
USENIX Association

Proceedings of the
5th Symposium on Operating Systems

Design and Implementation

Boston, Massachusetts, USA
December 9–11, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Pastiche: Making Backup Cheap and Easy

Landon P. Cox, Christopher D. Murray, and Brian D. Noble
Department of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, MI 48109-2122
{lpcox,cdmurray,bnoble}@umich.edu http://mobility.eecs.umich.edu/

Abstract

Backup is cumbersome and expensive. Individual
users almost never back up their data, and backup is
a significant cost in large organizations. This paper
presents Pastiche, a simple and inexpensive backup sys-
tem. Pastiche exploits excess disk capacity to perform
peer-to-peer backup with no administrative costs. Each
node minimizes storage overhead by selecting peers that
share a significant amount of data. It is easy for com-
mon installations to find suitable peers, and peers with
high overlap can be identified with only hundreds of
bytes. Pastiche provides mechanisms for confidential-
ity, integrity, and detection of failed or malicious peers.
A Pastiche prototype suffers only 7.4% overhead for a
modified Andrew Benchmark, and restore performance
is comparable to cross-machine copy.

1 Introduction

Backup is cumbersome and expensive. Personal ma-
chines are backed up rarely, if at all. Internet backup
services exist, but are costly. For example, Connected
TLM offers individual users backup of up to 4 GB—but
covers neither applications nor the operating system—
for $15 per month [15]. Machines within an organiza-
tion can be backed up centrally, but at significant cost.
For example, the computer support arm of Michigan’s
College of Engineering provides backup service of up to
8 GB on a single machine for $30 per month.

The cost and inconvenience of backup are unavoid-
able, and often prohibitive. Small-scale solutions require
significant administrative efforts. Large-scale solutions
require aggregation of substantial demand to justify the
capital costs of a large, centralized repository.

There is increasing recognition that disks better serve
the needs of near-line archival storage. The purchasing
cost of disk subsystems has caught up with tape [33],
and disks provide better access and restore time. At
the same time, the conventional wisdom that data ex-
pands to fill storage space is proving to be untrue.
Douceur’s examination of nearly five thousand machines

finds that file systems are now only 53% full, on aver-
age [19]. Furthermore, the amount of newly written data
per client per day is a small fraction of the total file sys-
tem [43, 45, 50]. Several systems take advantage of low
write traffic in the presence of excess storage capacity,
including Elephant [43] and S4 [47].

Pastiche uses some of this excess disk capacity for ef-
ficient, effective, and administration-free backup. Pas-
tiche nodes form a cooperative—though untrusted—
collection of machines that provide mutual backup ser-
vices. Because individual machines may come and
go [6], each Pastiche node must replicate its archival data
on more than one peer. Most of these replicas are placed
nearby to ease network overhead and minimize restore
time, though at least one replica must be elsewhere to
guard against catastrophe. With no effort on the part
of the user and modest additional disk space, backups
are provided automatically. Pastiche is primarily aimed
at end-user machines, but it can be used for back-end
repositories with some care.

Pastiche cannot afford to keep duplicate copies of data
on each replica. Luckily, much of the data on a given
machine is not unique, and is generated at install time.
Furthermore, for most machines, common data will be
shared widely. The default installation of Office 2000
Professional requires 217 MB; it is nearly ubiquitous
and different installations are largely the same. Ran-
domly grouping disparate file systems and coalescing
duplicate files produces significant savings [5]. Pastiche
identifies systems with overlap to increase this savings.

Pastiche builds on three recent developments to ac-
complish its goals. Pastry [41], a peer-to-peer network,
provides scalable, self-administered routing and node lo-
cation. Content-based indexing [27, 30] provides flex-
ible discovery of redundant data within similar files.
Convergent encryption [6] allows hosts to use the same
encrypted representation for common data without shar-
ing keys.

Even with these building blocks, Pastiche still faces a
number of challenges. How can nodes discover backup
buddies with substantial overlap without a centralized
directory? How can nodes reuse their own on-disk state

to backup others? How can nodes restore files—or an
entire machine—without requiring administrative inter-
vention? How can nodes detect unfaithful buddies?

Pastiche computes a small abstract of a file system’s
content that potential backup buddies can inspect to ap-
proximate overlap. Pastiche is able to limit the size of
the abstract by taking advantage of the fact that arbi-
trary, small pieces of larger logical entities are almost
always unique and can, therefore, stand for the whole.
This allows machines with common installations to find
suitable buddies with very little effort. Machines with
uncommon installations may need to use a Pastry over-
lay with a new routing metric, coverage rate.

Because sharing is supported at a sub-file granularity,
Pastiche provides a new file system, chunkstore. Chunk-
store stores all data—the host’s as well backup state—in
the units of sharing, without compromising the perfor-
mance of common-case workloads.

Archive state is described by a skeleton tree of meta-
data. The root of this tree can be recovered from the
Pastry overlay with only the name and passphrase of the
machine to be restored. Entire file systems are restored
as easily as a single file.

To address the problem of storing data on untrusted
nodes, Pastiche uses a probabilistic mechanism to detect
missing backup state by periodically querying buddies
for stored data. Pastiche is able to keep the overhead of
these queries small, bounding the chance of loss.

An examination of file system data shows that ab-
stracts of a few hundred bytes effectively discriminate
between candidate buddies. Simulations show that Pas-
tiche nodes with common installations can easily find
others with good overlap. The chunkstore file system in-
duces overhead of 7.4% on a modified Andrew Bench-
mark, despite its unoptimized layout. Finally, analytical
results show that a Pastiche node can detect corrupted
backup state with high probability by checking about
0.1% of all chunks.

2 Enabling Technologies

Pastiche depends on three enabling technologies. The
first is Pastry, a scalable, self-organizing, peer-to-peer
routing and object location infrastructure [41]. The sec-
ond is content-based indexing [27, 30], a technique that
finds common data across different files. The third is
convergent encryption [6], which allows sharing without
compromising privacy. The remainder of this section de-
scribes each of these, focusing on the features essential
to Pastiche.

2.1 Peer-to-Peer Routing

Pastiche eschews the use of a centralized authority to
manage backup sites. Such an authority would be a sin-
gle point of control, limiting scalability and increasing
expense. Instead, Pastiche relies on Pastry, a scalable,
self-organizing, routing and object location infrastruc-
ture for peer-to-peer applications.

Each Pastry node is named by a nodeId; the set of all
nodeId’s are expected to be uniformly distributed in the
nodeId space. Any two Pastry nodes have some way of
measuring their proximity to one another. Typically, this
metric captures some notion of network costs.

Each node N maintains three sets of state: a leaf set,
a neighborhood set, and a routing table. The leaf set
consists of L nodes; L/2 are those with the closest nu-
merically smaller nodeIds, and L/2 are the closest larger
ones. The neighborhood set of M nodes contains those
closest to N according to the proximity metric. The Pas-
try group has deprecated the neighborhood set. How-
ever, as we show in Section 5.3, the neighborhood set
is critical to buddy discovery for nodes with uncommon
installations.

The routing table supports prefix routing. There is one
row per hexadecimal digit in the nodeId space. The first
row contains a list of nodes whose nodeIds differ from
the current node’s in the first digit; there is one entry for
each possible digit value. The second row holds a list of
nodes whose first digit is the same as the current node’s,
but whose second digit differs. To route to an arbitrary
destination, a packet is forwarded to the node with a
matching prefix that is at least one digit longer than that
of the current node. If such a node is not known, the
packet is forwarded to a node with an identical prefix,
but that is numerically closer to the destination in nodeId
space. This process continues until the destination node
appears in the leaf set, after which it is delivered directly.
The expected number of routing steps is log N , where N
is the number of nodes.

Many positions in the routing table can be satisfied
by more than one node. When given a choice, Pastry
records the closest node according to the proximity met-
ric. As a result, the nodes in a routing table sharing a
shorter prefix will tend to be nearby since there are many
such nodes. However, any particular node is likely to be
far.

Pastry is self-organizing; nodes can come and go at
will. To maintain Pastry’s locality properties, a new
node must join with one that is nearby according to the
proximity metric. Pastry provides a seed discovery pro-
tocol that finds such a node given an arbitrary starting
point [10]. Pastiche uses two separate Pastry overlay
networks, but uses them only during buddy discovery.

Once a node has identified its backup set, all further traf-
fic is routed directly via IP.

Pastiche adds two mechanisms to Pastry. The first is
a technique called the lighthouse sweep that guarantees
that distinct Pastry nodes are queried during buddy dis-
covery. The second is a distance metric based on file sys-
tem contents; this is used to find buddies for machines
with rare installations.

2.2 Content-Based Indexing

To minimize storage overhead, Pastiche must find re-
dundant data across versions of files, files in a system,
and files on distinct machines. Rsync [48] and Tivoli [1]
employ schemes for finding common subsets in two ver-
sions of (presumably) the same file. However, these
techniques cannot easily capture general sharing.

The challenge is to find sharing—and hence
structure— across seemingly unrelated files without
knowing the underlying structure. Content-based index-
ing accomplishes this by identifying boundary regions,
called anchors [27], using Rabin fingerprints [39]. A
fingerprint is computed for each overlapping k-byte sub-
string in a file. If the low-order bits of a fingerprint
match a predetermined value, that offset is marked as
an anchor. Anchors divide files into chunks. Since
anchors are purely content-driven, editing operations
change only the chunks they touch, even if they change
offsets.

As with LBFS [30], Pastiche names each chunk by
taking a SHA-1 hash [32] of its contents. The probability
that two different chunks will hash to the same value is
much lower than the probability of hardware errors. It is
therefore customary to assume that chunks that hash to
the same value are in fact the same chunk, and Pastiche
adopts this custom. In Pastiche, these chunks form the
basis of on-disk file structures in chunkstore to easily
share data between local host and remote client.

2.3 Sharing with Confidentiality

A well-chosen backup buddy has much of a Pastiche
node’s data, even before the first backup. However, Pas-
tiche must guarantee the confidentiality and integrity of
its participants’ data. If clients are free to choose their
own cryptographic keys, chunks with identical content
will be represented differently, precluding sharing.

The Farsite file system solves this problem with con-
vergent encryption [6]. Under convergent encryption,
each file is encrypted by a key derived from the file’s
contents. Farsite then encrypts the file key with a key-
encrypting key, known only to the client; this key is
stored with the file. As a file is shared by more clients, it
gains new encrypted keys; each client shares the single
encrypted file.

Pastiche applies convergent encryption to all on-disk
chunks. If a Pastiche node backs up a new chunk not
already stored on a backup buddy, the buddy cannot dis-
cover its contents after shipment. However, if the buddy
has that chunk, it knows that the node also stores that
data. Pastiche allows this small information leak in ex-
change for increased storage efficiency.

3 Design

Pastiche data is stored on disk as chunks. Chunk
boundaries are determined by content-based indexing,
and encrypted with convergent encryption. Chunks
carry owner lists, which name the set of nodes with an
interest in a chunk. Chunks may be stored on a ma-
chine’s disk for that machine, a backup client, or both.
Data chunks are immutable, and each chunk persists un-
til no node holds a reference to it. Pastiche ensures that
only rightful owners are capable of removing a reference
to (and possibly deleting) a chunk.

When a newly written file is closed, it is scheduled for
chunking. Each chunk c is hashed; the result is called the
chunk’s handle, Hc. Each handle is used to generate a
symmetric encryption key, Kc, for its chunk. The handle
is hashed again to determine the public chunkId, Ic, of
the chunk. Each chunk is stored on disk encrypted by Kc

and named by Ic. This process is illustrated in Figure 1.
Before writing a chunk to disk, Pastiche first checks

to see if it already exists. If so, the local host is added to
the owner list if necessary, and the local reference count
is incremented. Otherwise, the chunk is encrypted, a
message authentication code [31] is appended, and the
chunk is written out to disk with a reference count of
one for the local owner.

Chunking and writing to disk are deferred to avoid
needless overhead for files with short lifetimes [50], at
the cost of slightly weaker persistence guarantees. The
list of chunkIds that describes a node’s current file sys-
tem is called its signature.

Data chunks are immutable. When a file is over-
written, its set of constituent chunks may change. Any
chunks no longer part of the file have their local owner’s
reference count decremented; if the reference count
drops to zero, the local owner is removed. If the owner
list becomes empty, the chunk’s storage is reclaimed.
File deletion is handled similarly.

The meta-data for a file contains the list of handles
for the chunks comprising that file, plus the usual con-
tents: ownership, permissions, creation and modification
times, etc. The handles in this list are used to derive the
decryption key and chunkId for each constituent chunk.

Meta-data chunks are encrypted to protect the han-
dle values and hence cryptographic keys. This dif-
fers slightly from Farsite’s use of convergent encryption.

SHA-1

encrypted
chunk

cleartext
chunk

Hc

SHA-1

Ic

ke
yg

en

Kc+

This figure depicts how chunks are stored and named.
A cleartext chunk is hashed, producing its handle. The
handle is used for key generation, and hashed again to
produce the chunkId. The chunk is stored encrypted by
the key and named by the chunkId.

Figure 1: Naming and Storing Chunks

Farsite stores keys with data, encrypting each derived
key with a key private to the writing host. Pastiche stores
handles, and hence keys, in the meta-data blocks.

Unlike data, meta-data is is not chunked and is mu-
table. Pastiche does not chunk meta-data because it is
typically small and unlikely to be shared. Meta-data is
mutable to avoid cascading writes. Each write to a file
changes its constituent chunkIds. If meta-data were im-
mutable, Pastiche would have to create a new meta-data
chunk with a new name for every update. This new name
would have to be added to the enclosing directory, which
would also change, and so on to the file system root. In-
stead, the Hc, Kc, and Ic for a file’s meta-data are com-
puted only at creation time, and are re-used thereafter.

The meta-data object corresponding to a file sys-
tem root is treated specially: its Hc is generated by a
host-specific passphrase. As Section 3.4 explains, this
passphrase plus the machine’s name is all that is required
to restore a machine from scratch.

A chunk that is part of another node’s backup state
includes that nodeId in its owner list. Remote hosts
supply a public key with their backup storage requests.
Requests to remove references must be signed by the
corresponding secret key, otherwise those requests are
rejected. This prevents third-party deletions, though it
does not prevent the buddy from dropping chunks of its
own accord.

Storing files directly as chunks simplifies a number of
Pastiche’s tasks and imposes modest performance costs.
It simplifies the implementation of chunk sharing, con-
vergent encryption, and backup/restore. Without chunk-
store, Pastiche would have to keep a persistent index
consistent with on-disk files. This index would have
to be consulted during backup and restore, and compli-
cates garbage collection of chunks retired during snap-
shot. Furthermore, convergent encryption requires that
each chunk be encrypted separately, complicating a con-
tiguous layout. The only alternative would be to detect
sharing only at the file level, with a corresponding in-
crease in storage costs for backup.

3.1 Abstracts: Finding Redundancy

Much of the long-lived data on a machine is written
once and then never overwritten. Observations of file
type [19] and volume ownership [45] suggest that the
amount of data written thereafter will be small. In other
words, the signature of a node is not likely to change
much over time. Therefore, if all data had to be shipped
to a backup site, the initial backup of a freshly installed
machine is likely be the most expensive.

An ideal backup buddy for a newly-installed Pastiche
node is one that holds a superset of the new machine’s
data; machines with more complete coverage are pre-
ferred to those with less. One simple way to find such
nodes is to ship the full signature of the new node to can-
didate buddies, and have them report degree of overlap.

Unfortunately, signatures are large: 20 bytes per
chunk. Expected chunk size is a function of how an-
chors are selected. In our implementation, this size is 16
KB, so signatures are expected to cost about 1.3 MB per
GB of stored data. If this cost were paid only once, it
might be acceptable. However, a node’s buddy set can
change over time as buddies are found to be unreliable
or as degrees of overlap change.

Rather than send a full signature, Pastiche nodes send
a small, random subset of their signatures called an ab-
stract. This is motivated by the following observation:
most data on disk belongs to files that are part of a much
larger logical entity. For example, a Linux hacker with
the kernel source tree has largely the same source tree as
others working on the same version. Any machine hold-
ing even a small number of random chunks in common
with this source tree is likely to hold most of them. Pre-
liminary experiments show that tens of chunkIds—a few
hundred bytes—are enough to distinguish good matches
from bad ones. This size is similar to that reported by
Border for individual web objects [8].

3.2 Overlays: Finding a Set of Buddies

All of a node’s buddies should have substantial over-
lap with it to reduce storage overhead. In addition, most
buddies should be nearby to reduce global network load
and improve restore performance. However, at least one
buddy must be located elsewhere to provide geographic
diversity. As a rule of thumb, each Pastiche node main-
tains five buddies.

Pastiche uses two Pastry overlays to facilitate buddy
discovery. One is a standard Pastry overlay organized
by network proximity. The other is organized by file sys-
tem overlap. Every Pastiche node joins a Pastry overlay
organized by network distance. Its nodeId is a hash of
the machine’s fully-qualified domain name. Once it has
joined, the new node picks a random nodeId and routes

LogEntry_0

LogEntry_1

LogEntry_n

...

Attr Block {
 nlink, size, mtime,
 type, ctime ...
};
time_stamp;

handle_0
{343.532.939.888}

...

handle_i
{734.313.267.685}

This figure depicts how a meta-data chunk is stored on
disk. The chunk is stored as a log of file states, where
each entry in the log represents the state of the file after
the update. Entries are comprised of an attribute block,
a time stamp, and a list of constituent chunk handles.

Figure 2: Meta-data Chunk Layout

a discovery request to it. The discovery request contains
the new node’s abstract. Each node encountered on the
route computes its coverage–the fraction of chunks in
the abstract stored locally–and returns it.

If the initial probe does not generate a sufficient can-
didate set, the probe process is repeated. Subsequent
probes are generated by varying the first digit of the orig-
inal nodeId. Since Pastry uses prefix routing, each probe
will generate sets of candidates disjoint from those al-
ready examined. We call this rotating probe a lighthouse
sweep.

Nodes with common installations should find a suf-
ficient candidate set easily. However, nodes with rare
installations will have more difficulty. Nodes that do not
find an adequate set during a lighthouse sweep join a sec-
ond overlay, called the coverage-rate overlay. This over-
lay uses file system overlap rather than network hops as
the distance metric. The new node chooses backup bud-
dies from its Pastry neighbor set—the set of nodes en-
countered during join with the best coverage available.

The use of coverage rate as a distance metric has in-
teresting implications for Pastry. Like network distance,
coverage rate does not obey the triangle inequality. Un-
like network distance, coverage rate is not symmetric; if
A holds all of B’s files, the converse is probably not true.
This means that an individual node must build its rout-
ing state based on the correct perspective. Likewise, the
seeding algorithm must be supplied with the new node’s
abstract, so that it can compute coverage from the cor-
rect point of view.

It is possible for a malicious node to habitually under-
or over-report its coverage. If it under-reports, it can
avoid being selected as a buddy. If it over-reports, it can
attract unsuspecting clients only to discard their backup

LogEntry_0
time t_j

LogEntry_1
time t_j+1

LogEntry_2
time t_i+2

12

LogEntry_3
time t_i+3

LogEntry_0
time t_i

LogEntry_1
time t_i+1

2 1

This figure depicts a small skeleton. Each chunk is
stored as a log, and each entry in the log has references
to other chunks. The top chunk begins empty, and then
adds another. The bottom chunk adds a data chunk,
appends another to the end, and then removes the first
chunk.

Figure 3: Chunk Skeleton

state. Unfortunately, this is possible no matter who com-
putes coverage rates. An honest node can be given
a random list of chunkIds as an abstract; such an ab-
stract is unlikely to match anything. Likewise, a mali-
cious node can cache and report abstracts sent by others
with commonly-appearing chunkIds, hoping for a false
match.

3.3 Backup Protocol

A Pastiche node has full control over what, when, and
how often to back up. Each discrete backup event is
viewed as a single snapshot. Nodes can subscribe to a
calendar-based cycle, a landmark-based scheme [43], or
any other schedule. Because a machine is responsible
for its own archival plan, it keeps a meta-data skeleton
for each retained snapshot. A file that is not part of the
local machine’s current file system, but is part of one or
more archived snapshots, has a corresponding meta-data
entry stored on the local machine.

The skeleton for all retained snapshots is stored as a
collection of persistent, per-file logs, as shown in Fig-
ures 2 and 3. The skeleton representing a machine’s cur-
rent file system state plus all retained snapshots is stored
both on the machine and all of its backup buddies.

The state necessary to establish a new snapshot con-
sists of three things: the chunks to be added to the
backup store, the list of chunks to be removed, and the
meta-data objects in the skeleton that change as a result.
We call these the add set, delete set, and meta-data list.

The snapshot process begins by shipping the host’s
public key. This key will be associated with any new
chunks to validate later requests to delete or replace
them. The snapshot node then forwards the chunkIds
for elements of the add set. If any of those chunks are
not already stored on the buddy, the buddy fetches the
chunks from the node.

Next, the node sends the delete list. The snapshot host
adds a chunkId to the delete list only if it does not be-
long to any snapshot the client wishes to retain. The
delete list must be signed, and this signature is checked
to ensure it matches the public key associated with any
chunks scheduled for deletion. Note that deletion is not
effected immediately. It is deferred to the end of the
snapshot process.

Finally, the snapshot node sends any updated meta-
data chunks. Since they may overwrite old meta-data
chunks, their chunkIds must also be signed. When all
state has been transferred, the host requests a commit
of the checkpoint. Before responding, the buddy must
ensure that all new chunks, changed meta-data objects,
and deleted chunkIds are stored persistently. Once that
is complete, the buddy can respond, and later apply the
new snapshot by performing the appropriate deletions.

The performance of snapshots is not crucial, since
they are asynchronous. The only exception is mark-
ing chunkstore copy-on-write, which must be done syn-
chronously. However, as with AFS’s volume clone op-
eration [23], this is inexpensive. The load induced
on a buddy by the backup protocol can be regulated
with resource containers [2] or progress-based mecha-
nisms [20]. This load is quantified in Section 5.2.

The snapshot process is restartable. The most expen-
sive phase—shipping new data chunks—makes progress
even in the presence of failures, since new chunks are
stored as they arrive. After the new snapshot is applied,
a faithful buddy will have a complete copy of the meta-
data skeleton, plus all data chunks the skeleton names.

3.4 Restoration

A Pastiche node retains its archive skeleton, so per-
forming partial restores is straightforward. The node
identifies which chunks correspond to the restore re-
quest, and obtains them from the nearest buddy.

Recovering the entire machine requires a way to boot-
strap the skeleton. To do so, a Pastiche node keeps a
copy of its root meta-data object on each member of
its network-distance leaf set. When a machine must re-
cover from disaster, it rejoins the distance-based over-
lay with the same nodeId, which is computed from its
host name. It then obtains its root node from one of its
leaves, and decrypts it with the key generated from the
host’s passphrase. Since the root block contains the set
of buddies in effect when it was replicated, the node can
recover all other state.

3.5 Detecting Failure and Malice

A buddy is expected to retain backup snapshots, but
is not required to do so. When faced with a sudden disk
space crisis, a buddy is free to reclaim space. A buddy
may also fail or be connected intermittently, leaving its
ability to serve future restore requests in doubt. Finally,
a malicious buddy may claim to store chunks without
actually doing so.

Pastiche employs a probabilistic mechanism to detect
all of these situations. Before taking a new snapshot,
each Pastiche node asks buddies for a random subset of
chunks from the node’s archive. By requesting a modest
number of chunks, clients can bound the probability that
compromised backup state goes undetected. Savvy users
of traditional backup schemes already employ this tech-
nique as an end-to-end confirmation of correctness. If a
buddy cannot produce data it claims to hold, the client
removes it from its buddy list and initiates a search for a
replacement. If a buddy has not responded for a signifi-
cant period of time, the client likewise removes it.

Unfortunately, this request provides only instanta-
neous assurance; a malicious node can drop chunks af-
ter they are requested. Thus, increasing the frequency
of requests does not provide increased assurance, while
increasing the size of a single request does.

This technique assumes that a malicious party can-
not occupy a substantial fraction of the nodeId space,
and hence cannot produce collusion between a single
host’s backup buddies. Defending against such Sybil at-
tacks [18] in practice requires some centralized agency
to certify identities [9]. Such certification is essential
in Pastiche, because nodes can increase their chances of
being selected as buddies by falsely over-reporting their
coverage rates.

Pastiche leverages the spot-check mechanism to de-
tect snapshots belonging to decommissioned machines.
Each buddy knows that its corresponding host does not
fully trust it. So, the buddy expects to be probed period-
ically. If a buddy does not hear from its corresponding
host for an exceptionally long period, it can assume that
the host has either been decommissioned or re-installed.
This decision must be made very conservatively, lest a
long-lived failure be mistaken for a voluntary removal.

This lack of trust places some limits on Pastiche’s
applicability; it is intended primarily for end-user sys-
tems for which backup is currently difficult. Back-end
repositories are already centrally managed, and adding
backup services to them is comparatively simple. How-
ever, Pastiche can be extended to such services by choos-
ing one or more backup buddies to be an administered,
trusted machine, provided the service’s expected work-
load shows temporal locality. Without such locality, the
performance of chunkstore is likely to be poor.

3.6 Preventing Greed

A greedy host can aggressively consume space by
using storage on many hosts and never retiring any of
them. This is the most challenging problem faced by
Pastiche. Pastiche needs a distributed quota enforcement
mechanism; a node should occupy only as much space
as it contributes. We have considered three solutions to
this problem, but none are completely satisfactory.

The first solution places nodes into equivalence
classes based on the resources they consume. Each
node monitors the overall storage costs imposed by its
backup clients, and compares these costs to its own
usage. Those that are much more space-intensive are
ejected, and must search for a more suitable partner. Un-
fortunately, this mechanism is circumvented by the Sybil
attack.

The second approach is to force each node to solve
cryptographic puzzles [24] in proportion to the amount
of storage it occupies. Forging identities is no defense
against this, nor is spreading snapshots across more than
the usual number of buddies. However, we dislike this
solution for several reasons. First, it adds needless
expense to backup, which is antithetical to Pastiche’s
goals. Second, it trades something other than storage
for storage space. Third, not all nodes will have equiv-
alent processing power, so it is difficult to provision the
solution properly.

The third approach is to account for space with some
form of electronic currency [12]. It is sufficient to use an
offline protocol [4]; some amount of double-spending is
tolerable as long as abusers can be detected eventually.
However, currency accounting requires that backup be
goods atomic [49]; the exchange of currency and backup
state must be an atomic transaction. Adding this compli-
cates Pastiche substantially.

3.7 An Alternative Design

Before settling on Pastiche’s current approach, we
considered an alternative that appears to be a more nat-
ural fit to a peer-to-peer substrate. Instead of having
a small list of backup buddies, each holding a com-
plete backup, this alternative stores each chunk on the
K Pastry nodes with nodeIds numerically closest to
the chunk’s identifier. We call this alternative the fine-
grained approach.

The fine-grained approach has two advantages over
Pastiche. First, it ensures that only K backup copies of
a chunk exist anywhere in the network. Second, Pastry
takes care of detecting failed or unresponsive hosts, and
individual nodes need not keep track of them.

However, the fine-grained approach also has two dis-
advantages. The first is the loss of network proximity for

most replicas, increasing network load during backup
and latency during restoration. Restoration costs can
be avoided by caching along the Pastry route taken by
backup chunks, but this increases global disk overhead.

The second disadvantage is the difficulty in dealing
with malicious nodes. It is much harder for a client to
probe for malicious nodes, since the set of nodes con-
taining client state is on the order of the number of
chunks. Pastiche trades disk space to reduce network
costs and give clients the tools to ensure that their back-
ups are safely stored.

4 Implementation

The Pastiche prototype consists of two main compo-
nents: the chunkstore file system and a backup daemon.
Chunkstore is written in C and is implemented primarily
in user space for simplicity. The user-space component
is called pclientd. A small, in-kernel portion imple-
ments the vnode interface [26], integrating chunkstore
with Linux 2.4.18. Pastiche uses the XFS device from
Arla [51], an open source AFS implementation, for this
in-kernel portion.

Data is stored as individual chunks in an underly-
ing file system. For performance reasons, Pastiche also
maintains a cache of contiguous, decrypted copies of re-
cently used files, called container files. Our prototype
does not yet support whole-machine backup, because we
have not implemented booting a kernel from chunkstore.

The XFS device sees only container files, and
pclientd acts as mediator between the device, the
container files, and chunkstore. When an application
requests a file that is not in a container, pclientd
retrieves the meta-data chunk for that file from chunk-
store and uses it to form a contiguous container file.
pclientd then returns the inode of the container file
to the device, and subsequent operations are applied to
the container. The container file cache is managed with
LRU replacement, given a maximum size.
pclientd is notified of each close. If

the corresponding file is dirty, it is scheduled
for chunking. Chunking is deferred for 30 sec-
onds, to avoid needless overhead for short-lived
files [50]. We implemented convergent encryption using
the openssl-0.9.7-beta3 cryptographic library.
Each chunk was encrypted using a 128-bit key and the
AES stream cipher [17].

Container files restore the parity between logical and
on-disk proximity that storing chunks individually elimi-
nates. However, storing chunks individually still induces
some storage overhead. By storing each chunk sepa-
rately, Pastiche files will yield more internal fragmen-
tation than if they had been stored contiguously. Recall
that content-based indexing generates chunks by exam-

ining the lower k bits in a Rabin fingerprint; if these bits
match some target value, that offset is marked as a chunk
boundary. On average, one would expect to lose half of
a disk block per chunk. So, we set k to 14, giving an ex-
pected chunk size of 16KB and expected fragmentation
overhead to 3.1%.

Meta-data chunks are stored as a log of updates to
the file. Each time a file is re-chunked, the list of its
constituent chunks is appended to the log. Deletion is
represented with a terminal log entry. pclientd only
appends to these logs, and thus never removes a chunk
from chunkstore.

The backup daemon, called backupd, is written in
C and uses the rpc2 remote procedure call package for
communication [44]. It acts as both the backup server
and client. The server manages remote requests for stor-
age and restoration, while the client supervises selec-
tion of buddies and snapshots. Additionally, backupd
cleans meta-data logs and reaps deleted chunks.
backupd communicates with pclientd through

file locking of on-disk chunks. This is simple and can
be efficient, since backupd need not hold all locks to
guarantee a consistent snapshot. Once the root meta-data
chunk is read, all reachable chunks are guaranteed to re-
main reachable, since none of them will be deleted by
pclientd. Some meta-data chunks may still become
tainted [25] with additional log entries. However, these
entries can be detected via timestamps during backup
and restore, rendering their inclusion in a snapshot harm-
less.

We also provide several utilities to allow users to
manage the file system: forcesnap forces backupd
to take a system snapshot immediately, forcechunk
forces pclientd to chunk all files in its queue imme-
diately, and rfile restores a file or subtree to a previ-
ous state. Each utility communicates with pclientd
and backupd through Unix domain sockets.

5 Evaluation

In evaluating our prototype, we set out to answer the
following questions:
• What is the performance of the file system? Which

operations perform well and which perform badly?
• How long do backups and restores take?
• How large must fingerprints be? Is the lighthouse

sweep able to find buddies?
• Does the coverage-rate overlay yield suitable

backup buddies?
• Are the costs to detect malicious nodes reasonable?

All experiments were run on machines with a 550 MHz
Pentium III Xeon processor, 256MB of memory, and a
10k RPM SCSI Ultra wide disk, with 4.7 ms seek time,
3.0 ms rotational latency, and 41 MB/s peak throughput.

AB phase ext2fs chunkstore
mkdir 1.23 (0.04) 1.03 (0.05)
cp 3.47 (0.28) 6.26 (0.16)
scandir 0.0 (0) 0.03 (0)
cat 1.75 (0.02) 2.23 (0.02)
make 38.62 (0.45) 38.88 (0.5)
total 45.08 (0.39) 48.43 (0.58)

This figure presents the results of a modified Andrew
Benchmark. Times are reported in seconds, and standard
deviations are given in parentheses.

Figure 4: Andrew Benchmark

Task ext2fs chunkstore
wide create 2.44 (0.06) 6.99 (0.02)
wide mkdir 2.30 (0.02) 6.31 (0.03)
deep mkdir 4.07 (0.02) 5.64 (0.01)
bulk xfer 12.79 (0.01) 12.75 (0.02)

This figure presents the results of file creation and I/O
throughput benchmarks. Times are reported in seconds,
and standard deviations are given in parentheses.

Figure 5: Micro-benchmarks

5.1 Performance

What is the overhead induced by chunkstore? To an-
swer this, we compare the performance of chunkstore
to the underlying, native file system, ext2fs. We
measure this overhead with a modified Andrew Bench-
mark [23]. Our benchmark is identical to the original in
form, but uses the apache 1.3.26 source tree. This
source tree is 9.6MB in size; when compiled, the tree
occupies 12MB.

We ran five trials; the results are shown in Figure 4.
While the make step is not I/O bound, it does experi-
ence slight overhead. This is due in part to the cost of
computing the Rabin fingerprints of the copied tree and
the extra cost of creating and deleting files. The copied
data is scheduled to be chunked when written, and 30
seconds later—during the make step—chunking begins.

The total overhead of 7.4% is reasonable, though the
copy phase is expensive; it takes 80% longer in chunk-
store. We believe that this overhead is due to excess
meta-data management in chunkstore, rather than limits
on peak I/O throughput. To confirm our hypothesis, we
performed several micro-benchmarks to isolate the op-
erations involved in copying a source tree - writing data
and creating files.

To examine chunkstore’s performance when cre-
ating files and directories, we ran three differ-
ent experiments—wide create, wide mkdir, and
deep mkdir. In wide create, 1000 new files
were created in the same directory. In wide mkdir
1000 new directories were created in the same directory,

Task time
cp 6.26 (0.07)
backup 6.55 (0.01)
rm 1.24 (0.01)
restore 5.54 (0.07)

nfs cp 3.76 (0.16)

This figure presents the results of the backup and restore
experiment. Times are reported in seconds, and standard
deviations are given in parentheses.

Figure 6: Backup and Restore

and in deep mkdir 1000 new directories were made
recursively inside of one another. We again ran five trials
of each; the results are in Figure 5.
wide create and wide mkdir each ran about

186% and 174% slower than ext2fs, respectively,
while deep mkdir ran about 38% slower. Chunk-
store’s poor performance is due to meta-data chunk and
container file maintenance. When chunkstore creates a
file, it must update or create three files: a new meta-data
chunk, a new container file, and the parent meta-data
chunk.

The deep mkdir experiment shows that the num-
ber of entries in the parent directory is also significant.
This is because of the way directory entries are laid out
in the meta-data chunks and the container files. In both
cases, directory entries are stored in a linear array. Our
current implementation rewrites the entire list to the con-
tainer file and chunk whenever a new entry is added.
During deep mkdir, there is only ever one entry in
the list, which makes creating a file faster.

It is also interesting to note that wide mkdir is
somewhat faster than wide create. The reason for
this is related to how the in-kernel XFS device handles
file and directory creation. When a regular file is created,
the XFS device makes an extra upcall to pclientd to
close the newly created file, and does not make this call
when a directory is created.

To further verify that I/O throughput was not respon-
sible for chunkstore’s slow copy phase in the modified
Andrew Benchmark, we also ran a bulk xfer experi-
ment. In this experiment, a new file was created, 256MB
of data were written to it, and then the file was closed.
As before, we ran five trials; the results are in Figure 5.
Chunkstore and ext2fs performed within 1% of each
other, meaning that their I/O throughput are statistically
identical.

5.2 Backing Up and Recovering a File System

To determine the performance of our backup and re-
store utilities, we applied them to a file system consisting
of the openssl-0.9.7-beta3 source tree. This 13.4MB tree

of 1641 files and 109 directories is stored in Pastiche as
4004 chunks.

Each of five trials consisted of four phases - copying
the source tree into the file system, sending it to a backup
buddy, removing the local source tree, and restoring the
source tree from the backup buddy. Pastiche’s backup
and restore performs comparably to the time to copy the
source tree over NFS. The results are in Figure 6.

It should also be noted that the demand on resources
the buddy experiences while carrying out backup and re-
store is very bursty. During the five trials, backupd
used a maximum of 8MB of memory, averaged 12 disk
transfers/sec with a maximum of 414 transfers/sec, and
averaged a 70% idle CPU with a minimum of 13%.

5.3 Finding Buddies

Next we turn our attention to the buddy discovery pro-
cess. There are three questions to answer. First, how
large must an abstract be to discriminate good buddy
candidates from bad ones? Second, how effective is the
lighthouse sweep in discovering buddies? Third, how
effective is the coverage-rate overlay in discovering bud-
dies? To answer the first question, we took the signatures
of seventeen machines at Michigan. These machines run
Windows, Linux, Solaris, and various flavors of BSD.
We also took the signatures of two freshly installed ma-
chines.

The first ran Windows 98 with an Office 2000 Pro-
fessional installation, but without any service packs ap-
plied. This machine held roughly 90 thousand chunks1.
The second was a Linux machine running a Debian
unstable release, configured as a conventional work-
station with development and document processing
tools. This machine held approximately 270 thousand
chunks. We chose this machine as a worst case. Some of
our comparison machines are Debian, but only one runs
the unstable distribution. This distribution changes
quickly, and this machine is updated infrequently.

We computed the actual coverage for each of these
machines given full signatures. To estimate the impact
of smaller abstracts on coverage estimates, we took uni-
form random samples of the signature at rates of 10%,
1%, 0.1%, and 0.01%; there are six samples at each rate.

The results for the Windows 98 machine are plotted
in Figure 7(a). The x axis gives sampling rate, and the
y axis shows coverage rate. The 100% “sample” shows
exact coverage; each of the others is an estimate given a
smaller sample. Each group of bars represents the cov-
erage estimate for each of the seventeen hosts. Within
each group, the hosts are sorted by actual coverage rate,

1For this experiment, we used a smaller expected chunk size of
4KB; Pastiche’s larger chunks may require slightly larger sampling
rates.

0%

25%

50%

75%

100%

100% 10% 1% 0.1% 0.01%

Signature Sampling Rate

C
o

ve
ra

g
e

E
st

im
at

e
polystyrene trey soar garcia bnoble

(a) Windows 98/Office 2000

0%

25%

50%

75%

100%

100% 10% 1% 0.1% 0.01%

Signature�Sampling�Rate

C
o

ve
ra

g
e�

E
st

im
at

e

bushido speak sheep bolero

seven snootles yenisei saturn

(b) Debian Developer

Figure 7: Varying Abstract Size

from highest to lowest. The top five matches are identi-
fied in the legend. polystyrene is a Win98 machine
running Office 2000, with all relevant service packs and
security updates applied.

The estimates are surprisingly independent of sam-
ple size; the lowest rate produces abstracts of around 10
chunkIds. Only soar’s estimate changes appreciably.
However, its coverage rate is comparable to garcia’s
and bnoble’s; choosing either of the latter in favor of
soar is of no consequence.

Figure 7(b) shows the results for our Linux machine,
the top eight matches are identified in the legend. The
overall match rates are lower, but machines with other
distributions still have substantial matches. As with the
Windows 98 host, coverage estimates do not change
materially as abstract sizes go down. Interestingly,
bnoble, a Windows 2000 machine, has a coverage rate
for this Debian machine of almost 15%. This is because
bnoble also has a stable release of Debian, installed
in a VMware virtual machine; the VMware disk image
is stored as a regular file in Windows. Ordinarily, files

0

2

4

6

8

10

12

14

16

18

30% 20% 10% 5% 1%

Installation�Popularity

E
xp

ec
te

d
�#

�o
f�

B
u

d
d

ie
s

Figure 8: Expected Number of Buddies

form implicit chunk boundaries in content-based index-
ing. When viewed from the windows host, all of these
file boundaries disappear. Despite this, content-based in-
dexing is still able to find substantial overlap.

Small abstracts are effective only if they are deliv-
ered to a host that can provide good coverage. We con-
ducted a simulation to determine how effectively light-
house sweeps find useful buddies. This simulation uses
SimPastry [29], a Pastry simulation/visualization tool.

For the simulation, we populated a graph with 50
thousand Pastiche nodes drawn from a distribution of 11
types. 30% of all nodes are the first type, types two and
three each comprise 20% of all nodes, types four and five
each comprise 10%, type six comprises 5%, and types
seven through eleven each represent 1% of the popula-
tion.

We simulated 25 different Pastry networks under
these conditions. For each network, we randomly se-
lected 1000 nodes of each type, and performed a light-
house sweep from that node, counting the number of
hosts of identical type found during the sweep. The re-
sults are shown in Figure 8. Each bar gives the average
number of matches found per sweep for each category of
popularity; the error bars show one standard deviation.

As expected, common nodes with representation of
10% or higher should find an adequate number of bud-
dies on the distance overlay. Those with lower popular-
ity will need to join the coverage-rate overlay as well.
We built a Pastry simulator to determine the effective-
ness of this network. Our experiments involved 10,000
nodes. Each node was assigned to one of a thousand
species, one of a hundred genera, and one of ten orders.
Nodes of the same order share 20% of their content;
nodes of the same genus, 30%; and nodes of the same
species, 70%. Only nodes of the same species can serve
as backup buddies for one another.

The results of our simulations are in Figure 9. The
x axis give the size of the neighborhood set, and the y

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 16 64 256

Neighborhood Set Size

P
er

ce
n

t
N

o
d

es

>=1 >=2 >=3 >=4 >=5

Figure 9: Coverage-rate Simulation Results

axis shows the percent of all nodes who found a given
number of buddies. We ran four series of trials, varying
the size of the neighborhood set. We found that for a
neighborhood set size of 256, 85% were able to find at
least one buddy in its routing table, and 72% were able
to find at least 5.

The results show that most nodes should be able to
find buddies in the coverage-rate overlay. It also shows
how important a role the neighborhood set plays in lo-
cating buddies. Increasing the neighborhood set from 0
to 256 increases the percent of nodes who can find at
least one buddy from 38% to 85%; the percent of nodes
who can find at least 5 increases from 1% to 72%.

5.4 Determining Query Size

Backup buddies can drop chunks, either in error or
maliciously. If the same chunk is dropped at all replicas,
the backup state is said to be corrupted. A node can be
certain that its state is not corrupted by requesting all c
chunks, but this is clearly too expensive. Instead, Pas-
tiche nodes query just enough chunks, q, to be assured
with some probability p that corrupted state will be de-
tected if it exists.

We assume that replicas cannot collude to agree on a
specific chunk to drop. Instead, each of n replicas drops
chunks at some rate r. A Pastiche node must set q so that
the probability of drops causing corruption and going
undetected is less than or equal to p.

If r is zero, then the chance of corruption is also zero,
and the problem is solved trivially. On the other hand,
if r is one, then a query of one chunk is guaranteed to
detect corruption. However, some intermediate values
of r require queries of more chunks.

The analysis proceeds in two parts. First, we compute
pc, the probability of corruption. Second, we compute
pu, the probability that dropped chunks go undetected.
These are conditionally independent for a given r, so

0

2

4

6

8

10

12

14

0 4 8 12 16
Backup�Size�(GB)

Q
u

er
y�

S
iz

e�
(M

B
)

p=10^-7
p=10^-6
p=10^-5

Figure 10: Growth of Query Size

their product expresses the event whose probability we
wish to bound by p.

If each replica drops each chunk with probability r,
then the chance that a chunk is dropped at all replicas is
rn, and the chance that it exists on at least one is 1− rn.
There are c chunks, so the chance that all of them exist
on at least one replica is (1−rn)c. Therefore, the chance
that at least one of them does not exist on all replicas—
the chance of corruption—is:

pc = 1 − (1 − rn)c. (1)

Suppose a node asks a buddy for a single chunk. The
chance that the buddy can supply it is 1 − r. If the node
asks for q chunks simultaneously, then the chance that
the buddy can respond successfully—the chance that
dropped chunks go undetected—is

pu = (1 − r)q . (2)

We want to bound the product of these to minimize
the probability of undiscovered corruption:

[1 − (1 − rn)c](1 − r)q ≤ p. (3)

Solving for q, we get

q ≥ log1−r

(

p

1 − (1 − rn)c

)

. (4)

Since r must take one of c+1 discrete values, it is feasi-
ble to compute the maximum q over all possible values
of r, given n, c, and p.

The resulting queries grow very slowly with respect
to backup size, as shown in Figure 10. This figure shows
total backup size on the x axis and computed query size
on the y axis, assuming an average chunk size of 16KB

and five replicas. The query sizes are computed for five
buddies, with three values of p: 10−5, 10−6, and 10−7.
Even for high degrees of assurance, the query costs are
modest.

6 Related Work

Backup is critical, yet there is a surprisingly small
amount of literature on the topic. Most work focuses on
centralized backup of large installations [28, 36]; Cher-
venak provides a survey of a number of different backup
systems [13]. Current commercial systems, such as Ver-
itas’ NetBackup, IBM’s Tivoli, and Connected’s remote
backup service, also focus on large, centrally-managed
repositories.

Several projects have suggested the use of peer-to-
peer routing and object storage systems as a substrate
for backup, including Chord [46], Freenet [14], and Pas-
try [41]. File systems built on them, such as PAST [42]
and CFS [16], provide protection against machine fail-
ure. However, they do not protect against human error,
nor do they provide the ability to retrieve prior versions
of files once replaced. OceanStore [40], does provide
these benefits, but the decision of which versions to re-
tire rests with the utility, not its clients.

The pStore cooperative backup system [3], built on
top of Chord, stores individual objects on a number
nodes, rather than storing the entire set objects on a num-
ber of nodes. However, it does not exploit inter-host
sharing, nor does it address the problem of hosts falsely
claiming to store data. Elnikety presents a cooperative
backup scheme [21] that requests random blocks from
partners, but assumes that partners either drop all or none
of the archived state.

A number of systems exploit duplicate data across
files and machines to minimize the costs of archival stor-
age. The Single Instance Store [5] detects and coalesces
duplicate files, while Venti [38] divides files into fixed-
size blocks and hashes those to find duplicate data. Nei-
ther of these approaches can take advantage of small ed-
its that move data within a file, as content-based index-
ing does [27, 30]. Other sophisticated techniques for de-
tecting such changes exist [1, 48], but must be run on
pairs of files that are assumed to have overlap.

Broder provides a mathematical foundation for detect-
ing similarity and inclusion based on sketches [8], sim-
ilar to Pastiche’s abstracts. Sketches of a few hundred
bytes are able to find similarities among single docu-
ments on the web [7]. Pastiche extends this result, to
find similarities between entire disks.

Rather than exploit redundancy, one can instead turn
to the use of erasure codes [35] to stripe data across
several replicas. Such codes allow for low-overhead
replication, and are tolerant of the failure of one or

more replicas; they are employed by Myriad [11],
OceanStore [40], and Elnikety [21]. Their main short-
coming, compared to our simpler scheme, is that they
require the participation of more than one node for re-
store.

AFS [23], Plan 9 [37], and WAFL [22] expose a
snapshot primitive for a variety of purposes, including
backup. Typically, snapshots are used to stage data
to archival media other than disk. SnapMirror [34]
leverages WAFL’s snapshot mechanism to provide fine-
grained, remote disk mirroring with low overhead.

7 Conclusion

Backup is tedious and expensive. Embarrassingly, the
authors’ own workstations are not backed up. Only their
user data, stored on a distributed file system, is backed
up regularly.

Pastiche enables automatic backup with no adminis-
trative costs, requiring only excess disk capacity among
a set of cooperating peers. Since Pastiche matches nodes
who have significant data in common, this excess ca-
pacity can be modest. Peers are selected through the
use of two peer-to-peer overlay networks, one organized
by network distance, the other by degree of data held in
common. The self-organizing nature of these overlays,
combined with mechanisms to detect failed or malicious
peers, obviates the need for administrative intervention.

Evaluation of our Pastiche prototype demonstrates
that this service does not penalize file system perfor-
mance unduly. Simulations confirm the effectiveness of
node discovery, and analysis shows that detecting ma-
licious hosts requires only modest resources. Pastiche
promises to lower the barriers to backup so that all data
can be protected, not just that judged worthy of the ex-
pense and burden of current schemes.

Acknowledgements

The authors wish to thank Mark Brehob for his as-
sistance with the analysis in Section 5.4. Jason Flinn,
Jim Gray, and the anonymous reviewers provided many
helpful comments.

This work is supported in part by the Intel Corpo-
ration; Novell, Inc.; the National Science Foundation
under grant CCR-0208740; and the Defense Advanced
Projects Agency (DARPA) and Air Force Materiel Com-
mand, USAF, under agreement number F30602-00-2-
0508. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either

expressed or implied, of the Intel Corporation; Nov-
ell, Inc.; the National Science Foundation; the Defense
Advanced Research Projects Agency (DARPA); the Air
Force Research Laboratory; or the U.S. Government.

References

[1] M. Ajtai, R. Burns, R Fagin, D. D. E. Long, and L. Stock-
meyer. Compactly encoding unstructured inputs with
differential compression. Journal of the Association for
Computing Machinery, to appear.

[2] G. Banga, P. Druschel, and J. C. Mogul. Resource con-
tainers: A new facility for resource management in server
systems. In Proceedings of the 3rd Symposium on Oper-
ating Systems Design and Implementation, pages 45–58,
New Orleans, LA, February 1999.

[3] C. Batten, K. Barr, A. Saraf, and S. Trepetin. pStore: A
secure peer-to-peer backup system. Unpublished report,
MIT Laboratory for Computer Science, December 2001.

[4] M. Blaze, J. Ioannidis, and A. Keromytis. Offline micro-
payments without trusted hardware. In Proceedings of
the Fifth Annual Conference on Financial Cryptography,
Cayman Islands, BWI, February 2001.

[5] W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur.
Single instance storage in Windows 2000. In Proceed-
ings of the 4th USENIX Windows Systems Symposium,
pages 13–24, Seattle, WA, August 2000.

[6] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer.
Feasibility of a serverless distributed file system de-
ployed on an existing set of desktop PCs. In Proceed-
ings of the International Conference on Measurement
and Modeling of Computer Systems, pages 34–43, Santa
Clara, CA, June 2000.

[7] A. Broder, S. Glassman, M. Manasse, and G. Zweig.
Syntactic clustering of the web. In Proceedings of the 6th
International World-Wide Web Conference, pages 391–
401, Santa Clara, CA, April 1997.

[8] A. Z. Broder. On the resemblance and containment of
documents. In Proceedings. Compression and Complex-
ity of SEQUENCES, pages 21–29, Salerno, Italy, June
1997. Published in 1998.

[9] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and
D. S. Wallach. Security for structured peer-to-peer over-
lay networks. In Proceedings of the 5th Symposium on
Operating Systems Design and Implementation, Boston,
MA, December 2002.

[10] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Ex-
ploiting network proximity in peer-to-peer overlay net-
works. Submitted for publication.

[11] F. Chang, M. Ji, S. A. Leung, J. MacCormick, S. E. Perl,
and L. Zhang. Myriad: Cost-effective disaster tolerance.
In Proceedings of the USENIX Conference on File and
Storage Technologies, pages 103–116, Monterey, CA,
January 2002.

[12] D. Chaum. Blind signatures for untraceable payments.
In Advances in Cryptology: Proceedings of Crypto ’82,
pages 199–203, August 1982.

[13] A. L. Chervenak, V. Vellanki, and Z. Kurmas. Protecting
file systems: A survey of backup techniques. In Proceed-
ings of the Joint NASA and IEEE Mass Storage Confer-
ence, March 1998.

[14] I. Clarke, S. G. Miller, T. W. Hong, O. Sandberg, and
B. Wiley. Protecting fee expression online with Freenet.
IEEE Internet Computing, 6(1):40–49, 2002.

[15] Connected Corporation. The 60% you’re missing: Pre-
venting data loss through PC management. White paper,
Farmingham, MA, 2002.

[16] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In
Proceedings of the 18th ACM Symposium on Operating
Systems Principles, pages 202–215, Banff, Canada, Oc-
tober 2001.

[17] J. Daemen and V. Rijmen. AES proposal: Rijndael. Ad-
vanced Encryption Standard Submission, 2nd version,
March 1999.

[18] J. R. Douceur. The Sybil attack. In 1st International
Workshop on Peer-to-Peer Systems, Cambridge, MA,
March 2002.

[19] J. R. Douceur and W. J. Bolosky. A large-scale study of
file-system contents. In Proceedings of the International
Conference on Measurement and Modeling of Computer
Systems, pages 59–70, Atlanta, GA, May 1999.

[20] J. R. Douceur and W. J. Bolosky. Progress-based reg-
ulation of low-importance processes. In Proceedings of
the 17th ACM Symposium on Operating Systems Princi-
ples, pages 247–260, Kiawah Island Resort, SC, Decem-
ber 1999.

[21] S. Elnikety, M. Lillibridge, M. Burrows, and
W. Zwaenepoel. Cooperative backup system. In
The USENIX Conference on File and Storage Technolo-
gies, Monterey, CA, January 2002. Work-in-progress
report.

[22] D. Hitz, J. Lau, and M. A. Malcom. File system design
for an NFS file server appliance. In Proceedings USENIX
Winter Technical Conference, pages 235–246, San Fran-
cisco, CA, January 1994.

[23] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West.
Scale and performance in a distributed file system. ACM
Transactions on Computer Systems, 6(1):51–81, Febru-
ary 1988.

[24] A. Juels and J. Brainard. Client puzzles: A crypto-
graphic countermeasure against connection depletion at-
tacks. In Proceedings of the Network and Distributed
System Security Symposium, pages 151–165, San Diego,
CA, February 1999.

[25] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M.
Briceno, R. Hunt, D. Mazieres, T. Pinckney, R. Grimm,
J. Jannotti, and K. Mackenzie. Application performance

and flexibility on exokernel systems. In Proceedings of
the 16th ACM Symposium on Operating Systems Princi-
ples, pages 52–65, Saint Malo, France, October 1997.

[26] S. R. Kleiman. Vnodes: An architecture for multiple file
system types in Sun UNIX. In USENIX Association Sum-
mer Conference Proceedings, pages 238–247, Atlanta,
GA, June 1986.

[27] U. Manber. Finding similar files in a large file system.
In Proceedings of the USENIX Winter 1994 Conference,
pages 1–10, San Francisco, CA, January 1994.

[28] E. Melski. Burt: the backup and recovery tool. In
Proceedings of LISA’99, pages 207–217, Seattle, WA,
November 1999.

[29] Microsoft Corporation. SimPastry.
http://www.research.microsoft.com/˜antr/Pastry/ down-
load.htm.

[30] A. Muthitacharoen, B. Chen, and D. Maziéres. A low-
bandwidth network file system. In Proceedings of the
18th ACM Symposium on Operating Systems Principles,
pages 174–187, Banff, Candada, October 2001.

[31] National Institute of Standards and Technology. Com-
puter data authentication. FIPS Publication #113, May
1985.

[32] National Institute of Standards and Technology. Secure
hash standard. FIPS Publication #180-1, April 1997.

[33] Network Appliance. NetApp unveils first nearstore re-
lease. Computer Reseller News, page 33, March 25,
2002.

[34] H. Patterson, S. Manley, M. Federwisch, D. Hitz,
S. Kleiman, and S. Owara. SnapMirror: File system
based asynchronous mirroring for disaster recovery. In
Proceedings of the USENIX Conference on File and Stor-
age Technologies, pages 117–129, Monterey, CA, Jan-
uary 2002.

[35] W. W. Peterson and E. J. Weldon. Error-correcting
Codes. The MIT Press, 1972.

[36] W. C. Preston. Using Gigabit Ethernet to backup six Ter-
abytes. In Proceedings of LISA’98, pages 87–95, Boston,
MA, December 1998.

[37] S. Quinlan. A cache WORM file system. Software—
Practice and Experience, 21(12):1289–1299, December
1991.

[38] S. Quinlan and S. Dorward. Venti: A new approach to
archival storage. In Proceedings of the USENIX Confer-
ence on File and Storage Technologies, pages 89–102,
Monterey, CA, January 2002.

[39] M. O. Rabin. Fingerprinting by random polynomi-
als. Technical Report TR-15-81, Center for Research in
Computing Technology, Harvard University, 1981.

[40] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weath-
erspoon, and J. Kubiatowicz. Maintenance-free global
data storage. IEEE Internet Computing, 5(5):40–49,
September 2001.

[41] A. Rowstron and P. Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-
to-peer systems. In IFIP/ACM International Conference
on Distributed Systems Platforms, pages 329–350, Hei-
delberg, Germany, November 2001.

[42] A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer
storage utility. In Proceedings of the 18th ACM Sympo-
sium on Operating Systems Principles, pages 188–201,
Banff, Canada, October 2001.

[43] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C.
Veitch, R. W. Carton, and J. Ofir. Deciding when to for-
get in the Elephant file system. In Proceedings of the
17th ACM Symposium on Operating Systems Principles,
pages 110–123, Kiawah Island Resort, SC, December
1999.

[44] M. Satyanarayanan. RPC2 User Guide and Reference
Manual. School of Computer Science, Carnegie Mellon
University, October 1991.

[45] M. Spasojevic and M. Satyanarayanan. An empiri-
cal study of a wide-area distributed file system. ACM
Transactions on Computer Systems, 14(2):200–222, May
1996.

[46] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for Internet applications. In Proceedings of the
ACM SIGCOMM 2001 Conference, pages 149–160, San
Diego, CA, August 2001.

[47] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N.
Soules, and G. R. Ganger. Self-securing storage: Pro-
tecting data in compromised systems. In Proceedings of
the 4th Symposium on Operating Systems Design and Im-
plementation, pages 165–179, San Diego, CA, October
2000.

[48] A. Tridgell. Efficient algorithms for sorting and synchro-
nization. PhD thesis, The Austrailian National Univer-
sity, 1999.

[49] J. D. Tygar, A. Gupta, O. Shmueli, and J. Widom. Atom-
icity versus anonymity: Distributed transactions for elec-
tronic commerce. In Proceedings of the 24th Annual In-
ternational Conference on Very Large Data Bases, pages
1–12, New York, NY, August 1998.

[50] W. Vogels. File system usage in Windows NT 4.0. In
Proceedings of the 17th ACM Symposium on Operating
Systems Principles, pages 93–109, Kiawah Island Resort,
SC, December 1999.

[51] A. Westerlund and J. Danielsson. Arla—a free afs client.
In Proceedings of 1998 USENIX, Freenix track, New Or-
leans, LA, June 1998.

