Virtualize Everything but Time

Timothy Broomhead ( t.broomhead@ugrad.unimelb.edu.au )
Laurence Cremean ( l.cremean@ugrad.unimelb.edu.au )

Julien Ridoux ( jrid@unimelb.edu.au )
Darryl Veitch ( dveitch@unimelb.edu.au )
'\ /U B I N Centre for Ultra-Broadband Information Networks
C/'\ THE UNIVERSITY OF MELBOURNE

# THE UNIVERSITY OF

S%). MELBOURNE




B
P Introduction

= Clock synchronization, who cares?
» Network monitoring / Traffic analysis
o Telecommunications Industry; Finance; Gaming, ...
» Distributed "scheduling’: timestamps instead of message passing

= Status quo under Xen
» Based on nitpd, amplifies its flaws
o Fails under live VM migration

= \We propose a new architecture
» Based on RADclock client synchronization solution
» Robust, accurate, scalable
o« Enables dependent clock paradigm
o Seamless migration

? THE UNIVERSITY OF
,L&J; MELBOURNE




P Key Idea

= Each physical host has a single clock which never migrates

= Only a (stateless) clock read function migrates

= THE UNIVERSITY OF
»"?‘}.‘ MELBOURNE




e
P Para-Virtualization and Xen

= Hypervisor
o« minimal kernel managing physical resources

= Para-virtualization
o Guest OS’s have access to hypervisor via hypercalls
o Fully-virtualized more complex, not addressed here

= Focus on Xen
« But approach has general applicability !
o Focus on Linux OS’s ( 2.6.31.13 Xen pvops branch )
o Guest OS’s:
' DomQO: privileged access to hardware devices
' DomU: access managed by DomO
o Use Hypervisor 4.0 mainly

?‘ THE UNIVERSITY OF
1&&2,« MELBOURNE




e
P Hardware Counters

= Clocks built on local hardware (oscillators | counters)
» HPET, ACPI, TSC
o Counters imperfect, they drift (temperature driven)

o Affected by OS
' ticking rate
! access latency

= TSC (counts CPU cycles)
o Highest resolution and lowest latency - preferred! but..

o May be unreliable
' multi-core ! multiple unsynchronised TSCs
! power management! variable rate, including stopping !

= HPET

o Reliable, but
o Lower resolution, higher latency

?‘ THE UNIVERSITY OF
1&&2,« MELBOURNE




s
P Xen Clocksource

A hardware/software hybrid timer provided by the hypervisor

= Purpose
o« Combine reliability of HPET with low latency of TSC
o Compensate for TSC unreliability
o Provides 1GHz 64-bit counter

m Performance of XCS versus HPET

o XCS performs well: low latency and high stability
o HPET not that far behind, and a lot simpler

? THE UNIVERSITY OF
a&s&); MELBOURNE




B
p Clock Fundamentals

=  Timekeeping and timestamping are distinct

= Raw timestamps and clock timestamps are distinct
= A scaled counter is not a good clock: drift !

= Purpose of clock sync algo is to correct for drift

= Network based sync is convenient, exchange timing packets:

Server

Network

Host

= Two key problems

o Dealing with delay variability (complex, but possible)
o Path asymmetry (simple, but impossible)

? THE UNIVERSITY OF
,L&J; MELBOURNE




B
P Synchronisation Algorithms

= NTP (ntpd)
o Status Quo

Feedback based

' Event timestamps are system clock stamps
' Feedback controller (PLL,FLL) tries to lock onto rate

o Intimate relationship with system clock (API, dynamics..)
o In Xen, ntpd uses Xen Clocksource

®

= RADclock (RobustAbsolute and Difference Clock)
o Algo developed in 2004, extensively tested

o Feedforward based
' Event timestamps are raw stamps
I Clock error estimates made and removed when clock read

o System clock’ has no dynamics, just a function call
« Can use any raw counter: here use HPET, Xen Clocksource

?‘ THE UNIVERSITY OF
1&9&)&‘ MELBOURNE




B
P Experimental Methodology

. . GPS
Internal Monitor External Monitor Receiver
- Atomic

5 <<: }ntpd—NTPrE DAG-GPS o |
HOSt E OO OO oo o % --------- I
_ o 0
Q 0O <<V>RAD L 0
D clock
E \ I i
2 ' —— 1)
> ntpd-NTP U

- L L Unix PC SW-GPS

O OO oo oo oo [ e ) oD o oo

a [{ : :: UDP Sender NTP Server

RADclock (= Recei
1 Hub & Receiver Stratum 1
------ PPS Sync. —=NTP flow = = = UDP flow ﬁ Timestamping

?‘ THE UNIVERSITY OF
-&»&2; MELBOURNE




B
P Wots the problem? ntpd can perform well

%@‘ THE UNIVERSITY OF
a@;&): MELBOURNE

m |deal Setup
e Quality Stratum-1 time-server
o Client is on the same LAN, lightly loaded, barely any traffic
o Constrained and small polling period: 16 sec

—ntpd

Time [day]

10

10




P Or less well...

= Different configuration ( ntpd recommended! )
o Multiple servers
» Relax constraint on polling period
» Still no load, no traffic, high quality servers

) 1000f '3 Co-Located Servers ! o
Py A A
% -5001 \/ e N
8 Rl ‘ | | .7n.tpd_NTP . | . | |
72 84 9% 108 120 132 144 156 168 180
Hours

When/Why? Loss of stability a complex function of parameters = unreliable

ﬁ\@‘ THE UNIVERSITY OF
1&»&); MELBOURNE

11

11




B
P The Xen Context

= Three examples of inadequacy of
1) Dependent nitpd clock
2) Independent ntpd clock
3) Migrating independent ntpd clock

ﬁ% THE UNIVERSITY OF
1&&% MELBOURNE

ntpd based solution

12

12



>

X

1) Dependent ntpd Clock

= The Solution
o Only DomO runs ntpd
o Periodically updates a "boot time’ variable in hypervisor
o DomU uses Xen Clocksource to interpolate

" The Result (2.6.26 kernel)

4000

N

o

o

o
\

|
N
-
o
o O
T

Clock error [us]

|
D
o
o
o
\

ntpd dependent||

0.2 0.4 0.6 0.8 1 1.2 1.4
Time [Hours]

o

THE UNIVERSITY OF

MELBOURNE

1.6

13

13




B
P 2) Independent ntpd Clock (current solution)

X

= The Solution
o All guests run entirely separate ntpd daemons
o Resource hungry

= The Result

o When all is well, works as before but with a bit more noise

» When works: (parallel comparison on Dom0, stratum-1 on LAN)

]
3

ntpd
——RADclock|

0 5 10
Time [day]

THE UNIVERSITY OF

MELBOURNE

15

20

14

14




B
P 2) Independent ntpd Clock (current solution)

= The Solution
o All guests run entirely separate ntpd daemons
» Resource hungry

= The Result
o Increased noise makes instability more likely
o When fails: (DomU with some load, variable polling period, guest churn)

g ntpd
— 5000 i
o
o
S 0
i)
@)
_5000 \ \ \ \ \ \ | o
o) 2 4 6 8 10 12 14 16

Time [Hours]

? THE UNIVERSITY OF
a&s&); MELBOURNE




B
P 3) Migrating Independent ntpod Clock

= The Solution
» Independent clock as before, migrates
o Starts talking to new system clock, new counter

= The Result

Migration Shock!

More Soon

16

ﬁ% THE UNIVERSITY OF
1&&% MELBOURNE

16



P RADclock Architecture

Principles

= Timestamping :
e raw counter reads, not clock reads
o independent of the clock algorithm

®  Synchronization Algorithm

» based on raw timestamps and server timestamps (feedforward)
o estimates clock parameters and makes available
o concentrated in a single module (in userland)

= Clock Reading

o combines a raw timestamp with retrieved clock parameters
o stateless

?‘ THE UNIVERSITY OF
1&9&)&‘ MELBOURNE

17

17




B
P More Concretely

= Timestamping
» read chosen counter, say HPET(t)

= Sync Algorithm maintains:

o Period: along term average (barely changes) = rate stability

o K: sets origin to desired timescale (e.g. UTC)
o E: estimate of error = updates on each stamp exchange

= Clock Reading

« Absolute clock: Ca(t) = Period *HPET(t) + K - E(t)
I used for absolute, and differences above critical scale

« Difference clock: Cq(t1,t2) = Period * (HPET(t2) - HPET(t1) )
I used for time differences under some critical time scale

?‘ THE UNIVERSITY OF
,ﬁ&)&« MELBOURNE

18

18




I
P Implementation

= Timestamping ‘feedforward supportO
o create cumulative and wide (64-bit) form of counter
o make accessible from both kernel and user context
' under Linux, modify Clocksource abstraction

= Sync Algorithm
» Make clock parameters available via a user thread

= Clock reading
o Read counter, retrieve clock data, compose
» Fixed-point code to enable clock to be read from kernel

?‘ THE UNIVERSITY OF
1&&2,« MELBOURNE

19

19




P On Xen

Feedforward paradigm a perfect match to para-virtualisation

= Dependent Clock now very natural
« DomO0 maintains a RADclock daemon, talks to timeserver
o Makes Period, K, E available through Xenstore filesystem
« Each DomU can just reads counter, retrieve clockdata, compose

= All Guest Clocks identically the same, but:

» Small delay (~1ms) in Xenstore update
' stale data possible but very unlikely
' small impact

o Latency to read counter higher on DomU

= Support Needed
o Expose HPET to Clocksource in guest OSs
o Add hypercall to access platform timer (HPET here)
o Add read/right functions to access clockdata from Xenstore

? THE UNIVERSITY OF
,ngy MELBOURNE

20

20




P Independent RADclock on Xen

o Concurrent test on two DomU’s, separate NTP streams

N
o

—
o

T AARAAR AR T
"l \'M ‘ W W‘ I V AW MW

RADclock Error [us]
O

—101 A% “\ir - --u - F--F-mor et iXen Clocksource’
—HPET
2 \ \ \ ‘ : —
OO 100 150 200 250 300 350
Time [mn]
x107° | | x 10~
HPET XEN
3/ /Med: -2.5 3/|Med: 3.4
IQR: 9.3 IQR: 9.5
M' H ’\ ‘
-10 0 10 -10 0 10
RADclock error [us] RADclock error [us]

S THE UNIVERSITY OF
J?k
ws=s MELBOURNE




B
P Migration On Xen

Feedforward paradigm a perfect match to migration

= Clocks donOt migrate, only a clock reading function does!

o« Each Dom0 has its own RADclock daemon
« DomU only ever calls a function, no state is migrated

= Caveats
o Local copy of clockdata used to limit syscalls - needs refreshing

o« Host asymmetry will change, result in small clock jump
' asymmetry effects different for DomO (hence clock itself) and DomU

?‘ THE UNIVERSITY OF
1&&2,« MELBOURNE

22

22




p Migration Comparison

— L I

250 : Dom0 - Tastiger

200 | Dom0 - Kultarr
g 150l ' — Migrated Guest RADclock ||
- ' Migrated Guest ntpd
& 100 .
S 50 kgt ol ahy I Wi A ool et it o ) a1
L_C; ; e IO WAL O VIR BT AN LW A WO .m.‘"u.u,,,,‘ TR/ (1 T AT ik i e (TR L i i, 0

Time [Hours]

= Setup
o« Two machines, each DomO0 running a RADclock
o One DomU migrates with a
o dependent RADclock
o independent nipd

?‘ THE UNIVERSITY OF
1&»&2; MELBOURNE

23

23




e
P Noise Overhead of Xen and Guests

RTT Host [us]
S 8 ()]

w
)

N
o
o

—h
o)
o

‘0
=
17
@)
I
—
—
o

%@‘ THE UNIVERSITY OF
,Aﬁ,;g\;»‘), MELBOURNE

\l
o O
T T

o
T

T =

— = T 7 1

Native DomO 1 guest 2 guests 3 guests 4 guests

—h

o

o
T

—DomuU#1| T - T
|—DomU #2| | Cor SR
—DomU #3 o
|—DomU #4 B
: - IL LI L2
1 guest 2 guests 3 guests 4 guests

24

24




B
P Noise Penalty Under C-States

i@g THE UNIVERSITY OF
5@&&2; MELBOURNE

1101 —Xen Clocksource
—HPET Hypervisor
100¢ _
o 90r .
=
2 80 T |
L |
- 700 T - G ;
o - 5 :
60 = | - |
501 - ) E
Co C1 C2 C3

25

25




I
P Algo Performance Under C-States

RADclock Error: E! median(E) [us]

i@g THE UNIVERSITY OF
5@&&2; MELBOURNE

20j

15

I'5¢
110}
1150

120}

—_RADclock Xen
— RADclock HPET

- -
-_——

10 .

CO

Ci

c2

C3

26

26




B
P Conclusion

= Feed-Forward approach has many advantages
» Difference clock defined
o Absolute clock can be made much more robust
« Time can be replayed
o Simpler kernel support

= Good match to needs of para-virtualisation
o« Enables clock dependent mode that works
o Allows seamless live migration

= RADclock project
o« Aims to replace nipd
o Client and Server code
» Packages for FreeBSD and Linux (Xen now supported)
o http://www.cubinlab.ee.unimelb.edu.au/radclock/

?‘ THE UNIVERSITY OF
1&9&)&‘ MELBOURNE

27

27




