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Abstract

Storage Latency Estimation Descriptors, or SLEDs, are
an API that allow applications to understand and take
advantage of the dynamic state of a storage system. By
accessing data in the file system cache or high-speed
storage first, total 1/0 workloads can be reduced and
performance improved. SLEDSs report estimated data
latency, alowing users, system utilities, and scripts to
make file access decisions based on those retrieval time
estimates. SLEDSs thus can be used to improve individ-
ual application performance, reduce system workloads,
and improve the user experience with more predictable
behavior.

We have modified the Linux 2.2 kernel to support
SLEDs, and several Unix utilities and astronomical ap-
plications have been modified to use them. As aresult,
execution times of the Unix utilities when data file sizes
exceed the size of thefile system buffer cache have been
reduced from 50% up to more than an order of mag-
nitude. The astronomical applications incurred 30-50%
fewer page faults and reductions in execution time of
10-35%. Performance of applicationswhich use SLEDs
also degrade more gracefully as datafile size grows.

1 Introduction

Storage Latency Estimation Descriptors, or SLEDs, ab-
stract the basic characteristics of data retrieval in a
device-independent fashion. The ultimate goal isto cre-
ate a mechanism that reports detailed performance char-
acteristics without being tied to a particular technol ogy.

*Author’s current address: Nokia, Santa Cruz, CA.

Storage systems consist of multiple devices with differ-
ent performance characteristics, such as RAM (e.g., the
operating system'’s file system buffer cache), hard disks,
CD-ROMs, and magnetic tapes. These devices may be
attached to the machine on which the application is run-
ning, or may be attached to a separate server machine.
All of these elements communicateviaavariety of inter-
connects, including SCSI buses and ethernets. As sys-
tems and applications create and access data, it moves
among the various devices a ong these interconnects.

Hierarchical storage management (HSM) systems with
capacities up to a petabyte currently exist, and systems
up to 100PB are currently being designed [LLJR99,
Shi9g]. In such large systems, tape will continueto play
an important role. Data is migrated to tape for long-
term storage and fetched to disk as needed, analogousto
movement between disk and RAM in conventional file
systems. A CD jukebox or tape library automatically
mounts mediato retrieve requested data.

Storage systems have a significant amount of dynamic
state, a result of the history of accesses to the system.
Disks have head and rotationa positions, tape drives
have seek positions, autochangers have physical posi-
tionsaswell as a set of tapes mounted on various drives.
File systems are often tuned to give cache priority to re-
cently used data, as a heuristic for improving future ac-
cesses. As a result of this dynamic state, the latency
and bandwidth of access to data can vary dramatically;
in disk-based file systems, by four orders of magnitude
(from microseconds for cached, unmapped data pages,
to tens of milliseconds for data retrieved from disk), in
HSM systems, by as much as eleven (microseconds up
to hundreds of seconds for tape mount and seek).

File system interfaces are generally built to hide this
variability in latency. A r ead() system call worksthe
samefor datato beread from thefile system buffer cache
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Figure 1: SL EDs and hintsin the storage system stack

as for data to be read from disk. Only the behavior is
different; the semantics are the same, but in thefirst case
the datais obtained in microseconds, and in the second,
in tens of milliseconds.

CPU performance is improving faster than storage de-
vice performance. It therefore becomes attractive to ex-
pend CPU instructions to make more intelligent deci-
sions concerning I/O. However, with the strong abstrac-
tion of file system interfaces, applications are limited in
their ability to contribute to 1/0 decisions; only the sys-
tem has the information necessary to schedule I/Os.

SLEDs are an API that allows applications and libraries
to understand both the dynamic state of the storage sys-
tem and some elements of the physical characteristics of
the devices involved, in a device-independent fashion.
Using SLEDs, applications can manage their patterns of
1/O calls appropriately. They may reorder or choose not
to execute some 1/O operations. They may also report
predicted performance to users or other applications.

SLEDs can be constrasted to file system hints, as shown
in Figure 1. Hints are the flow of information down the
storage system stack, while SLEDs are the flow informa-
tion up the stack. The figure is drawn with the storage
devices as well as the storage system software partic-
ipating. In current implementations of these concepts,
the storage devices are purely passive, although their
characteristics are measured and presented by proxy for
SLEDs.

This paper presents the first implementation and mea-
surement of the concept of SLEDs, which we proposed
in an earlier paper [Van98]. We have implemented the
SLEDs system in kernel and library code under Linux
(Red Hat 6.0 and 6.1 with 2.2 kernels), and modified
several applicationsto use SLEDSs.

The applications we have modified demonstrate the dif-
ferent uses of SLEDs. wc and gr ep were adapted
to reorder their 1/O calls based on SLEDs information.
The performance of we and gr ep have been improved
by 50% or more over a broad range of file sizes, and
more than an order of magnitude under some conditions.
f i nd iscapableof intelligently choosing not to perform
certain 1/0s. The GUI file manager gnt reports esti-
mated retrieval times, improving the quality of informa-
tion users have about the system.

We also modified LHEASOFT, a large, complex suite
of applications used by professional astronomersfor im-
age processing [NAS00]. One member of the suite,
fi mhi st o, which copies the data file and appends a
histogram of the data to the file, showed a reduction in
page faults of 30-50% and a 15-25% reduction in execu-
tiontimefor fileslarger than thefile system buffer cache.
fi mgbi n, which rebins an image, showed a reduction
of 11-35%in executiontime for various parameters. The
smaller improvements are due in part to the complexity
of the applications, relativeto wc and gr ep.

The next section presents related work. Thisis followed
by the SLEDs design, then details of the implementa-
tion, and results. The paper ends with future work and
conclusions.

2 Reated Work

The history of computer systems has generally pushed
toward increasingly abstract interfaces hiding more of
the state details from applications. In a few instances,
HSM systems provide some ability for HSM-aware ap-
plications to determine if files are online (on disk) or
offline (ontape or other low levels of the hierarchy). Mi-
crosoft’s Windows 2000 (formerly NT5) [vI99], TOPS-
20, and the RASH system [HP89] all provide or pro-
vided asingle bit that indicates whether the fileisonline
or offline. SLEDs extends this basic concept by provid-
ing more detailed information.

Steere’sfile sets [ Ste97] exploit the file system cache on
a file granularity, ordering access to a group of files to



present the cached filesfirst. However, thereis no notion
of intrafile access ordering.

Some systems provide more direct control over what
pages are selected for prefetching or for cache replace-
ment. Examples include TOPS-10 [Dig76] and TOPS-
20 and Mach'’s user-definable pagers, Cao’s application-
controlled file caching [CFKL96], and the High Perfor-
mance Storage System (HPSS) [WC95].

Still other systems have improved system performance
by a mechanism known as hints. Hints are flow of in-
formation from the application to the system about ex-
pected access orders and data reuse. They are, in effect,
the inverse of SLEDS, in which information flows from
the system to the application. Hints may alow the sys-
tem to behave more efficiently, but do not allow the ap-
plicationto participatedirectly in I/O decisions, and can-
not report expected 1/0 completion times to the appli-
cation or user. Good improvements have been reported
with hints over a broad range of applications[PGG T95].
Reductions in elapsed time of 20 to 35 percent for a
single-disk system were demonstrated, and as much as
75 percent for ten-disk systems. Hints cannot be used
across program invocations, or take advantage of state
left behind by previous applications. However, hints
can help the system make more intelligent choices about
what data should be kept in cache as an application runs.

Hillyer and Silberschatz developed a detailed device
model for a DLT tape drive that alows applications
to schedule 1/Os effectively [HS96a, HS96h]. Sandsta
and Midstraum extended their model, simplifying it and
making it easier to use [SM99]. The god is the same
as SLEDs, effective application-level access ordering,
but is achieved in a technology-aware manner. Such
algorithms are good candidates to be incorporated into
SLEDslibraries, hiding the detail s of the tape drivefrom
application writers.

For disk drives, detailed models such as Ruemm-
ler's [RW94] and scheduling work such as Worthing-
ton’s [WGP94] may be used to enhance the accuracy of
SLEDs.

Real-time file systems for multimedia, such as Ander-
son’s continuous media file system [AOG92] and SGI's
XFS [SDHT96], take reservation requests and respond
with an acceptance or rejection. SLEDSs could be inte-
grated with such systems to provide substrate (storage
and transfer subsystems communicating their character-
istics to the file system to improve its decision-making
capabilities), or to increase the usefulness of the in-
formation provided to applications about their requests.

Such systems calculateinformation similar to SLEDsin-
ternally, but currently do not expose it to applications,
where it could be useful.

Distributed storage systems, such as Andrew and
Coda [Sat90], Tiger [BFD97], Peta [LT96], and
XFS [ADNT195], present especially challenging prob-
lemsin representing performance data, as many factors,
including network characteristics and local caching,
come into play. We propose that SLEDSs be the vocab-
ulary of communication between clients and servers as
well as between applications and operating systems.

Mobile systems, including PDAs and cellular phones,
are an especially important areawhere optimizing for la-
tency and bandwidth are important [FGBA96]. Perhaps
the work most like SLEDs is Odyssey [NSN197]. Ap-
plications make resource reservations with SLEDs-like
requests, and register callbacks which can return a new
value for a parameter such as network latency or band-
width as system conditions change.

Attempts to improve file system performance through
moreintelligent caching and prefetching choicesinclude
Kroeger's[Kro0Q] and Griffioen's[GA95]. Both usefile
access histories to predict future access patterns so that
the kernel can prefetch more effectively. Kroeger reports
[/O wait time reductions of 33 to 90 percent under var-
ious conditions on his implementation, also done on a
Linux 2.2.12 kernel.

Kotz has simulated and studied a mechanism called disk-
directed I/O for parallel file systems [Kot94]. Compute
processors (CPs) do not adjust their behavior depending
on the state of the I/O system, but collectively aggregate
requests to 1/0O processors (IOPs). This allows the I/O
processorsto work with deep request queues, sorting for
efficient access to achieve a high percentage of the disk
bandwidth. Unlike SLEDs, the total 1/0 load is not re-
duced by taking dynamic advantage of the state of client
(CP) caches, though servers (IOPs) may gain a similar
advantage by ordering already-cached data to be deliv-
ered first.

Asynchronous I/O, such as that provided by POSIX I/O
or VMS, can aso reduce application wait times by over-
lapping execution with I/O. In theory, posting asyn-
chronous read requests for the entire file, and process-
ing them as they arrive, would alow behavior simi-
lar to SLEDs. This would need to be coupled with
a system-assigned buffer address scheme such as con-
tainers [PA94], since alocating enough buffers for files
larger than memory would result in significant virtual
memory thrashing.



struct sled {

long offset; /* into the file */
long length; /* of the segnent */
float latency; /* in seconds */

float bandwi dth; /* in bytes/sec */
i

Figure 2: SLED structure

3 SLEDsDesign

The basic elements of the Storage Latency Estimation
Descriptor structure are shown in Figure 2. SLEDs rep-
resent the estimated latency to retrieve specific data ele-
mentsof afile. A SLED consistsof the byte offset within
the file, the length in bytes of this section, and the per-
formance estimates. The estimates are the latency to the
first byte of the section and the bandwidth at which data
will arrive onceit has begun. Floating point numbersare
used to represent the latency because the necessary range
exceedsthat of anormal integer. We chose floating point
numbersfor bandwidth for consistency of representation
and ease of arithmetic.

Different sections (usually blocks) of afile may havedif-
ferent retrieval characteristics, and so will berepresented
by separate SLEDs. For largefiles, as afile is used and
reused, the state of a file may ultimately be represented
by a hundred or more SLEDs. Moving from the begin-
ning of the file to the end, each discontinuity in storage
media, latency, or bandwidth resultsin another SLED in
the representation.

Applications take advantage of the information in a
SLED in one of three possible ways: reordering 1/Os,
pruning I/Os, or reporting latencies. Each is detailed in
the following subsections.

3.1 Reordering1/Os

By accessing the data currently in primary memory first,
and items that must be retrieved from secondary or ter-
tiary storage | ater, the number of physical 1/Os that must
be performed may be reduced. This may require algo-
rithmic changesin applications.

Figure 3 shows how two linear passes across a file be-
have with normal LRU caching when the file is larger
than the cache size. A five-block file is accessed using
a cache which is only three blocks. The contents of the
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Figure 3: Movement of dataamong storagelevelsduring
two linear passes

cache are shown as file block numbers, with “e” being
empty. The second pass gains no advantage from the
data cached as a result of the first pass, as the tail of
the file is progressively thrown out of cache during the
current pass. The two passes may be within asingle ap-
plication, or two separate applications run consecutively.
Behavior is similar whether the two levels are memory
and disk, asin anormal file system, or disk and tape, as
in any hierarchical storage management system which
caches partial files from tape to disk.

By using SLEDs, the second pass would be able to rec-
ognize that reading the tail of the file first is advanta-
geous. In this case, blocks 3, 4, and 5 would be known
to be cached, and read before blocks 1 and 2. The total
number of blocks retrieved from the lower storage level
in this second pass would only be two instead of five.

3.2 Pruningl/Os

By agorithmically choosing not to execute particular
1/Os, an application may improveits performance by or-
ders of magnitude, as well as be a better citizen by re-
ducing system load.

A simple example that combines both pruning and re-
ordering is an application which islooking for a specific
recordin alargefile or set of files. If the desired record’s
position is toward the end of the data set as normally
ordered, but already resides in memory rather than on
disk or tape (possibly as a result of recent creation or
recent access), it may be among the first accessed. As
aresult, the application may terminate without request-
ing data which must be retrieved for disk or tape, and
performance may improve by an order of magnitude or
more.



It may also simply bedesirableto run an application with
the minimum number of I/O operations, even at the cost
of reduced functionality. This may be applied in, for
example, environmentsthat charge per I/O operation, as
used to be common for timesharing systems.

3.3 Reporting Latency

Applications in several categories depend on or can be
improved by an ability to predict their performance.
Quiality of service with some real-time component is the
most obvious but not the only such category; any I/O-
intensive application on which a user depends for inter-
active response is a good candidate to use SLEDs.

Systems that provide quality of service guarantees gen-
eraly do so with areservation mechanism, in which ap-
plications request a specific performance level, and the
system responds with a simple yes or no about its ability
to provide the requested performance. Once the reser-
vation has begun, QoS systems rarely provide any addi-
tional information about the arrival of impending data.

Most applications which users interact with directly are
occasionally forced to retrieve significant amounts of
data, resulting in the appearance of icons informing
the user that she must wait, but with no indication of
the expected duration. Better systems (including web
browsers) provide visible progress indicators. Thosein-
dicatorsare generally estimated based on partial retrieval
of the data, and so reflect current system conditions, but
cannot be calculated until the data transfer has begun.
Dynamically calculated estimates can be heavily skewed
by highinitial latency, such asinan HSM system. Using
SLEDs instead providesa clearer picture of the relation-
ship of the latency and bandwidth, providing comple-
mentary data to the dynamic estimate, and can be pro-
vided before the retrieval operation isinitiated.

Both types of applications above have a common need
for a mechanism to communicate predicted latency of
I/O operationsfrom storage devicesto operating systems
to libraries to applications. SLEDs is one proposal for
the vocabulary of such communication.

3.4 Design Limitations

SLEDs, as currently implemented, describe the state of
the storage system at a particular instant. This state,
however, varies over time. Mechanica positioning of

devices changes, and cached data can change as a result
of 1/Os performed by the application, other applications
or system services, or even other clients in a distributed
system. Adding alock or reservation mechanism would
improve the accuracy and lifetime of SLEDs by control-
ling access to the affected resources.

Another possibility is to include in the SLEDs them-
selves some description of how the system state will
change over time, such as a program segment that appli-
cations could use to predict which pages of a file would
be flushed from cache based on current page replace-
ment algorithms.

4 Implementation

The implementation of SLEDs includes some kernel
code to assess and report the state of data for an open
file descriptor, an i oct | cal for communicating that
information to the application level, and a library that
applications can use to simplify the job of ordering 1/0
requests based on that information.

This section describes the interna details of the imple-
mentation of the kernel code, library and application
maodifications.

41 Kernd

We modified the Linux kernel to determinewhich device
the pages for a file reside on, and whether or not the
pages are currently in memory. All of the changes were
made in the virtual file system (VFS) layer, independent
of the on-disk data structure of ext2 or 1SO9660.

A sl eds_t abl e, kept in the kerndl, is filled by call-
ing a script from /etc/rc.d/init.d every time
the machine is booted. The sl eds t abl e has ala
tency and bandwidth entry for every storage device,
as well as NFS-mounted partitions and primary mem-
ory. The latency and bandwidth for both local and
network file systems are obtained by running the | m
bench benchmark [MS96]. The current implementa-
tion keepsonly asingle entry per device; for better accu-
racy, entries which account for the different bandwidths
of different disk zones will be added in a future ver-
sion [Van97]. The script fills the kernel table via a new
i octl call, FSLEDS_FI LL, added to the generic file
systemi oct | .



Applications can retrieve the SLEDs for afile using an-
other new i oct | call, FSLEDS_GET, which returns a
vector of SLEDs. To build the vector of SLEDs and
their latency and bandwidth, each virtual memory page
of the data file is checked. After the kernel finds out
where a page of the datafile resides, it assigns a latency
and bandwidth from the sl eds _t abl e to this page. If
consecutive pages have the same latency and bandwidth,
i.e., they arein the same storage device, they are grouped
into one SLED. During this process, the length and off-
set of the SLEDs are also assigned.

4.2 Library and API

The means of communi cation between application space
and kernel space isviai oct | calls which return only
SLEDs. Thisformisnot directly very useful, soalibrary
was also written that provides additional services. The
library provides a routine to estimate delivery time for
the entire file, and severa routines to help applications
order their 1/0 requests efficiently.

The three primary library routines for reordering 1/0
are sl eds_pi ck_.init, sl eds_pi ck_next read,
and sl eds_pi ck_fini sh. Applications first open
the file, then call sl eds_pi ck. nit, which uses
ioctl to retrieve the SLEDs from the kernel.
sl eds _pi ck_next _read is called repeatedly to ad-
vise the application where to read from the file next.
The application then moves to the recommended posi-
tion via | seek, and cals r ead to retrieve the next
chunk of the file. The preferred size of the chunks the
application wants to read is specified as an argument to
sl eds_pi ck. nit, and sl eds _pi ck_next _r ead
will return chunks that size or smaller. The application
is presumed to be following the library’s advice, but it
does not check. The library will return each chunk of
the file exactly once.

The library checks for the lowest latency among unseen
chunks, then chooses to return the chunk with the lowest
file offset among those with equivalent latencies. In the
simple case of adisk-based file system with acold cache,
thisalgorithm will degenerateto linear access of thefile.
Ascurrently implemented, the SLEDs areretrieved from
thekernel only whensl| eds pi ckd ni t iscaled. Re-
freshing the state of those SLEDs occasionally would al-
low the library to take advantage of any changesin state
caused by e.g. file prefetching.

A library routine, sl eds total deliverytine,
provides an estimate of the amount of time required
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Figure 4: Adjusting SLEDs for record boundaries

to read the entire file, for applications only interested
in reporting or using that value. It takes an argu-
ment, att ack_pl an, which currently can be either
SLEDS_LI NEAR or SLEDS_BEST, to describe the in-
tended access pattern.

Generally, the library and application are most effi-
cient if these accesses can be done on page boundaries.
However, many applications are interested in variable-
sized records, such as lines of text. An argument to
sl eds _pi ck.i nit alows the application to ask for
record-oriented SLEDs, and to specify the character
used to identify record boundaries.

The library prevents applications from running over the
edge of a low-latency SLED and causing data to be
fetched from higher-latency storage when in record-
oriented mode. It doesthis by pulling in the edges of the
SLEDs from page boundaries to record boundaries, as
shown in Figure 4. The leading and trailing record frag-
ments are pushed out to the neighboring SLEDs, which
are higher latency. This requires the SLEDs library to
perform some 1/O itself to find the record boundaries.
In the figure, the gray areas are high-latency SLEDs in
a file, and the white area is a low-latency SLED. The
numbers above represent the access ordering assigned
by the library. The upper line is before adjustment for
record boundaries, and the lower line is after adjustment
for variable-sized records with a linefeed record separa-
tor.

4.3 Applications

Figure 5 shows pseudocode for an application using the
SLEDspick library. After initializing the SLEDslibrary,
the application loops, first asking the library to select a
file offset, then seeking to that location and reading the
amount recommended.

Applications that have been modified to use SLEDs in-
clude the GNU versions of the Unix system utilitieswc,



function arguments return value
sleds_pick_init file descriptor, preferred buffer size buffer size
sleds_pick_next_read file descriptor, buffer size, record flag read location, size
sleds_pick_finish file descriptor (none)
dleds total_delivery_time file descriptor, attack plan | estimated delivery time

Table 1: SLEDslibrary routines

int offset, nbytes, Renuain;
int FileSize, fd;

char buffer[ BUFSI ZE] ;

fd = open(Fil eNanme, flags);

sl eds_pi ck_init(fd, BUFSI ZE)
for( Remain = FileSize ; Remain ;
Remai n -= nbytes ){
nel em = M N( Rerrai n, BUFSI ZE)
sl eds_pi ck_next _read(fd, &offset,
&nbyt es);

| seek(fd, offset, SEEK SET);
read(fd, buffer, nbytes);
process_dat a( buffer, nbytes);

}
sl eds_pi ck_finish(fd);
cl ose(fd);

Figure 5: Application pseudocode

grep, andfi nd, and the GNOME file manager gnt.
These examples demonstrate the three ways in which
SLEDs can be useful. The first two use SLEDs to re-
order 1/0O operations, gaining performance and reducing
total 1/O operations by taking advantage of cached data
first, using algorithmssimilar to figure 5. f i nd ismodi-
fied to include a predicate which allows the user to select
files based on total estimated latency (either greater than
or less than a specified value). This can be used to prune
expensive 1/O operations. gnt reports expected file re-
trieval times to the user, alowing him or her to choose
whether or not to access thefile.

We have a so adapted two members of the LHEASOFT
suite of applications, f i mhi st o andf i ngbi n, touse
SLEDs. NASA's Goddard Space Flight Center sup-
ports LHEASOFT, which provides numerous utilities
for the processing of imagesin the Flexible Image Trans-
port System, or FITS, format used by professiona as-
tronomers. The FITS format includes image metadata,
aswell asthe dataitself.

4.4 Implementation Limitations

The current implementation provides only a basic esti-
mate of latency based on device characteristics, with no
indication of current head or rotational position. The
primary information provided is a distinction between
levels of the storage system, with estimates of the band-
width and latency to retrieve data at each level. Thisin-
formationis effective for disk drives, but will need to be
updated for tape drives. Future extensions are expected
to provide more detailed mechanical estimates.

5 Resultsand Analysis

The benefits of SLEDsinclude both useful predictability
in I/O execution times, and improvements in execution
times for those applications which can reorder their 1/O
requests. In this section we discuss primarily the latter,
objectively measurable aspects.

We hypothesize that reordering 1/O requests according
to SLEDs information will reduce the number of hard
page faults, that this will translate directly to decreased
execution times, and that the effort required to adopt
SLEDs is reasonable. To validate these hypotheses, we
measured both page faults and elapsed time for the mod-
ified applications described above, and report the num-
ber of lines of code changed.

SLEDs are expected to benefit hierarchical storage man-
agement systems, with their very high latencies, more
than other types of file systems. The experiments shown
here arefor normal on-disk file system structures cached
in primary memory. Thus, the results here can be viewed
asindicative of the positive benefits of SLEDS, but gains
may be much greater with HSM systems.



5.1 Experimental Setup

To measure the effect of reordering data requests, the
average time and page faults taken to execute the ap-
plications with SLEDs were plotted against the values
without SLEDs. We used the system t i me command
to do the measurements. Tests were run on we and
gr ep for data files that reside on hard disk, CD-ROM,
and NFS file systems. gr ep was tested in two differ-
ent modes, once doing a full pass across the data file,
and once terminating on the first match (using the - q
switch). The modified LHEASOFT applications were
run only against hard disk file systems.

During the test runs, no other user activity was present
on the systems being measured. However, some vari-
ability in execution times is unavoidable, due to the
physical nature of I/O and the somewhat random nature
of page replacement algorithms and background system
activity. All runs were done twelve times (representing
acouple of days execution timein total) and 90% con-
fidence intervals calculated. The graphs show the mean
and confidence intervals, though in some cases the con-
fidenceintervals are too small to see.

Data was taken for test file sizes of 8 to 128 megabytes,
in multiples of eight, for most of the experiments. With
a primary memory size of 64 MB, this upper bound is
twice the size of primary memory and roughly three
times the size of the portion of memory available to
cache file pages. We expect no surprises in the range
above this value, but a gradual decrease in the relative
improvement.

Because SLEDs are intended to expose and take advan-
tage of dynamic system state, all experimentswere done
with a warm file cache. A warm cache is the natural
state of the system during use, since files that have been
recently read or written are commonly accessed again
within a short period of time. SLEDs provide no benefit
in the case of a completely cold RAM cache for a disk-
based file system. The first run to warm the cache was
discarded from the result. The runs were done repeat-
edly in the same mode, so that, for example, the second
run of gr ep without SLEDs found thefile system buffer
cachein the state that the first run had left it.

Tables 2 and 3 contain the device characteristics used
during these experiments.

Table 4 lists the number of lines of source code modified
in each application. The“src” columns are lines of code
in the main application source files. The “lib” are lines

level latency | throughput
memory 175 nsec 48 MB/s
hard disk 18msec | 9.0MB/s
CD-ROM | 130msec | 2.8 MBI/s
NFS 270msec | 1.0MB/s

level latency | throughput
memory 210 nsec 87 MB/s
harddisk | 16.5 msec 7.0 MB/s

Table 2: Storage levels used for measuring Unix utilities

Table 3: Storage levels used for measuring LHEASOFT
utilities

of code in additional, shared, linked-in libraries. The
“modified” columnsarelines of code added or modified,
and the “total” columns are the totals. The LHEASOFT
cfi tsi olibrary modifications are shared, used in both
fi mhisto and fi ngbi n. The gr ep modifications
are most extensive because of the need to buffer and sort
output in a different fashion.

5.2 Unix Utilities

In gnt, a new simple panel is added to the file prop-
erties dialog box, as shown in figure 6. This follows
closely the implementation of other windows such as
the “general” and “URL" properties panels. The SLEDs
panel reports the length, offset, latency, and bandwidth
of each SLED, as well as the estimated total delivery
timefor thefile. Users can interactively use this panel to
decide whether or not to access files; thisis expected to
be especially useful in HSM systems and low-bandwidth
distributed systems. The same approach could be used
with a web browser, if HTTP were extended to support
SLEDs across the network.

application | srclinesof code | liblinesof code

modified | total | modified | total
grep 560 | 1930 - | 20K
we 140 530 - | 48K
find 70 | 1,600 -] 23K
gnc 93 | 1,500 - | 180K
cfitsio - - 190 | 101K
finmhisto 49 645 190 | 260K
fingbin 45 870 190 | 260K

Table 4: Lines of code modified



Statistics | Options | Permissions SLEDs
K
Estimated total delivery time: 13.280095 seconds
SLED bandwidth latency offset length

0 3000000.000000 0.018000 0x0 0x3175000

1 46000000.000000 0.000000 0x3175000 Dx4a000

2 3000000.000000 0.016000 0x31hf000 0x75000 /
&P ok I X cancel |

Figure 6: gnt file properties panel with SLEDs

The applications wec and grep implemented with
SLEDs have a switch on the command that allows the
user to choose whether or not to use SLEDs. If the
SLEDs switch is specified, instead of accessing the data
file from the beginning to the end, the application will
cal sl eds_pi ck. nit, sl eds_pi ck_next _r ead
and sl eds _pi ck_fi ni sh, and use them as described
in section 4.2.

For we, since the order of data access is not significant,
little overhead is generated in modifying the code. For
applications where the order of data accessis influential
in code design, such as gr ep, more code changes are
needed and as a result may have heavier execution over-
head. In our implementation, most of the design with
SLEDs is adopted from the one without SLEDs. How-
ever, unless the user chooses not to output the matches,
the result will have to be output to st dout in the order
that they appear in the file. To dea with this, we have
to store amatch in alinked list when traversing the data
file in the order recommended by SLEDs. We sort the
matches in the end by their offset in the file and then
dump them to st dout . As aresult, switches such as
- A - B, - b, and - n had to be reimplemented.

Consider searching alarge sourcetree, such asthe Linux
kernel. Programmers may do fi nd -exec grep
(which runs the gr ep text search utility for every file
in a directory tree that matches certain criteria, such as
ending in . ¢) while looking for a particular routine. If
the routine is near the end of the set of files as normally
scanned by fi nd, or if the user types control-C after

seeing what he wants to see, the entry may be cached
but earlier files may already have been flushed. Repeat-
ing the operation, then, causes a complete rescan and
fetch from high-latency storage. The first author often
does exactly this, and the SLEDs-aware f i nd alows
him to search cache first, then higher latency data only
as needed.

Standard f i nd provides a switch that stops it from
crossing mount pointsasit searches directory trees. This
isuseful to, for example, prevent f i nd from running on
NFS-mounted partitions, where it can overload a server
and impair response time for al clients. On HSM sys-
tems, users may wish to ignore all tape-resident data, or
to read datafrom atape currently mounted on adrive, but
ignore those that would require mounting a new tape. In
wide-area systems, users may wish to ignore large files
that must come across the network.

In our modified fi nd, the user can choose to find
files that have a total delivery time of less than, equal
to, or greater than a certain time. find -1 atency
+n looks for files with more than n seconds total
retrieval time, n means exactly n seconds and - n
means less than n seconds. mm or Mh instead of n
can be used for units of milliseconds, and un or Un
used for microseconds. The SLEDs library routine
sl eds_total delivery_time was used for this
comparison. Only 2 extra routines (less than 100 lines
of code) were needed to add SLEDs to fi nd and all
functionality has been kept the same. These two extra
routines work and were implemented similarily to other
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Figure 7: we times over NFS, with and without SLEDS,
warm cache. The legends on the graphs are correct, but
somewhat difficult to follow; look first for the plus signs
and Xes. The dashed and solid lines in the legend refer
to the error bars, not the datalines.
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Figure 8: wc time ratios (speedup) over NFS, with and
without SLEDs, warm cache

predicatessuch as- at i e.

Figure 7 presents the execution times for we against file
size on an NFSfile system with and without SLEDs. As
to be expected, SLEDs starts to show an advantage at file
sizes over about 50MB as the cache becomes unable to
hold the entire file. The difference in execution time re-
mains about constant afterwards since the average usage
of cached data by SLEDs is expected to be determined
by the cache size, which is constant. As a result, we
have the best percentage gain at around 60MB. We also
noticed a very consistent performance gain, as shown by
the small error bars in the plot. Figure 8 is the ratio of
the two curvesin Figure 7. The execution time without
SLEDs is divided by the execution time with SLEDs,
providing a speedup number. As we can see, this ratio
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Figure 9: we page faults on CD-ROM, with and without
SLEDs, warm cache

peaks at around 60MB at a value of as large as 4.5, and
can be comfortably considered to be a 50% or better im-
provement over a broad range.

Figure 9 plots the pagefaults for we against file size on
cdrom with and without SLEDs. Asto be expected, this
result shows a close correlation with the execution time.
Without SLEDSs, both the execution time and pagefaults
increase sharply. With SLEDs, the increase in both is
gradual.

Figure 10 plots the execution time for gr ep for all
matches against file size on cdrom with and without
SLEDs. Although there is a small amount of overhead
for small files, gr ep also demonstrated avery favorable
gain of about 15 seconds for CD-ROM for large files.
This can be interpreted as the time taken to fill the file
cache from CD when SLEDs are not used, as the ap-
plication derives essentially no benefit from the cached
datain this case.

Because this approach requires buffering matches be-
fore output, if the percentage of matches is large, per-
formance can be hurt by causing additional paging. All
experiments presented here are for small match percent-
ages (kilobytes out of megabytes) output in the correct
order.

Theincreasein execution time for small filesisall CPU
time. Thisis due to the additional complexity of record
management with SLEDs, and to more data copying.
We usedr ead( ) , rather than mmap( ) , which does not
copy the data to meet application alignment criteria. An
nmap-friendly SLEDs library is feasible, which should
reduce the CPU penalty. The increase appears large in
percentage terms, but is a small absolute value. Regard-
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Figure 10: Executiontime of gr ep for all matches, CD-
ROM, warm cache

less, one of the premises of SLEDs is that modest CPU
increases are an acceptable price to pay for reduced 1/0
loads.

Figure 11 plots the execution time for gr ep for thefirst
match against file size on an ext2 file system (local hard
disk) with and without SLEDSs, for a single match that
was placed randomly in the test file. The first match ter-
mination, if it finds a hit on cached data, can run with-
out executing any physical 1/0 at all. Because the ap-
plication reads all cached data first when using SLEDs,
it has a higher probability of terminating before doing
any physical 1/0. The non-SLEDs run is often forced to
do lots of 1/O because it reads from the beginning of the
file rather than reading cached data first, regardless of
location. Quite dramatic speedups can therefore occur
when using SLEDs, relative to a non-SLEDs run. This
istheideal benchmark for SLEDsin terms of individual
application performance.

The execution time ratio for gr ep with the first match
against file size on the ext2 file system, with and without
SLEDs, is shown in Figure 12. In addition, we have
computed the cumulative distribution function (CDF)
for gr ep for the first match on an NFS file system with
and without SLEDSs, as shown in Figure 13.

The large error bars in Figure 11 for the case without
SLEDs areindicative of high variability in the execution
time caused by poor cache performance. The cumulative
distribution function for execution times shown in Fig-
ure 13 suggeststhat gr ep without SL EDs gained essen-
tially no benefit from the fact that a mgjority of the test
fileis cached.
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Figure 11: Execution time of gr ep for one match, ext2
FS, warm cache
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Figure 12: Ratio of mean execution time (speedup) of
gr ep for one match, ext2 FS, warm cache, with and
without SLEDs
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Figure 14: Elapsed timefor f i mhi st o, ext2 FS, warm
cache

53 LHEASOFT

fi mhi st o copiesaninput dataimage file to an output
file and appends an additional data column containing
a histogram of the pixel values. It is implemented in
three passes. The first pass copies the main data unit
without any processing. The second pass reads the data
again (including performing a data format conversion, if
necessary) to prepare for binning the data into the his-
togram. The third pass performs the actual binning op-
eration, then appends the histogram to the output file.
Thisthree-pass a gorithm resulted in observed cache be-
havior like that shown in Figure 3.

We adapted f i mhi st o touse SLEDsin the second and
third passes over the data, reordering the pixelsread and
processed to take advantage of cached data. We imple-
mented an additional library for LHEASOFT that allows
applications to access SLEDs in units of data elements
(usually floating point numbers), rather than bytes; the
calls are the same, with f f _ prepended. Tests were per-
formed only on an ext2 file system, and only for file sizes
up to 64 MB.

fi mhi st o showed somewhat lower gains than wc and
gr ep, dueto the complexity of the application, but still
provided a 15-25% reduction in elapsed time and 30-
50% reduction in page faults on files of 48 to 64 MB.
Figure 14 shows the familiar pattern of SLEDs offering
abenefit aboveroughly the file system buffer cache size.
fi mhi st 0’s /O workload is one fourth writes, which
SLEDs does not benefit, and includes data format con-
version as well. These factors contribute to the differ-
ence in performance gains compared to the above appli-
cations.
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Figure 15: Elapsed time for f i ngbi n, ext2 FS, warm
cache, 4x data reduction

We modified f i mgbi n to reorder the reads on its in-
put file according to SLEDs. fi mgbi n rebins an im-
age with arectangular boxcar filter. The amount of data
written is smaller than the input by a fixed factor, typi-
cally four or 16. It can also be considered representative
of utilities that combine multiple input images to create
a single output image. The main f i ngbi n code isin
Fortran, so we added Fortran bindings for the principal
SLEDs library functions.

Figure 15 shows elapsed time for f i mgbi n. It shows
an eleven percent reduction in elapsed time with SLEDs
for a data reduction factor of four on file sizes of 48MB
or more. Thisis smaller than the benefit to f i mhi st o,
despite similar reductions of 30-50% in pagefaults. We
believe thisis due to differences in the write path of the
array-based code, which is substantially more complex
and does more internal buffering, partially defeating our
attempts to fully order 1/Os. For a data reduction fac-
tor of 16, the elapsed time gains were 25-35% over the
same range, indicating that the write traffic is an impor-
tant factor. *

6 FutureWork

The biggest areas of futurework areincreasing the range
of applicationsthat use SLEDs, improving the accuracy
of SLEDs both in mechanical details and dynamic sys-
tem load, and the communication of SLEDsamong com-
ponents of the system (including between file servers
and clients). The limitations discussed in section 3.4

1A bug inthe SLEDsimplementation currently limits the rebinning
parameters which operate correctly.



need to be addressed.

Devices can be characterized either externally or inter-
nally. Hillyer and Sandsta did external device charac-
terization on tape drives, and we have done so on zoned
disk drives[Van97]. The devicesor subsystems could be
engineered to report their own performance characteris-
tics. Cooperation of subsystem vendorswill be required
to report SLEDs to the file system. Without this data,
building true QoS-capable storage systems out of com-
plex components such as HP's AutoRAID [WGSS95]
will be difficult, whether done with or without SLEDSs.

Work has begun on a migrating hierarchical storage
management system for Linux [Sch00]. This will pro-
vide an excellent platform for continued devel opment of
SLEDs.

7 Conclusion

This paper has shown that Storage Latency Estimation
Descriptors, or SLEDs, provide significant improve-
ments by allowing applications to take advantage of
the dynamic state of the multiple levels of file system
caching. Applications may report expected file retrieval
time, prune 1/Os to avoid expensive operations, or re-
order 1/0Osto utilize cached data effectively.

Reporting latency, as we have done with gnt, is useful
for interactive applicationsto providethe user with more
insight into the behavior of the system. This can be ex-
pected to improve user satisfaction with system perfor-
mance, as well as reduce the amount of time users ac-
tually spend idle. When users are told how long it will
take to retrieve needed data, they can decide whether or
not to wait, or productively multitask while waiting.

Pruning 1/0s is especialy important in heavily loaded
systems, and for applicationssuch asf i nd that canim-
pose heavy loads. Thisisuseful for network file systems
and hierarchical storage management systems, wherere-
trieval times may be high and impact on other usersisa
significant concern. Because the SLEDs interfaceisin-
dependent of the file system and physical device struc-
ture, users do not need to be aware of mount points, vol-
ume managers, or HSM organization. Scripts and other
utilities built around this concept will remain useful even
as storage systems continue to evolve.

Reordering 1/0s has been shown, through a series of ex-
periments on we and gr ep, to provide improvement

in execution time of from 50 percent to more than an
order of magnitude for file sizes of one to three times
the size of the file system buffer cache. Experiments
showed an 11-25 percent reduction in elapsed time for
fi mhi sto and fi ngbi n, members of a large suite
of professional astronomical image processing software.
SLEDs-enabled applications have more stable perfor-
mance in this area as well, showing a gradual declinein
performance compared to the sudden step phenomenon
at just above the file system buffer cache size exhibited
without SLEDs. These experiments were run on ext2,
NFSand CD-ROM file systems; the effects are expected
to be much more pronounced on hierarchical storage
management systems.
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