
USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 177

Binary Translation Using Peephole Superoptimizers

Sorav Bansal
Computer Systems Lab

Stanford University
sbansal@cs.stanford.edu

Alex Aiken
Computer Systems Lab

Stanford University
aiken@cs.stanford.edu

Abstract
We present a new scheme for performing binary trans-
lation that produces code comparable to or better than
existing binary translators with much less engineering
effort. Instead of hand-coding the translation from one
instruction set to another, our approach automatically
learns translation rules using superoptimization tech-
niques. We have implemented a PowerPC-x86 binary
translator and report results on small and large compute-
intensive benchmarks. When compared to the native
compiler, our translated code achieves median perfor-
mance of 67% on large benchmarks and in some small
stress tests actually outperforms the native compiler. We
also report comparisons with the open source binary
translator Qemu and a commercial tool, Apple’s Rosetta.
We consistently outperform the former and are compara-
ble to or faster than the latter on all but one benchmark.

1 Introduction

A common worry for machine architects is how to run
existing software on new architectures. One way to deal
with the problem of software portability is through bi-
nary translation. Binary translation enables code writ-
ten for a source architecture (or instruction set) to run
on another destination architecture, without access to the
original source code. A good example of the application
of binary translation to solve a pressing software porta-
bility problem is Apple’s Rosetta, which enabled Apple
to (almost) transparently move its existing software for
the Power-based Macs to a new generation of Intel x86-
based computers [1].

Building a good binary translator is not easy, and few
good binary translation tools exist today. There are four
main difficulties:

1. Some performance is normally lost in translation.
Better translators lose less, but even good transla-
tors often lose one-third or more of source archi-

tecture performance for compute-intensive applica-
tions.

2. Because the instruction sets of modern machines
tend to be large and idiosyncratic, just writing the
translation rules from one architecture to another
is a significant engineering challenge, especially if
there are significant differences in the semantics of
the two instruction sets. This problem is exacer-
bated by the need to perform optimizations wher-
ever possible to minimize problem (1).

3. Because high-performance translations must exploit
architecture-specific semantics to maximize perfor-
mance, it is challenging to design a binary translator
that can be quickly retargeted to new architectures.
One popular approach is to design a common inter-
mediate language that covers all source and destina-
tion architectures of interest, but to support needed
performance this common language generally must
be large and complex.

4. If the source and destination architectures have
different operating systems then source system
calls must be emulated on the destination architec-
ture. Operating systems’ large and complex inter-
faces combined with subtle and sometimes undocu-
mented semantics and bugs make this a major engi-
neering task in itself.

Our work presents a new approach to addressing prob-
lems (1)-(3) (we do not address problem (4)). The main
idea is that much of the complexity of writing an ag-
gressively optimizing translator between two instruction
sets can be eliminated altogether by developing a sys-
tem that automatically and systematically learns transla-
tions. In Section 6 we present performance results show-
ing that this approach is capable of producing destina-
tion machine code that is at least competitive with exist-
ing state-of-the-art binary translators, addressing prob-
lem (1). While we cannot meaningfully compare the en-

178 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

gineering effort needed to develop our research project
with what goes into commercial tools, we hope to con-
vince the reader that, on its face, automatically learning
translations must require far less effort than hand coding
translations between architectures, addressing problem
(2). Similarly, we believe our approach helps resolve the
tension between performance and retargetability: adding
a new architecture requires only a parser for the binary
format and a description of the instruction set semantics
(see Section 3). This is the minimum that any binary
translator would require to incorporate a new architec-
ture; in particular, our approach has no intermediate lan-
guage that must be expanded or tweaked to accommo-
date the unique features of an additional architecture.

Our system uses peephole rules to translate code from
one architecture to another. Peephole rules are pat-
tern matching rules that replace one sequence of in-
structions by another equivalent sequence of instruc-
tions. Peephole rules have traditionally been used for
compiler-optimizations, where the rules are used to re-
place a sub-optimal instruction sequence in the code by
another equivalent, but faster, sequence. For our binary
translator, we use peephole rules that replace a source-
architecture instruction sequence by an equivalent desti-
nation architecture instruction sequence. For example,

ld [r2]; addi 1; st [r2] =>
inc [er3] { r2 = er3 }

is a peephole translation rule from a certain accumulator-
based RISC architecture to another CISC architecture. In
this case, the rule expresses that the operation of load-
ing a value from memory location [r2], adding 1 to it
and storing it back to [r2] on the RISC machine can
be achieved by a single in-memory increment instruction
on location [er3] on the CISC machine, where RISC
register r2 is emulated by CISC register er3.

The number of peephole rules required to cor-
rectly translate a complete executable for any source-
destination architecture pair can be huge and manually
impossible to write. We automatically learn peephole
translation rules using superoptimization techniques: es-
sentially, we exhaustively enumerate possible rules and
use formal verification techniques to decide whether a
candidate rule is a correct translation or not. This process
is slow; in our experiments it required about a processor-
week to learn enough rules to translate full applications.
However, the search for translation rules is only done
once, off-line, to construct a binary translator; once dis-
covered, peephole rules are applied to any program us-
ing simple pattern matching, as in a standard peephole
optimizer. Superoptimization has been previously used
in compiler optimization [5, 10, 14], but our work is the
first to develop superoptimization techniques for binary
translation.

Binary translation preserves execution semantics on
two different machines: whatever result is computed on
one machine should be computed on the other. More pre-
cisely, if the source and destination machines begin in
equivalent states and execute the original and translated
programs respectively, then they should end in equiva-
lent states. Here, equivalent states implies we have a
mapping telling us how the states of the two machines
are related. In particular, we must decide which regis-
ters/memory locations on the destination machine emu-
late which registers/memory locations of the source ma-
chine.

Note that the example peephole translation rule given
above is conditioned by the register map r2 = er3.
Only when we have decided on a register map can we
compute possible translations. The choice of register
map turns out to be a key technical problem: better de-
cisions about the register map (e.g., different choices
of destination machine registers to emulate source ma-
chine registers) lead to better performing translations. Of
course, the choice of instructions to use in the translation
also affects the best choice of register map (by, for exam-
ple, using more or fewer registers), so the two problems
are mutually recursive. We present an effective dynamic
programming technique that finds the best register map
and translation for a given region of code (Section 3.3).

We have implemented a prototype binary translator
from PowerPC to x86. Our prototype handles nearly all
of the PowerPC and x86 opcodes and using it we have
successfully translated large executables and libraries.
We report experimental results on a number of small
compute-intensive microbenchmarks, where our transla-
tor surprisingly often outperforms the native compiler.
We also report results on many of the SPEC integer
benchmarks, where the translator achieves a median per-
formance of around 67% of natively compiled code and
compares favorably with both Qemu [17], an open source
binary translator, and Apple’s Rosetta [1]. While we be-
lieve these results show the usefulness of using superop-
timization as a binary translation and optimization tool,
there are two caveats to our experiments that we discuss
in more detail in Section 6. First, we have not imple-
mented translations of all system calls. As discussed
above under problem (4), this is a separate and quite sig-
nificant engineering issue. We do not believe there is any
systematic bias in our results as a result of implement-
ing only enough system calls to run many, but not all,
of the SPEC integer benchmarks. Second, our system is
currently a static binary translator, while the systems we
compare to are dynamic binary translators, which may
give our system an advantage in our experiments as time
spent in translation is not counted as part of the execution
time. There is nothing that prevents our techniques from
being used in a dynamic translator; a static translator was

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 179

just easier to develop given our initial tool base. We give
a detailed analysis of translation time, which allows us
to bound the additional cost that would be incurred in a
dynamic translator.

In summary, our aim in this work is to demonstrate
the ability to develop binary translators with competitive
performance at much lower cost. Towards this end, we
make the following contributions:

• We present a design for automatically learning bi-
nary translations using an off-line search of the
space of candidate translation rules.

• We identify the problem of selecting a register map
and give an algorithm for simultaneously comput-
ing the best register map and translation for a region
of code.

• We give experimental results for a prototype Pow-
erPC to x86 translator, which produces consistently
high performing translations.

The rest of this paper is organized as follows. We be-
gin with a discussion on the recent applications of bi-
nary translation (Section 2). We then provide a brief
overview of peephole superoptimizers followed by a dis-
cussion on how we employ them for binary translation
(Section 3). We discuss other relevant issues involved in
binary translation (Section 4) and go on to discuss our
prototype implementation (Section 5). We then present
our experimental results (Section 6), discuss related work
(Section 7), and finally conclude (Section 8).

2 Applications

Before describing our binary translation system, we give
a brief overview of a range of applications for binary
translation. Traditionally, binary translation has been
used to emulate legacy architectures on recent machines.
With improved performance, it is now also seen as an
acceptable portability solution.

Binary translation is useful to hardware designers for
ensuring software availability for their new architectures.
While the design and production of new architecture
chips complete within a few years, it can take a long time
for software to be available on the new machines. To deal
with this situation and ensure early adoption of their new
designs, computer architects often turn to software solu-
tions like virtual machines and binary translation [7].

Another interesting application of binary translation
for hardware vendors is backward and forward compat-
ibility of their architecture generations. To run soft-
ware written for older generations, newer generations are
forced to support backward compatibility. On the flip

side, it is often not possible to run newer generation soft-
ware on older machines. Both of these problems cre-
ate compatibility headaches for computer architects and
huge management overheads for software developers. It
is not hard to imagine the use of a good binary-translation
based solution to solve both problems in the future.

Binary translation is also being used for machine and
application virtualization. Leading virtualization compa-
nies are now considering support for allowing the execu-
tion of virtual machines from multiple architectures on a
single host architecture [20]. Hardware vendors are also
developing virtualization platforms that allow people to
run popular applications written for other architectures
on their machines [16]. Server farms and data centers can
use binary translation to consolidate their servers, thus
cutting their power and management costs.

People have also used binary translation to improve
performance and reduce power consumption in hard-
ware. Transmeta Crusoe [12] employs on-the-fly binary
translation to execute x86 instructions on a VLIW archi-
tecture thereby cutting power costs [11]. Similarly, in
software, many Java virtual machines perform on-the-fly
translation from Java bytecode to the host machine in-
structions [25] to improve execution performance.

3 Binary Translation Using Peephole Su-
peroptimizers

In this section we give a necessarily brief overview of the
design and functionality of peephole superoptimizers, fo-
cusing on the aspects that are important in the adaptation
to binary translation.

3.1 Peephole Superoptimizers

Peephole superoptimizers are an unusual type of com-
piler optimizer [5, 10, 14], and for brevity we usually re-
fer to a peephole superoptimizer as simply an optimizer.
For our purposes, constructing a peephole superoptimiz-
ers has three phases:

1. A module called the harvester extracts target in-
struction sequences from a set of training programs.
These are the instruction sequences we seek to op-
timize.

2. A module called the enumerator enumerates all
possible instruction sequences up to a certain
length. Each enumerated instruction sequence s is
checked to see if it is equivalent to any target in-
struction sequence t. If s is equivalent to some
target sequence t and s is cheaper according to a
cost function (e.g., estimated execution time or code
size) than any other sequence known to be equiva-
lent to t (including t itself), then s is recorded as the

180 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

best known replacement for t. A few sample peep-
hole optimization rules are shown in Table 1.

3. The learned (target sequence, optimal sequence)
pairs are organized into a lookup table indexed by
target instruction sequence.

Once constructed, the optimizer is applied to an ex-
ecutable by simply looking up target sequences in the
executable for a known better replacement. The pur-
pose of using harvested instruction sequences is to fo-
cus the search for optimizations on the code sequences
(usually generated by other compilers) that appear in ac-
tual programs. Typically, all instruction sequences up
to length 5 or 6 are harvested, and the enumerator tries
all instruction sequences up to length 3 or 4. Even at
these lengths, there are billions of enumerated instruc-
tion sequences to consider, and techniques for pruning
the search space are very important [5]. Thus, the con-
struction of the peephole optimizer is time-consuming,
requiring a few processor-days. In contrast, actually ap-
plying the peephole optimizations to a program typically
completes within a few seconds.

The enumerator’s equivalence test is performed in two
stages: a fast execution test and a slower boolean test.
The execution test is implemented by executing the tar-
get sequence and the enumerated sequence on hardware
and comparing their outputs on random inputs. If the
execution test does not prove that the two sequences are
different (i.e., because they produce different outputs on
some tested input), the boolean test is used. The equiv-
alence of the two instruction sequences is expressed as
boolean formula: each bit of machine state touched by
either sequence is encoded as a boolean variable, and the
semantics of instructions is encoded using standard log-
ical connectives. A SAT solver is then used to test the
formula for satisfiability, which decides whether the two
sequences are equal.

Using these techniques, all length-3 x86 instruction
sequences have previously been enumerated on a single
processor in less than two days [5]. This particular su-
peroptimizer is capable of handling opcodes involving
flag operations, memory accesses and branches, which
on most architectures covers almost all opcodes. Equiv-
alence of instruction sequences involving memory ac-
cesses is correctly computed by accounting for the pos-
sibility of aliasing. The optimizer also takes into account
live register information, allowing it to find many more
optimizations because correctness only requires that op-
timizations preserve live registers (note the live register
information qualifying the peephole rules in Table 1).

Target Sequence
Live

Registers
Equivalent

Enumerated Sequence

movl (%eax), %ecx

movl %ecx, (%eax)
eax,ecx movl (%eax), %ecx

sub %eax, %ecx

mov %ecx, %eax

dec %eax

eax
not %eax

add %ecx, %eax

sub %eax, %ecx

test %ecx, %ecx

je .END

mov %edx, %ebx

.END:

eax,ecx,

edx,ebx

sub %eax, %ecx

cmovne %edx, %ebx

Table 1: Examples of peephole rules generated by a su-
peroptimizer for x86 executables

.

3.2 Binary Translation

We discuss how we use a peephole superoptimizer to per-
form efficient binary translation. The approach is similar
to that discussed in Section 3.1, except that now our tar-
get sequences belong to the source architecture while the
enumerated sequences belong to the destination architec-
ture.

The binary translator’s harvester first extracts target
sequences from a training set of source-architecture ap-
plications. The enumerator then enumerates instruction
sequences on the destination architecture checking them
for equivalence with any of the target sequences. A key
issue is that the definition of equivalence must change
in this new setting with different machine architectures.
Now, equivalence is meaningful only with respect to a
register map showing which memory locations on the
destination machine, and in particular registers, emulate
which memory locations on the source machine; some
register maps are shown in Table 2. A register in the
source architecture could be mapped to a register or a
memory location in the destination architecture. It is also
possible for a memory location in the source architecture
to be mapped to a register in the destination architecture.

A potential problem is that for a given source-
architecture instruction sequence there may be many
valid register maps, yielding a large number of (renamed)
instruction sequences on the target-architecture that must
be tested for equivalence. For example, the two reg-
isters used by the PowerPC register move instruction
mr r1,r2 can be mapped to the 8 registers of the
x86 in 8*7=56 different ways. Similarly, there may be
many variants of a source-architecture instruction se-
quence. For example, on the 32 register PowerPC, there
are 32*31=992 variants of mr r1, r2. We avoid these
problems by eliminating source-architecture sequences

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 181

Register Map Description

r1→eax Maps PowerPC register to x86 regis-
ter

r1→M1 Maps PowerPC register to a memory
location

Ms→eax Maps a memory location in source
code to a register in the translated
code

r1→eax
r2→eax

Invalid. Cannot map two PowerPC
registers to the same x86 register

Ms→Mt Maps one memory location to an-
other (e.g. address space translation)

Table 2: Some valid (and invalid) register maps from
PowerPC-x86 translation (Mi refers to a memory loca-
tion).

that are register renamings of one canonically-named se-
quence and by considering only one register map for all
register maps that are register renamings of each other.
During translation, a target sequence is (canonically) re-
named before searching for a match in the peephole ta-
ble and the resulting translated sequence is renamed back
before writing it out. Further details of this canonicaliza-
tion optimization are in [5].

When an enumerated sequence is found to be equiva-
lent to a target sequence, the corresponding peephole rule
is added to the translation table together with the register
map under which the translation is valid. Some examples
of peephole translation rules are shown in Table 3.

Once the binary translator is constructed, using it
is relatively simple. The translation rules are applied
to the source-architecture code to obtain destination-
architecture code. The application of translation rules is
more involved than the application of optimization rules.
Now, we also need to select the register map for each
code point before generating the corresponding trans-
lated code. The choice of register map can make a notice-
able difference to the performance of generated code. We
discuss the selection of optimal register maps at transla-
tion time in the next section.

3.3 Register Map Selection

Choosing a good register map is crucial to the quality
of translation, and moreover the best code may require
changing the register map from one code point to the
next. Thus, the best register map is the one that min-
imizes the cost of the peephole translation rule (gener-
ates the fastest code) plus any cost of switching register
maps from the previous program point—because switch-
ing register maps requires adding register move instruc-
tions to the generated code to realize the switch at run-

PowerPC
Sequence

Live
Registers

State
Map

x86 Instruction
Sequence

mr r1,r2 r1,r2
r1→eax

r2→M1

movl M1,eax

lwz r1,(r2) r1,r2
r1→eax

r2→ecx

mov (ecx),eax

bswap eax

lwz r1,(r2)

stw r1,(r3)

r1,r2,

r3

r1→eax

r2→ecx

r3→edx

movl (ecx),eax

movl eax,(edx)

mflr r1 r1,lr
r1→eax

lr→ecx
movl ecx,eax

lis r1,C0

ori r1,r1,C1
r1 r1→eax mov $C0C1,eax

subfc r1,r2,r1

adde r1,r1,r3

r1,r2

r3

r1→eax

r2→ecx

r3→edx

subl ecx,eax

adcl edx,eax

Table 3: Examples of peephole translation rules from
PowerPC to x86. The x86 sequences are written in
AT&T syntax assembly with % signs omitted before reg-
isters.

time, switching register maps is not free.

We formulate a dynamic programming problem to
choose a minimum cost register map at each program
point in a given code region. At each code point, we enu-
merate all register maps that are likely to produce a trans-
lation. Because the space of all register maps is huge, it
is important to constrain this space by identifying only
the relevant register maps. We consider the register maps
at all predecessor code points and extend them using the
registers used by the current target sequence. For each
register used by the current target sequence, all possibili-
ties of register mappings (after discarding register renam-
ings) are enumerated. Also, we attempt to avoid enumer-
ating register maps that will produce an identical transla-
tion to a register map that has already been enumerated,
at an equal or higher cost. For each enumerated register
map M , the peephole translation table is queried for a
matching translation rule T and the corresponding trans-
lation cost is recorded. We consider length-1 to length-3
instruction sequences while querying the peephole table
for each enumerated register map. Note that there may be
multiple possible translations at a given code point, just
as there may be multiple valid register maps; we simply
keep track of all possibilities. The dynamic program-
ming problem formulation then considers the translation
produced for each sequence length while determining the
optimal translation for a block of code. Assume for sim-
plicity that the code point under consideration has only
one predecessor, and the possible register maps at the
predecessor are P1, . . . , Pn. For simplicity, we also as-
sume that we are translating one instruction at a time and

182 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

that T is the minimum cost translation for that instruction
if register map M is used. The best cost register map M

is then the one that minimizes the cost of switching from
a predecessor map Pi to M , the cost of the instruction
sequence T , and, recursively, the cost of Pi:

cost(M) = cost(T)+mini(cost(Pi)+switch(Pi, M))

To translate multiple source-architecture instructions
using a single peephole rule, we extend this approach
to consider translations for all length-1 to length-3 se-
quences that end at the current code point. For exam-
ple, at the end of instruction i4 in an instruction se-
quence (i1, i2, i3, i4), we search for possible translations
for each of the sequences (i4), (i3, i4) and (i2, i3, i4)
to find the lowest-cost translation. While considering a
translation for the sequence (i2, i3, i4), the predecessor
register maps considered are the register maps at instruc-
tion i1. Similarly, the predecessor register maps for se-
quences (i3, i4) and (i4) are maps at instructions i2 and
i3 respectively. The cost of register map M is then the
minimum among the costs computed for each sequence
length.

We solve the recurrence in a standard fashion. Begin-
ning at start of a code region (e.g., a function body), the
cost of the preceding register map is initially 0. Work-
ing forwards through the code region, the cost of each
enumerated register map is computed and stored before
moving to the next program point and repeating the com-
putation. When the end of the code region is reached, the
register map with the lowest cost is chosen and its de-
cisions are backtracked to decide the register maps and
translations at all preceding program points. For program
points having multiple predecessors, we use a weighted
sum of the switching costs from each predecessor. To
handle loops, we perform two iterations of this compu-
tation. Interesting examples are too lengthy to include
here, but a detailed, worked example of register map se-
lection is in [4].

This procedure of enumerating all register maps and
then solving a dynamic programming problem is compu-
tationally intensive and, if not done properly, can signif-
icantly increase translation time. While the cost of find-
ing the best register map for every code point is not a
problem for a static translator, it would add significant
overhead to a dynamic translator. To bound the compu-
tation time, we prune the set of enumerated register maps
at each program point. We retain only the n lowest-cost
register maps before moving to the next program point.
We allow the value of n to be tunable and refer to it
as the prune size. We also have the flexibility to trade
computation time for lower quality solutions. For ex-
ample, for code that is not performance critical we can
consider code regions of size one (e.g., a single instruc-
tion) or even use a fixed register map. In Section 6 we

show that the cost of computing the best register maps
for frequently executed instructions is very small for our
benchmarks. We also discuss the performance sensitivity
of our benchmarks to the prune size.

4 Other Issues

In this section, we discuss the main issues relevant to our
approach to binary translation.

4.1 Static vs Dynamic Translation

Binary translation can either be performed statically
(compile-time) or dynamically (runtime). Most existing
tools perform binary translation dynamically for its pri-
mary advantage of having a complete view of the cur-
rent machine state. Moreover, dynamic binary transla-
tion provides additional opportunities for runtime opti-
mizations. The drawback of dynamic translation is the
overhead of performing translation and book-keeping at
runtime. A static translator translates programs offline
and can apply more extensive (and potentially whole pro-
gram) optimizations. However, performing faithful static
translation is a slightly harder problem since no assump-
tions can be made about the runtime state of the process.

Our binary translator is static, though we have avoided
including anything in our implementation that would
make it impractical to develop a dynamic translator (e.g.,
whole-program analysis or optimizations) using the same
algorithms. Most of the techniques we discuss are
equally applicable in both settings and, when they are
not, we discuss the two separately.

4.2 Endianness

If the source and destination architectures have different
endianness, we convert all memory reads to destination
endianness and all memory writes to source endianness.
This policy ensures that memory is always in source
endianness while registers have destination endianness.
The extra byte-swap instructions needed to maintain this
invariant are only needed on memory accesses; in partic-
ular, we avoid the additional overhead of shuffling bytes
on register operations.

While dealing with source-destination architecture
pairs with different endianness, special care is required
in handling OS-related data structures. In particular, all
executable headers, environment variables and program
arguments in the program’s address space need to be
converted from destination endianness to source endi-
anness before transferring control to the translated pro-
gram. This step is necessary because the source program
assumes source endianness for everything while the OS

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 183

writes the data structures believing that the program as-
sumes destination endianness. In a dynamic translator,
these conversions are performed inside the translator at
startup. In a static translator, special initialization code is
emitted to perform these conversions at runtime.

4.3 Control Flow Instructions

Like all other opcodes, control flow instructions are
also translated using peephole rules. Direct jumps in
the source are translated to direct jumps in the trans-
lated code, with the jump destination being appropriately
adjusted to point to the corresponding translated code.
Our superoptimizer is capable of automatically learning
translations involving direct jump instructions.

To handle conditional jumps, the condition codes of
the source architecture need to be faithfully represented
in the destination architecture. Handling condition codes
correctly is one of the more involved aspects of binary
translation because of the divergent condition-code rep-
resentations used by different architectures. We discuss
our approach to handling condition codes in the context
of our PowerPC-x86 binary translator; see Section 5.3.
The handling of indirect jumps is more involved and is
done differently for static and dynamic translators. We
discuss this in detail in Section 5.4.

4.4 System Calls

When translating across two different operating systems,
each source OS system call needs to be emulated on the
destination OS. Even when translating across the same
operating system on different architectures, many sys-
tem calls require special handling. For example, some
system calls are only implemented for specific architec-
tures. Also, if the two architectures have different endi-
anness, proper endianness conversions are required for
all memory locations that the system call could read or
write. There are other relevant issues to binary transla-
tion that we do not discuss here: full system vs. user-
level emulation, address translation, precise exceptions,
misaligned memory accesses, interprocess communica-
tion, signal handling, etc. These problems are orthogo-
nal to the issues in peephole binary translation and our
solutions to these issues are standard. In this paper, our
focus is primarily on efficient code-generation.

5 Implementation

We have implemented a binary translator that allows
PowerPC/Linux executables to run in an x86/Linux en-
vironment. The translator is capable of handling almost
all PowerPC opcodes (around 180 in all). We have tested

our implementation on a variety of different executables
and libraries.

The translator has been implemented in C/C++ and
O’Caml [13]. Our superoptimizer is capable of auto-
matically inferring peephole translation rules from Pow-
erPC to x86. Because we cannot execute both the tar-
get sequence and the enumerated sequence on the same
machine, we use a PowerPC emulator (we use Qemu in
our experiments) to execute the target sequence. Recall
from Section 3.1 that there are two steps to determining
which, if any, target instruction sequences are equivalent
to the enumerated instruction sequence: first a fast exe-
cution test is used to eliminate all but few plausible can-
didates, and then a complete equivalence check is done
by converting both instruction sequences to boolean for-
mulas and deciding a satisfiability query. We use zChaff
[15, 26] as our backend SAT solver. We have trans-
lated most, but not all, Linux PowerPC system calls. We
present our results using a static translator that produces
an x86 ELF 32-bit binary executable from a PowerPC
ELF 32-bit binary. Because we used the static peephole
superoptimizer described in [5] as our starting point, our
binary translator is also static, though as discussed previ-
ously our techniques could also be applied in a dynamic
translator. A consequence of our current implementation
is that we also translate all the shared libraries used by
the PowerPC program.

In this section, we discuss issues specific to a
PowerPC-x86 binary translator. While there exist many
architecture-specific issues (as we discuss in this sec-
tion), the vast bulk of the translation and optimization
complexity is still hidden by the superoptimizer.

5.1 Endianness

PowerPC is a big-endian architecture while x86 is a little-
endian architecture, which we handle using the scheme
outlined in Section 4.2. For integer operations, there ex-
ist three operand sizes in PowerPC: 1, 2 and 4 bytes. De-
pending on the operand size, the appropriate conversion
code is required when reading from or writing to mem-
ory. We employ the convenient bswap x86 instruction
to generate efficient conversion code.

5.2 Stack and Heap

On Linux, the stack is initialized with envp, argc and
argv and the stack pointer is saved to a canonical reg-
ister at load time. On x86, the canonical register storing
the stack pointer is esp; on PowerPC, it is r1. When
the translated executable is loaded in an x86 environment
(in the case of dynamic translation, when the translator is
loaded), the esp register is initialized to the stack pointer
by the operating system while the emulated r1 register is

184 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7

3 4 7 8 11 12 15 16 19 20 23 24 3127 280

CRn LT GT EQ SO

Figure 1: PowerPC architecture has support for eight in-
dependent sets of condition codes CR0-CR7. Each 4-bit
CRn register uses one bit each to represent less than (LT),
greater (GT), equal (EQ) and overflow-summary (SO).
Explicit instructions are required to read/write the con-
dition code bits.

F
SO

F

OF: Signed Overflow
CF: Unsigned Overflow

SF: Sign Flag
ZF: Zero Flag

F
C

31 11 7 6 0

F
ZEFLAGS

Figure 2: The x86 architecture supports only a single
set of condition codes represented as bits in a 32-bit
EFLAGS register. Almost all x86 instructions overwrite
these condition codes.

left uninitialized. To make the stack visible to the trans-
lated PowerPC code, we copy the esp register to the em-
ulated r1 register at startup. In dynamic translation, this
is done by the translator; in static translation, this is done
by the initialization code. The handling of the heap re-
quires no special effort since the brk Linux system call
used to allocate heap space is identical on both x86 and
PowerPC.

5.3 Condition Codes

Condition codes are bits representing quantities such as
carry, overflow, parity, less, greater, equal, etc. PowerPC
and x86 handle condition codes very differently. Fig-
ures 1 and 2 show how condition codes are represented
in PowerPC and x86 respectively.

While PowerPC condition codes are written using sep-
arate instructions, x86 condition codes are overwritten
by almost all x86 instructions. Moreover, while Pow-
erPC compare instructions explicitly state whether they
are doing a signed or an unsigned comparison and store
only one result in their flags, x86 compare instructions
perform both signed and unsigned comparisons and store
both results in their condition bits. On x86, the branch in-
struction then specifies which comparison it is interested
in (signed or unsigned). We handle these differences by
allowing the PowerPC condition registers (cr0-cr7) to
be mapped to x86 flags in the register map. For exam-

ple, an entry cr0→SF in the register map specifies that,
at that program point, the contents of register cr0 are
encoded in the x86 signed flags (SF). The translation of
a branch instruction then depends on whether the condi-
tion register being used (cri) is mapped to signed (SF)
or unsigned (UF) flags.

5.4 Indirect Jumps

Jumping to an address in a register (or a memory loca-
tion) is an indirect jump. Function pointers, dynamic
loading, and case statements are all handled using indi-
rect jumps. Since an indirect jump could jump almost
anywhere in the executable, it requires careful handling.
Moreover, because the destination of the indirect jump
could assume a different register-map than the current
one, the appropriate conversion needs to be performed
before jumping to the destination. Different approaches
for dealing with indirect jumps are needed in static and
dynamic binary translators.

Handling an indirect jump in a dynamic translator is
simpler. Here, on encountering an indirect jump, we
relinquish control to the translator. The translator then
performs the register map conversion before transferring
control to the (translated) destination address.

Handling an indirect jump in a static translator is more
involved. We first identify all instructions that can be
possible indirect jump targets. Since almost all well-
formed executables use indirect jumps in only a few dif-
ferent code paradigms, it is possible to identify possi-
ble indirect jump targets by scanning the executable. We
scan the read-only data sections, global offset tables and
instruction immediate operands and use a set of pattern
matching rules to identify possible indirect jump targets.
A lookup table is then constructed to map these jump
targets (which are source architecture addresses) to their
corresponding destination architecture addresses. How-
ever, as we need to perform register map conversion be-
fore jumping to the destination address at runtime, we
replace the destination addresses in the lookup table with
the address of a code fragment that performs the register-
map conversion before jumping to the destination ad-
dress.

The translation of an indirect jump involves a table
lookup and some register-map conversion code. While
the table lookup is fast, the register-map conversion may
involve multiple memory accesses. Hence, an indirect
jump is usually an expensive operation.

Although the pattern matching rules we use to iden-
tify possible indirect jump targets have worked extremely
well in practice, they are heuristics and are prone to ad-
versarial attacks. It would not be difficult to construct
an executable that exploits these rules to cause a valid
PowerPC program to crash on x86. Hence, in an adver-

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 185

ppc x86 Comparison

bl call bl (branch-and-link) saves the in-
struction pointer to register lrwhile
call pushes it to stack

blr ret blr (branch-to-link-register) jumps
to the address pointed-to by lr,
while ret pops the instruction
pointer from the stack and jumps to
it

Table 4: Function call and return instructions in Pow-
erPC and x86 architectures

sarial scenario, it would be wise to assume that all code
addresses are possible indirect jump targets. Doing so
results in a larger lookup table and more conversion code
fragments, increasing the overall size of the executable,
but will have no effect on running time apart from possi-
ble cache effects.

5.5 Function Calls and Returns

Function calls and returns are handled in very different
ways in PowerPC and x86. Table 4 lists the instructions
and registers used in function calls and returns for both
architectures.

We implement function calls of the PowerPC architec-
ture by simply emulating the link-register (lr) like any
other PowerPC register. On a function call (bl), the link
register is updated with the value of the next PowerPC
instruction pointer. A function return (blr) is treated
just like an indirect jump to the link register.

The biggest advantage of using this scheme is its sim-
plicity. However, it is possible to improve the translation
of the blr instruction by exploiting the fact that blr is
always used to return from a function. For this reason,
it is straightforward to predict the possible jump targets
of blr at translation time (it will be the instruction fol-
lowing the function call bl). At runtime, the value of
the link register can then be compared to the predicted
value to see if it matches, and then jump accordingly.
This information can be used to avoid the extra mem-
ory reads and writes required for register map conver-
sion in an indirect jump. We have implemented this op-
timization; while this optimization provides significant
improvements while translating small recursive bench-
marks (e.g., recursive computation of the fibonacci se-
ries), it is not very effective for larger benchmarks (e.g.,
SPEC CINT2000).

5.6 Register Name Constraints

Another interesting challenge while translating from
PowerPC to x86 is dealing with instructions that operate

Opcode Registers Description

mul reg32 eax, edx Multiplies reg32 with
eax and stores the 64-
bit result in edx:eax.

div reg32 eax, edx Divides edx:eax by
reg32 and stores result
in eax.

any 8-bit insn
eax, ebx
ecx, edx

8-bit operations can
only be performed on
these four registers.

Table 5: Examples of x86 instructions that operate only
on certain fixed registers.

only on specific registers. Such instructions are present
on both PowerPC and x86. Table 5 shows some such x86
instructions.

To be able to generate peephole translations involv-
ing these special instructions, the superoptimizer is made
aware of the constraints on their operands during enu-
meration. If a translation is found by the superoptimizer
involving these special instructions, the generated peep-
hole rule encodes the name constraints on the operands
as register name constraints. These constraints are then
used by the translator at code generation time.

5.7 Self-Referential and Self-Modifying
Code

We handle self-referential code by leaving a copy of the
source architecture code in its original address range for
the translated version. To deal with self-modifying code
and dynamic loading, we would need to invalidate the
translation of a code fragment on observing any modi-
fication to that code region. To do this, we would trap
any writes to code regions and perform the correspond-
ing invalidation and re-translation. For a static trans-
lator, this involves making the translator available as a
shared library—a first step towards a full dynamic trans-
lator. While none of our current benchmarks contain
self-modifying code, it would be straightforward to ex-
tend our translator to handle such scenarios.

5.8 Untranslated Opcodes

For 16 PowerPC opcodes our translator failed to find a
short equivalent x86 sequence of instructions automati-
cally. In such cases, we allow manual additions to the
peephole table. Table 6 describes the number and types
of hand additions: 9 are due to instructions involving in-
direct jumps and 7 are due to complex PowerPC instruc-
tions that cannot be emulated using a bounded length
straight-line sequence of x86 instructions. For some

186 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Number of Reason
Additions

2 Overflow/underflow semantics of the di-
vide instruction (div)

2 Overflow semantics of srawi shift in-
struction

1 The rotate instruction rlwinm
1 The cntlzw instruction
1 The mfcr instruction
9 Indirect jumps referencing the jumpt-

able

Table 6: The distribution of the manual translation rules
we added to the peephole translation table.

more complex instructions mostly involving interrupts
and other system-related tasks, we used the slow but sim-
ple approach of emulation using C-code.

5.9 Compiler Optimizations

An interesting observation while doing our experiments
was that certain compiler optimizations often have an ad-
verse effect on the performance of our binary translator.
For example, an optimized PowerPC executable attempts
to use all 8 condition-registers (cr0-cr7). However,
since x86 has only one set of flags, other condition regis-
ters need to be emulated using x86 registers causing ex-
tra register pressure. Another example of an unfriendly
compiler optimization is instruction scheduling. An opti-
mizing PowerPC compiler separates two instructions in-
volving a data dependency to minimize pipeline stalls,
while our binary translator would like the data-dependent
instructions to be together to allow the superoptimizer to
suggest more aggressive optimizations. Our implemen-
tation reorders instructions within basic blocks to mini-
mize the length of dependencies prior to translation.

6 Experimental Results

We performed our experiments using a Linux machine
with a single Intel Pentium 4 3.0GHz processor, 1MB
cache and 4GB of memory. We used gcc version 4.0.1
and glibc version 2.3.6 to compile the executables on
both Intel and PowerPC platforms. To produce identi-
cal compilers, we built the compilers from their source
tree using exactly the same configuration options for
both architectures. While compiling our benchmarks, we
used the -msoft-float flag in gcc to emulate float-
ing point operations in software; our translator currently
does not translate floating point instructions. For all our
benchmarks except one, emulating floating point in soft-

.c
source file

PowerPC
Executable

x86
Executable

x86
Executable

gcc <options> -arch=ppc gcc <options> -arch=x86

Peephole Binary Translation

Compare

Figure 3: Experimental Setup. The translated binary ex-
ecutable is compared with the natively-compiled x86 ex-
ecutable. While comparing, the same compiler optimiza-
tion options are used on both branches.

ware makes no difference in performance. All the ex-
ecutables were linked statically and hence, the libraries
were also converted from PowerPC to x86 at translation
time. To emulate some system-level PowerPC instruc-
tions, we used C-code from the open source emulator
Qemu [17].

In our experiments, we compare the executable pro-
duced by our translator to a natively-compiled exe-
cutable. The experimental setup is shown in Figure 3.
We compile from the C source for both PowerPC and
x86 platforms using gcc. The same compiler optimiza-
tion options are used for both platforms. The PowerPC
executable is then translated using our binary translator
to an x86 executable. And finally, the translated x86 ex-
ecutable is compared with the natively-compiled one for
performance.

One would expect the performance of the translated
executable to be strictly lower than that of the natively-
compiled executable. To get an idea of the state-of-the-
art in binary translation, we discuss two existing binary
translators. A general-purpose open-source emulator,
Qemu [17], provides 10–20% of the performance of a
natively-compiled executable (i.e., 5–10x slowdown). A
recent commercially available tool by Transitive Corpo-
ration [22] (which is also the basis of Apple’s Rosetta
translator) claims “typically about 70–80%” of the per-
formance of a natively-compiled executable on their
website [18]. Both Qemu and Transitive are dynamic
binary translators, and hence Qemu and Rosetta results
include the translation overhead, while the results for our
static translator do not. We estimate the translation over-
head of our translator in Section 6.1.

Table 7 shows the performance of our binary transla-
tor on small compute-intensive microbenchmarks. (All

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 187

Benchmark Description -O0 -O2 -O2ofp
emptyloop A bounded for-loop doing

nothing
98.56 % 128.72 % 127 %

fibo Compute first few Fibonacci
numbers

118.90 % 319.13 % 127.78 %

quicksort Quicksort on 64-bit integers 81.36 % 92.61 % 90.23 %
mergesort Mergesort on 64-bit integers 83.22 % 91.54 % 84.35 %
bubblesort Bubble-sort on 64-bit integers 75.12 % 70.92 % 64.86 %
hanoi1 Towers of Hanoi Algorithm 1 84.83 % 70.03 % 61.96 %
hanoi2 Towers of Hanoi Algorithm 2 107.14 % 139.64 % 143.69 %
hanoi3 Towers of Hanoi Algorithm 3 81.04 % 90.14 % 80.15 %
traverse Traverse a linked list 69.06 % 67.67 % 67.15 %
binsearch Perform binary search on a

sorted array
65.38 % 61.24 % 62.15 %

Table 7: Performance of the binary translator on some compute-intensive microbenchmarks. The columns represent
the optimization options given to gcc. ‘-O2ofp’ expands to ‘-O2 -fomit-frame-pointer’. ‘-O2ofp’ omits
storing the frame pointer on x86. On PowerPC, ‘-O2ofp’ is identical to ‘-O2’. The performance is shown relative
to a natively compiled application (the performance of a natively compiled application is 100%).

O0 O2
native peep % of native peep % of
(secs) (secs) native (secs) (secs) native

bzip2 311 470 66.2 % 195 265 73.7 %
gap 165 313 52.5 % 87 205 42.5 %
gzip 264 398 66.3 % 178 315 56.5 %
mcf 193 221 87.3 % 175 184 94.7 %
parser 305 520 58.7 % 228 338 67.3 %
twolf 2184 1306 167.2 % 1783 1165 153.0 %
vortex 193 463 41.7 % 161 - -

Table 8: Performance of the binary translator on SPEC CINT2000 benchmark applications. The percentage (% of
native) columns represent performance relative to the x86 performance (the performance of a natively compiled appli-
cation is 100%). ‘-’ entries represent failed translations.

reported runtimes are computed after running the exe-
cutables at least 3 times.) Our microbenchmarks use
three well-known sorting algorithms, three different al-
gorithms to solve the Towers of Hanoi, one benchmark
that computes the Fibonacci sequence, a link-list traver-
sal, a binary search on a sorted array, and an empty for-
loop. All these programs are written in C. They are all
highly compute-intensive and hence designed to stress-
test the performance of binary translation.

The translated executables perform roughly at 90% of
the performance of a natively-compiled executable on
average. Some benchmarks perform as low as 64% of
native performance and many benchmarks outperform
the natively compiled executable. The latter result is a
bit surprising. For unoptimized executables, the binary
translator often outperforms the natively compiled exe-
cutable because the superoptimizer performs optimiza-

tions that are not seen in an unoptimized natively com-
piled executable. The bigger surprise occurs when the
translated executable outperforms an already optimized
executable (columns -O2 and -O2ofp) indicating that
even mature optimizing compilers today are not produc-
ing the best possible code. Our translator sometimes out-
performs the native compiler for two reasons:

• The gcc-generated code for PowerPC is sometimes
superior to the code generated for x86. This situa-
tion is in line with the conventional wisdom that it
is easier to write a RISC optimizer than a CISC op-
timizer.

• Because we search the space of all possible trans-
lations while performing register mapping and
instruction-selection, the code generated by our
translator is often superior to that generated by gcc.

188 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 4: Performance comparison of our translator (peep) with open source binary translator Qemu (qemu), and
a commercial binary translator Apple Rosetta (rosetta). The bars represent performance relative to a natively
compiled executable (higher is better). Missing bars are due to failed translations.

When compared with Apple Rosetta, our translator con-
sistently performs better than Rosetta on all these mi-
crobenchmarks. On average, our translator is 170%
faster than Apple Rosetta on these small programs.

A striking result is the performance of the fibo
benchmark in the -O2 column where the translated ex-
ecutable is almost three times faster than the natively-
compiled and optimized executable. On closer inspec-
tion, we found that this is because gcc, on x86, uses
one dedicated register to store the frame pointer by de-
fault. Since the binary translator makes no such reser-
vation for the frame pointer, it effectively has one ex-
tra register. In the case of fibo, the extra register
avoids a memory spill present in the natively compiled
code causing the huge performance difference. Hence,
for a more equal comparison, we also compare with
the ‘-fomit-frame-pointer’ gcc option on x86
(-O2ofp column).

Table 8 gives the results for seven of the SPEC integer
benchmarks. (The other benchmarks failed to run cor-
rectly due to the lack of complete support for all Linux
system calls in our translator). Figure 4 compares the
performance of our translator to Qemu and Rosetta. In
our comparisons with Qemu, we used the same Pow-
erPC and x86 executables as used for our own transla-
tor. For comparisons with Rosetta, we could not use the
same executables, as Rosetta supports only Mac executa-
bles while our translator supports only Linux executa-
bles. Therefore, to compare, we recompiled the bench-
marks on Mac to measure Rosetta performance. We used
exactly the same compiler version (gcc 4.0.1) on the two
platforms (Mac and Linux). We ran our Rosetta experi-
ments on a Mac Mini Intel Core 2 Duo 1.83GHz proces-
sor, 32KB L1-Icache, 32KB L1-Dcache, 2MB L2-cache
and 2GB of memory. These benchmarks spend very little
time in the kernel, and hence we do not expect any bias

in results due to differences in the two operating systems.
The differences in the hardware could cause some bias
in the performance comparisons of the two translators.
While it is hard to predict the direction and magnitude of
this bias, we expect it to be insignificant.

Our peephole translator fails on vortex when it is
compiled using -O2. Similarly, Rosetta fails on twolf
for both optimization options. These failures are most
likely due to bugs in the translators. We could not ob-
tain performance numbers for Rosetta on gap because
we could not successfully build gap on Mac OS X. Our
peephole translator achieves a performance of 42–164%
of the natively compiled executable. Comparing with
Qemu, our translator achieves 1.3–4x improvement in
performance. When compared with Apple Rosetta, our
translator performs 12% better (average) on the executa-
bles compiled with -O2 and 3% better on the executa-
bles compiled with -O0. Our system performs as well
or better than Rosetta on almost all our benchmarks, the
only exceptions being -O0 for vortex where the peep-
hole translator produces code 1.4% slower than Rosetta,
and -O2 for vortex, which the peephole translator fails
to translate. The median performance of the translator
on these compute-intensive benchmarks is 67% of native
code.

A very surprising result is the performance of the
twolf benchmark where the performance of our trans-
lator is significantly better than the performance of na-
tively compiled code. On further investigation, we found
that twolf, when compiled with -msoft-float,
spends a significant fraction of time (∼ 50%) in the float-
ing point emulation library (which is a part of glibc).
The x86 floating point emulation library functions con-
tain a redundant function call to determine the current
instruction pointer, while the PowerPC floating point em-
ulation code contains no such function call. This is the

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 189

Figure 5: Performance comparison of the default peephole translator with variants No-Reorder and
With-Profile. The bars represent performance relative to a natively compiled executable (higher is better).

default glibc behavior and we have not found a way
to change it. Coupled with the optimizations produced
by our translator, this extra overhead in natively com-
piled x86 code leads to better overall performance for
translated code. We do not see this effect in all our
other benchmarks as they spend an insignificant fraction
(< 0.01%) of time in floating point emulation. The com-
plete data on the running times of natively compiled and
translated benchmarks is available in [4].

Next, we consider the performance of our translator
on SPEC benchmarks by toggling some of the optimiza-
tions. The purpose of these experiments is to obtain in-
sight into the performance impact of these optimizations.
We consider two variants of our translator:

1. No-Reorder: Recall that, by default, we cluster
data-dependent instructions inside a basic block for
better translation (refer Section 5.9). In this variant,
we turn off the re-ordering of instructions.

2. With-Profile: In this variant, we profile our
executables in a separate offline run and record the
profiling data. Then, we use this data to determine
appropriate weights of predecessors and successors
during register map selection (see Section 3.3).

Figure 5 shows the comparisons of the two variants rel-
ative to the default configuration. We make two key ob-
servations:

• The re-ordering of instructions inside a basic block
has a significant performance impact on executa-
bles compiled with -O2. The PowerPC optimiz-
ing compiler separates data-dependent instructions
to minimize data stalls. To produce efficient trans-
lated code, it helps to “de-optimize” the code by
bringing data-dependent instructions back together.
On average, the performance gain by re-ordering in-
structions inside a basic block is 6.9% for -O2 ex-
ecutables. For -O0 executables, the performance

impact of re-ordering instructions is negligible, ex-
cept twolf where a significant fraction of time is
spent in precompiled optimized libraries.

• From our results, we think that profiling informa-
tion can result in small but notable improvements in
performance. In our experiments, the average im-
provement obtained by using profiling information
is 1.4% for -O2 executables and 0.56% for -O0
executables. We believe our translator can exploit
such runtime profiling information in a dynamic bi-
nary translation scenario.

Our superoptimizer uses a peephole size of at most 2
PowerPC instructions. The x86 instruction sequence in a
peephole rule can be larger and is typically 1–3 instruc-
tions long. Each peephole rule is associated with a cost
that captures the approximate cycle cost of the x86 in-
struction sequence.

We compute the peephole table offline only once for
every source-destination architecture pair. The computa-
tion of the peephole table can take up to a week on a sin-
gle processor. On the other hand, applying the peephole
table to translate an executable is fast (see Section 6.1).
For these experiments, the peephole table consisted of
approximately 750 translation rules. Given more time
and resources, it is straightforward to scale the number of
peephole rules by running the superoptimizer on longer
length sequences. More peephole rules are likely to give
better performance results.

The size of the translated executable is roughly 5–6x
larger than the source PowerPC executable. Of the total
size of the translated executable, roughly 40% is occu-
pied by the translated code, 20% by the code and data
sections of the original executable, 25% by the indirect
jump lookup table and the remaining 15% by other man-
agement code and data. For our benchmarks, the aver-
age size of the code sections in the original PowerPC
executables is around 650 kilobytes, while the average

190 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

size of the code sections in the translated executables is
around 1400 kilobytes. Because both the original and
translated executables operate on the same data and these
benchmarks spend more than 99.99% of their time in less
than 2% of the code, we expect their working set sizes to
be roughly the same.

6.1 Translation Time

Translation time is a significant component of the run-
time overhead for dynamic binary translators. As our
prototype translator is static, we do not account for this
overhead in the experiments in Section 6. In this section
we analyze the time consumed by our translator and how
it would fit in a dynamic setting.

Our static translator takes 2–6 minutes to translate
an executable with around 100K instructions, which in-
cludes the time to disassemble a PowerPC executable,
compute register liveness information for each function,
perform the actual translation including computing the
register map for each program point (see Section 3.3),
build the indirect jump table and then write the trans-
lated executable back to disk. Of these various phases,
computing the translation and register maps accounts for
the vast majority of time.

A dynamic translator, on the other hand, typically
translates instructions when, and only when, they are ex-
ecuted. Thus, no time is spent translating instructions
that are never executed. Because most applications use
only a small portion of their extensive underlying li-
braries, in practice dynamic translators only translate a
small part of the program. Moreover, dynamic transla-
tors often trade translation time for code quality, spend-
ing more translation time and generating better code for
hot code regions.

To understand the execution characteristics of a typ-
ical executable, we study our translator’s performance
on bzip2 in detail. (Because all of our applications
build on the same standard libraries, which form the
overwhelming majority of the code, the behavior of the
other applications is similar to bzip2.) Of the 100K
instructions in bzip2, only around 8–10K instructions
are ever executed in the benchmark runs. Of these, only
around 2K instructions (hot regions) account for more
than 99.99% of the execution time. Figure 6 shows the
time spent in translating the hot regions of code using our
translator.

We plot the translation time with varying prune sizes;
because computing the translation and register maps
dominate, the most effective way for our system to trade
code quality for translation speed is by adjusting the
prune size (recall Section 3.3). We also plot the perfor-
mance of the translated executable at these prune sizes.
At prune size 0, an arbitrary register map is chosen where

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10
 0

 20

 40

 60

 80

 100

Tr
an

sl
at

io
n

Ti
m

e
(s

ec
on

ds
)

Pe
rfo

rm
an

ce
 re

la
tiv

e
to

 n
at

iv
el

y
co

m
pi

le
d

ex
ec

ut
ab

le
 (%

)

Prune Size

Performance (% of natively compiled)
Translation Time (s)

Figure 6: Translation time overhead with varying prune
size for bzip2.

all PowerPC registers are mapped to memory. At this
point, the translation time of the hot regions is very
small (less than 0.1 seconds) at the cost of the execution
time of the translated executable. At prune size 1 how-
ever, the translation time increases to 8 seconds and the
performance already reaches 74% of native. At higher
prune sizes, the translation overhead increases signifi-
cantly with only a small improvement in runtime (for
bzip2, the runtime improvement is 2%). This indicates
that even at a small prune size (and hence a low trans-
lation time), we obtain good performance. While higher
prune sizes do not significantly improve the performance
of the translator on SPEC benchmarks, they make a sig-
nificant difference to the performance of tight inner loops
in some of our microbenchmarks.

Finally, we point out that while the translation cost re-
ported in Figure 6 accounts for only the translation of hot
code regions, we can use a fast and naive translation for
the cold regions. In particular, we can use an arbitrary
register map (prune size of 0) for the rarely executed in-
structions to produce fast translations of the remaining
code; for bzip2 it takes less than 1 second to translate
the cold regions using this approach. Thus we estimate
that a dynamic translator based on our techniques would
require under 10 seconds in total to translate bzip2, or
less than 4% of the 265 seconds of run-time reported in
Table 8.

7 Related Work

Binary translation first became popular in the late 1980s
as a technique to improve the performance of existing
emulation tools. Some of the early commercial binary
translators were those by Hewlett-Packard to migrate
their customers from its HP 3000 line to the new Pre-
cision architecture (1987), by Digital Equipment Corpo-

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 191

ration to migrate users of VAX, MIPS, SPARC and x86
to Alpha (1992), and by Apple to run Motorola 68000
programs on their PowerMAC machines(1994).

By the mid-1990’s more binary translators had ap-
peared: IBM’s DAISY [8] used hardware support to
translate popular architectures to VLIW architectures,
Digital’s FX!32 ran x86/WinNT applications on Al-
pha/WinNT [7], Ardi’s Executor [9] ran old Macintosh
applications on PCs, Sun’s Wabi [21] executed Microsoft
Windows applications in UNIX environments and Em-
bra [24], a machine simulator, simulated the processors,
caches and other memory systems of uniprocessors and
cache-coherent multiprocessors using binary translation.
A common feature in all these tools is that they were
all designed to solve a specific problem and were tightly
coupled to the source and/or destination architectures
and operating systems. For this reason, no meaningful
performance comparisons exist among these tools.

More recently, the moral equivalent of binary transla-
tion is used extensively in Java just-in-time (JIT) com-
pilers to translate Java bytecode to the host machine in-
structions. This approach is seen as an efficient solution
to deal with the problem of portability. In fact, some re-
cent architectures especially cater to Java applications as
these applications are likely to be their first adopters [2].

An early attempt to build a general purpose binary
translator was the UQBT framework [23] that described
the design of a machine-adaptable dynamic binary trans-
lator. The design of the UQBT framework is shown
in Figure 7. The translator works by first decod-
ing the machine-specific binary instructions to a higher
level RTL-like language (RTL stands for register trans-
fer lists). The RTLs are optimized using a machine-
independent optimizer, and finally machine code is gen-
erated for the destination architecture from the RTLs.
Using this approach, UQBT had up to a 6x slowdown
in their first implementation. A similar approach has
been taken by a commercial tool being developed at
Transitive Corporation [22]. Transitive first disassem-
bles and decodes the source instructions to an interme-
diate language, performs optimizations on the interme-
diate code and finally assembles it back to the destina-
tion architecture. In their current offerings, Transitive
supports SPARC-x86, PowerPC-x86, SPARC-x86/64-
bit and SPARC-Itanium source-destination architecture
pairs.

A potential weakness in the approach used by UQBT
and Transitive is the reliance on a well-designed interme-
diate RTL language. A universal RTL language would
need to capture the peculiarities of all different machine
architectures. Moreover, the optimizer would need to un-
derstand these different language features and be able to
exploit them. It is a daunting task to first design a good
and universal intermediate language and then write an

file
Ms binary

Decoder
Binary−file

Instruction
Decoder

Mapper
Semantic

High−level
Analysis

Optimizer

Instruction

Binary−file

Mt binary
file

Encoder

Encoder

instructions stream
Ms binary

Ms Assembly
Instructions

Ms−RTLs Mt−RTLs

Instructions
Efficient Mt Assembly

instructions stream
Mt binary

R
ev

er
se

 E
ng

in
ee

ri
ng

Forw
ard E

ngineering

Mt: target architecture

Ms: source architecture

Figure 7: The framework used in UQBT binary transla-
tion. A similar approach is taken by Transitive Corpora-
tion.

optimizer for it, and we believe using a single interme-
diate language is hard to scale beyond a few architec-
tures. Our comparisons with Apple Rosetta (Transitive’s
PowerPC-x86 binary translator) suggest that superopti-
mization is a viable alternative and likely to be easier to
scale to many machine pairs.

In recent years, binary translation has been used in
various other settings. Intel’s IA-32 EL framework pro-
vides a software layer to allow running 32-bit x86 ap-
plications on IA-64 machines without any hardware sup-
port. Qemu [17] uses binary translation to emulate mul-
tiple source-destination architecture pairs. Qemu avoids
dealing with the complexity of different instruction sets
by encoding each instruction as a series of operations in
C. This allows Qemu to support many source-destination
pairs at the cost of performance (typically 5–10x slow-
down). Transmeta Crusoe [12] uses on-chip hardware to
translate x86 CISC instructions to RISC operations on-
the-fly. This allows them to achieve comparable perfor-
mance to Intel chips at lower power consumption. Dy-
namo and Dynamo-RIO [3, 6] use dynamic binary trans-
lation and optimization to provide security guarantees,
perform runtime optimizations and extract program trace
information. Strata [19] provides a software dynamic
translation infrastructure to implement runtime monitor-
ing and safety checking.

8 Conclusions and Future Work

We present a scheme to perform efficient binary trans-
lation using a superoptimizer that automatically learns
translations from one architecture to another. We demon-
strate through experiments that our superoptimization-
based approach results in competitive performance while

192 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

significantly reducing the complexity of building a high
performance translator by hand.

We have found that this approach of first learning sev-
eral peephole translations in an offline phase and then
applying them to simultaneously perform register map-
ping and instruction selection produces an efficient code
generator. In future, we wish to apply this technique
to other applications of code generation, such as just-in-
time compilation and machine virtualization.

9 Acknowledgments

We thank Suhabe Bugrara, Michael Dalton, Adam Oliner
and Pramod Sharma for reviewing and giving valuable
feedback on earlier drafts of the paper. We also thank
Ian Pratt (our shepherd) and the anonymous reviewers.

References
[1] Apple Rosetta. http://www.apple.com/rosetta/.

[2] Azul Systems. http://www.azulsystems.com/.

[3] BALA, V., DUESTERWALD, E., AND BANERJIA, S. Dynamo:
a transparent dynamic optimization system. ACM SIGPLAN No-
tices 35, 5 (2000), 1–12.

[4] BANSAL, S. Peephole Superoptimization. PhD thesis, Stanford
University, 2008.

[5] BANSAL, S., AND AIKEN, A. Automatic generation of peephole
superoptimizers. In Proceedings of the 12th International Con-
ference on Architectural Support for Programming Languages
and Operating Systems (October 21-25, 2006), pp. 394–403.

[6] BRUENING, D. Efficient, Transparent and Comprehensive Run-
time Code Manipulation. PhD thesis, Massachusetts Institute of
Technology, 2004.

[7] CHERNOFF, A., HERDEG, M., HOOKWAY, R., REEVE, C., RU-
BIN, N., TYE, T., YADAVALLI, S. B., AND YATES, J. FX!32:
A profile-directed binary translator. IEEE Micro 18, 2 (Mar/Apr
1998), 56–64.

[8] EBCIOGLU, K., AND ALTMAN, E. R. DAISY: Dynamic compi-
lation for 100% architectural compatibility. In Proceedings of the
24th International Symposium on Computer Architecture (ISCA)
(1997), pp. 26–37.

[9] Executor by ARDI. http://en.wikipedia.org/wiki/
Executor_(software).

[10] GRANLUND, T., AND KENNER, R. Eliminating branches us-
ing a superoptimizer and the gnu C compiler. In Proceedings of
the ACM SIGPLAN ’92 Conference on Programming Language
Design and Implementation (June 1992), vol. 27, pp. 341–352.

[11] HALFHILL, T. Transmeta breaks x86 low-power barrier. Micro-
processor Report (February 2000).

[12] KLAIBER, A. The technology behind Crusoe processors. Tech.
rep., Transmeta Corp., January 2000.

[13] LEROY, X., DOLIGEZ, D., GARRIGUE, J., AND VOUILLON,
J. The Objective Caml system. Software and documentation
available at http://caml.inria.fr.

[14] MASSALIN, H. Superoptimizer: A look at the smallest program.
In Proceedings of the Second International Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems (ASPLOS II) (1987), pp. 122–126.

[15] MOSKEWICZ, M. W., MADIGAN, C. F., ZHAO, Y., ZHANG,
L., AND MALIK, S. Chaff: Engineering an Efficient SAT
Solver. In Proceedings of the 38th Design Automation Confer-
ence (DAC’01) (2001), pp. 530–535.

[16] PowerVM Lx86 for x86 Linux applications.
http://www.ibm.com/developerworks/linux/
lx86/index.html.

[17] Qemu. http://fabrice.bellard.free.fr/qemu/.

[18] QuickTransit for Power-to-X86.
http://transitive.com/products/pow_x86.htm.

[19] SCOTT, K., AND DAVIDSON, J. Strata: A software dynamic
translation infrastructure. In IEEE Workshop on Binary Transla-
tion (2001).

[20] Server consolidation and containment with VMware Virtual In-
frastructure and Transitive.
http://www.transitive.com/pdf/
VMwareTransitiveSolutionBrief.pdf.

[21] SunSoft Wabi. http://www.sun.com/sunsoft/
Products/PC-Integration-products/.

[22] Transitive Technologies. http://www.transitive.com/.

[23] UNG, D., AND CIFUENTES, C. Machine-adaptable dynamic
binary translation. In ACM SIGPLAN Workshop on Dynamic
and Adaptive Compilation and Optimization (Dynamo) (2000),
pp. 41–51.

[24] WITCHEL, E., AND ROSENBLUM, M. Embra: Fast and flexible
machine simulation. In Proceedings of the ACM SIGMETRICS
conference on Measurement and Modeling of Computer Systems
(1996), pp. 68–79.

[25] YANG, B.-S., MOON, S.-M., PARK, S., LEE, J., LEE, S.,
PARK, J., CHUNG, Y. C., KIM, S., EBCIOGLU, K., AND ALT-
MAN, E. R. LaTTe: A Java VM just-in-time compiler with
fast and efficient register allocation. In Proceedings of the In-
ternational Conference on Parallel Architecture and Compilation
Techniques (PACT) (1999), pp. 128–138.

[26] ZHANG, L., MADIGAN, C. F., MOSKEWICZ, M. W., AND MA-
LIK, S. Efficient conflict driven learning in boolean satisfiabil-
ity solver. In Proceedings of the International Conference on
Computer-Aided Design (ICCAD) (November 2001), pp. 279–
285.

