillan and J. Schwalbe. Formal verification of
the gigamax cache consistency protocol. In Proceed-
ings of the International Symposium on Shared Memory
Multiprocessing, pages 242-51. Tokyo, Japan Inf. Pro-
cess. Soc., 1991.

UCB/LBNL/VINT
April 1999.

G. Nelson. Techniques for program verification. Avail-
able as Xerox PARC Research Report CSL-81-10, June,
1981, Stanford University, 1981.

D. Park, U. Stern, J. Skakkebaek, and D. L. Dill. Java
model checking. In IEEE International Conference on
Automated Software Engineering (ASE), 2000.

Charles E. Perkins, Elizabeth M. Royer, and Samir R.
Das. Private Email Communication.

Rational Software. Purify: Advanced
time error checking for C/C++ developers.
http://www.rational.com/products/purify unix/.

U. Stern and D. L. Dill A New Scheme for
Memory-Efficient Probabilistic Verification. In IFIP
TC6/WG6.1 Joint International Conference on Formal
Description Techniques for Distributed Systems and
Commumnication Protocols, and Protocol Specification,
Testing, and Verification, 1996.

U. Stern and D.L. Dill. Automatic verification of the
SCI cache coherence protocol. In Correct Hardware De-
sign and Verification Methods: IFIP WG10.5 Advanced
Research Working Conference Proceedings, 1995.

run-

C.H. West. General technique for communications pro-
tocol validation. IBM Journal of Research and Dewvel-
opment, 22(4), 1978.

