
Application Programming on a Shared Memory Multicomputer 
 

Todd Poynor, Tom Wylegala 
HP Laboratories, Palo Alto 

 
The HP Labs MultiComputer Systems (MCS) 

project is investigating issues involved in writing 
applications for a shared memory multicomputer, 
defined as a set of independent computing nodes 
coupled through access to Global Shared Memory 
(GSM).  MCS is an architecture specification and 
prototype implementation of a shared memory 
multicomputer.  The prototype platform is based on a 
commercially available ccNUMA machine comprised 
of 4 SMP nodes.  MCS leverages commodity operating 
systems with few or no changes; the prototype runs an 
unmodified Windows NT 4.0 operating system on all 
nodes, extended through dynamically loaded kernel 
modules to support multicomputer interfaces. 

Shared memory multicomputers hold considerable 
promise as modular architectures that transcend SMP 
scaling bottlenecks while preserving SMP-like 
memory load/store programming models.  Many 
multicomputer platforms today do not fully deliver 
these benefits because most resources are partitioned 
and shared memory is limited to inter-node message 
passing, as in a shared-nothing cluster.  Those 
multicomputer platforms that we are aware of that do 
allow access to global resources have limited support 
for containing faults from propagating across nodes, 
leaving multicomputers at a disadvantage when 
compared to conventional clusters in this regard.  A 
shared-something cluster exposes the risk that faults 
will propagate over the shared resource to introduce 
faults in other components. This issue remains a thorny 
problem in the industry, especially when commodity 
hardware and operating systems are leveraged. 

The MCS project is, in part, an experiment in 
pursuing fault containment as strong as that of shared-
nothing clusters within a shared-almost-everything 
multicomputer for flexibility of resource allocation and 
scalability.  MCS global applications are a set of 
processes distributed across the nodes of a 
multicomputer that cooperate to provide a service.  The 
applications freely employ a variety of global resources 
on any node.  These resources are accessed in a “safe” 
fashion, detecting and recovering from failures and 
reconfiguring when the deployment of nodes and 
applications is changed.  This comes at a price of 
extending commodity operating systems and 
customizing applications for fault containment, as well 

as extending commodity hardware platforms to support 
containment and avoid single points of failure.  We 
examine the challenges of programming in such an 
environment and investigate support our platform 
could provide to make the programming task easier. 

Consider a thread that reads the identifier of a 
global mutex from a GSM area, locks the mutex, 
updates a data structure in the GSM area, and releases 
the mutex.  Possible disruptions in global state include: 
the mutex identifier may no longer be valid; the GSM 
hosting the mutex identifier or data structure may fail; 
the mutex may be found “abandoned” by the previous 
holder without releasing it; the set of processes and 
operating systems managing the GSM or mutex may 
change, requiring a change in global resources; and 
some other recovery event may be signaled by another 
thread, requiring the mutex be unlocked before global 
state may be rebuilt. Part of our task in supporting 
multicomputer applications is to ease the development 
and execution of applications in such a dynamic 
context. 

We created a set of C++ classes to facilitate 
development of global services for a variety of 
applications and to facilitate multiple global 
components within one application.  Among the 
services provided are: a framework for initiating, 
detecting, synchronizing, and handling global system 
and component failures and recovery events; 
component membership management, where the set of 
instances participating in a generation of the global 
component are agreed upon; and various library 
functions that automatically perform recovery actions. 

To demonstrate our MCS prototype, we modified an 
existing commercial application to use global resources 
and to recover from certain software failures.  Our 
primary goal was to demonstrate recovery from an OS 
crash on one node while shared resources were in use 
by the crashing node, a relatively high probability 
failure that exercises both kernel and application layer 
recovery. 

MCS also targets future recovery from a number of 
hardware failures, including failed memory access 
resulting from abruptly powered off nodes or 
malfunctioning memory, some support for which was 
also prototyped in our application work. Recovery 
from memory failures on present-day commodity 



processors poses some thorny problems in regard to 
notifying the proper application contexts of failed 
memory access.  On IA-64, for example, these 
problems include indeterminacy of notification, 
speculative data prefetches, and advanced instruction 
retirement prior to completion of memory operations.  
We propose a model that avoids many of these 
problems in that the system is not required to match a 
failed access with the context that issued the request. 
This places a greater burden upon applications to 
detect failures and increases the chances that an 
application will perform unnecessary repair work, but 
failures should be rare. 

Our demonstration application is a Web server file 
cache that reduces disk I/O by caching local static files 
in memory (also known as a “reverse proxy”).  Both 
the Apache and Microsoft IIS Web servers are adapted 
to a common MCS global Web caching component.  A 
mixture of the two Web servers may run in the same 
multicomputer complex; all will share the same cache.  
This is not an ideal application for demonstration of 
multicomputer platforms, as the primary data being 
shared is read-only and easily replicated and 
partitioned across shared-nothing servers with little or 
no inter-node communication.   The Web cache 
application does, nonetheless, allow us to investigate 
various aspects of the recovery model and performance 
scalability, using an easily modified technology.   
Failure and reconfiguration recovery scenarios include: 
• = A process fails while updating data structures such 

as hash chain pointers and cached file data 
reference counts.  The hash chain must be rebuilt 
and references from failed processes cleared. 

• = Processes enter and leave the global application 
concurrent with ongoing cache access or recovery, 
requiring coordinated changes in the global 
memory areas and perhaps mutexes in use.  If 
processes have left the global application then the 
associated cached files are removed from the hash 
table. 

• = GSM access may fail while building shared state, 
while traversing hash chains and updating cached 
file data reference counts and access times, and 
while sending cached data back to the HTTP 
client. 

We have demonstrated that the application recovers 
from multiple process failures at a time in each 
situation where the failure could affect other processes.  
Application-level recovery from failure occurs within 2 
seconds, which suggests competitive performance with 
application recovery times for a number of the leading 
cluster failover solutions available today.  The MCS 
project did not reach the point where the complete 
system recovers from an OS crash, but several 
individual software components of the system have 
demonstrated this under prototype conditions.  The 

prototype platform is not suitable for demonstrating 
recovery from hardware failures, as the interconnect 
cannot recover from unresponsive nodes.  

Although we did not perform extensive 
performance tuning of the Web cache, we did 
characterize performance using a workload based on a 
popular Web server benchmark that serves static 
content.  We consistently obtained 2X performance 
when resources were doubled by moving from one to 
two nodes with double the amount of aggregate 
memory for the cache.  We can expect to obtain better 
than 2X scaling when memory is doubled on a suitable 
platform because the effective cache size of a shared 
nothing configuration is not doubled due to duplication 
of frequently accessed content in both caches.  In our 
trials we saw only an insignificant increase beyond 2X 
scaling, caused by an excessive GSM access penalty of 
12X in the prototype hardware.  Experiments 
substituting local memory for the cache show a 40% 
performance improvement and linear memory scaling, 
suggesting that much better performance would be 
obtained on a more suitable platform. 

In addition to researching technology issues related 
to platform software and hardware, the MCS program 
examined business issues related to the acceptance of 
such a platform in the commercial application 
marketplace, consulting with researchers and 
developers at a variety of potential business partners.  
The first major concern voiced by the ISVs was the 
standardization of the global APIs: (1) that the vendor 
of the host operating system certify the global APIs; 
(2) that all shared memory multicomputers based on 
Windows NT share the same global APIs; (3) that all 
shared memory multicomputers, even those based on 
other operating systems, share some similarity in API 
structure.  The second major concern was the approach 
taken to achieve scalability across multiple nodes, 
which may be at odds with their existing strategy.  The 
last major concern relates to the added difficulty of 
achieving high availability under the MCS failure 
model, a discipline not required on SMP platforms. 

To help address the difficulties of attracting ISVs to 
multicomputer platforms, we began work on the 
recoverable component framework.  We also planned 
for a developer kit, to include various global status 
display and modification tools, as well as application 
and kernel driver debugging tools adapted for 
concurrent, multinode debugging.  

More information on our work may be found in an 
HP Labs Technical Report titled “Application 
Programming on a Shared Memory Multicomputer”, to 
appear at http://www.hpl.hp.com/techreports/ . 

http://www.hpl.hp.com/techreports/

