
Devil: An IDL for Hardware Programming

Fabrice Mérillon Laurent Réveillère∗

Charles Consel∗ Renaud Marlet† Gilles Muller

Compose Group, IRISA / INRIA, University of Rennes I
Campus Universitaire de Beaulieu, F-35042 Rennes Cedex, France

E-mail: {merillon,lreveill,consel,marlet,muller}@irisa.fr

Abstract

To keep up with the frantic pace at which de-
vices come out, drivers need to be quickly devel-
oped, debugged and tested. Although a driver is
a critical system component, the driver develop-
ment process has made little (if any) progress.
The situation is particularly disastrous when
considering the hardware operating code (i.e.,
the layer interacting with the device). Writ-
ing this code often relies on inaccurate or in-
complete device documentation and involves
assembly-level operations. As a result, hard-
ware operating code is tedious to write, prone
to errors, and hard to debug and maintain.

This paper presents a new approach to de-
veloping hardware operating code based on an
Interface Definition Language (IDL) for hard-
ware functionalities, named Devil. This IDL
allows a high-level definition of the communi-
cation with a device. A compiler automatically
checks the consistency of a Devil definition and
generates efficient low-level code.

Because the Devil compiler checks safety crit-
ical properties, the long-awaited notion of ro-
bustness for hardware operating code is made
possible. Finally, the wide variety of devices
that we have already specified (mouse, sound,
DMA, interrupt, Ethernet, video, and IDE disk
controllers) demonstrates the expressiveness of
the Devil language.

∗Author’s current address: LaBRI / ENSERB, 351
cours de la Libération, F-33405 Talence Cedex, France.

†Author’s current address: Trusted Logic, 5 rue
du Bailliage, F-78000 Versailles, France. E-mail:
Renaud.Marlet@trusted-logic.fr.

1 Introduction

A device driver is a key system component
that makes hardware innovation available to
end users. Device drivers are critical both
in general-purpose computers and in the fast-
evolving domain of appliances. If driver devel-
opment falls behind, product competitiveness
can be compromised. If a device driver is faulty,
a hardware innovation may turn into a disaster
instead of improving competitiveness.

Still, ever since the first device drivers have
been written, their development process has
made little (if any) progress. This situation has
particularly disastrous effects when considering
hardware operating code (i.e., code communi-
cating with the hardware). This layer of code
is well-known to be low level and error prone.

Hardware operating code is low level because
it consists of many bit operations. Indeed, we
have found that bit operations can represent
up to 30% of driver code1. Such low-level pro-
gramming is obviously prone to errors and re-
quires tedious debugging. In fact, advances in
programming languages have had no impact on
the development of hardware operating code:
there is no syntactic support for low-level oper-
ations, there is no verification support to iden-
tify incorrect usage of these operations, and
there is no tool support to facilitate debugging.

Additionally, hardware documentation typ-
ically contains imprecise or inaccurate infor-
mation. Therefore, writing hardware operating

1This measurement was performed on various
Linux 2.2-12 drivers.

code typically involves laboriously searching for
obscure incantations aimed at performing spe-
cific operations on the device. Not only can
this sometime cause unexpected behavior, but
it also makes re-use of hardware operating code
difficult.

Finally, there are no recognized methodolo-
gies for structuring device drivers. Even worse,
a driver is often written by modifying an exist-
ing one. As a result, the code quickly becomes
tangled, which makes debugging and mainte-
nance complex.

Our proposal

This paper describes a new approach to de-
veloping the hardware operating layer of a
driver. Our approach allows drivers to be writ-
ten in a high-level language, allows important
safety properties to be checked, and allows low-
level code to be automatically generated.

We introduce an Interface Definition Lan-
guage (IDL) to describe hardware function-
alities, named Devil. IDLs are extensively
used in modern OSes, either to hide hetero-
geneity and intricacies of message construction
in distributed systems [3, 13], or to glue to-
gether components in modular operating sys-
tems [2, 9, 10]. Just as RPC IDLs convention-
ally define operations and their input/output
types, Devil specifies the functional interface
of the device. To do so, it provides the pro-
grammer with abstractions and syntactic con-
structs that are specific to describing devices.
From a Devil specification, a compiler automat-
ically generates stubs containing low-level code
to operate the device. Furthermore, verifica-
tion tools enable critical safety properties to
be checked at compile time, and at run time if
necessary.

Just as an IDL typically allows code to be
re-used, a Devil specification can be re-used in
different contexts (e.g., various operating sys-
tems). More generally, our vision is that Devil
specifications either should be written by de-
vice vendors or should be widely available as
public domain libraries in order to ease driver
development.

Our contributions are as follows.

• We have designed and implemented an
IDL for devices. This language is an alter-
native to assembly-language-like program-
ming of devices.

• We propose tools to verify critical safety
properties of hardware operating code.
These tools enable us to provide the long-
awaited notion of robustness for device
drivers.

• We present a comparison between Devil
specifications and existing driver code.
This comparison is based on experimen-
tal data which demonstrate that a Devil
specification is up to 5.9 times less prone
to errors than C code, with almost no loss
in performance.

The rest of this paper is organized as fol-
lows. Section 2 presents the Devil language.
Section 3 describes the safety properties that
can be verified both statically on Devil specifi-
cations and dynamically by the generated inter-
face. Section 4 assesses the benefits of our ap-
proach by comparing hand-crafted drivers with
equivalent ones written using Devil. Section 5
describes related work. Section 6 concludes and
suggests future work.

2 Devil

Devil is an IDL for specifying the functional
interface of a device. To design Devil, we
have studied a wide spectrum of devices and
their corresponding drivers, mainly from Linux
sources: Ethernet, video, sound, disk, inter-
rupt, DMA and mouse controllers. This study
was supported by literature about driver devel-
opment [7, 16], device documentation available
on the web, and discussions with device driver
experts for Windows, Linux and embedded op-
erating systems. Devil has proved expressive
enough to describe even devices having a con-
torted interface such as the Crystal CS4236B
sound controller.

Concretely, a device can be described by
three layers of abstraction: ports, registers, and
device variables. The entry point of a Devil
specification is the declaration of a device, pa-
rameterized by ports or ranges of ports, which

device logitech_busmouse (base : bit[8] port @ {0..3}) 1
{

// Signature register (SR)
register sig_reg = base @ 1 : bit[8]; 4
variable signature = sig_reg, volatile, write trigger : int(8); 5

// Configuration register (CR)
register cr = write base @ 3, mask ’1001000.’ : bit[8]; 8
variable config = cr[0] : { CONFIGURATION => ’1’, DEFAULT_MODE => ’0’ }; 9

// Interrupt register
register interrupt_reg = write base @ 2, mask ’000.0000’ : bit[8]; 12
variable interrupt = interrupt_reg[4] : { ENABLE => ’0’, DISABLE => ’1’ }; 13

// Index register
register index_reg = write base @ 2, mask ’1..00000’ : bit[8]; 16
private variable index = index_reg[6..5] : int(2); 17

register x_low = read base @ 0, pre {index = 0}, mask ’****....’ : bit[8]; 19
register x_high = read base @ 0, pre {index = 1}, mask ’****....’ : bit[8]; 20
register y_low = read base @ 0, pre {index = 2}, mask ’****....’ : bit[8]; 21
register y_high = read base @ 0, pre {index = 3}, mask ’...*....’ : bit[8]; 22

structure mouse_state = { 24
variable dx = x_high[3..0] # x_low[3..0], volatile : signed int(8); 25
variable dy = y_high[3..0] # y_low[3..0], volatile : signed int(8); 26
variable buttons = y_high[7..5], volatile : int(3); 27

};
}

Figure 1: Logitech Busmouse Specification

abstract physical addresses. Ports then allow
device registers to be declared; these define the
granularity of interactions with the device. Fi-
nally, device variables are defined from regis-
ters, forming the functional interface to the de-
vice.

These three layers of abstraction are illus-
trated by the following fragment of the Devil
description of the Logitech Busmouse con-
troller (see Figure 1 for a complete description).

device logitech_busmouse(base : bit[8] port@{0..3})
{

register sig_reg = base @ 1 : bit[8];
variable signature = sig_reg, ... : int(8);
...

}

The logitech_busmouse declaration is param-
eterized by a range of ports specified as the
main address base and a range of offsets (from
0 to 3). An eight-bit register sig_reg is de-
clared at port base, offset by 1. Finally, the
device variable signature is the interpretation
of this register as an eight-bit unsigned inte-
ger. This fragment declares a device whose
functional interface consists of a device variable
(signature). Only device variables are visible
from outside a Devil description ports and reg-
isters are hidden. In fact, for each variable the
Devil compiler generates two C stubs that per-

mit to write or read the variable by emitting
the proper I/O operations.

In the rest of this section, we first describe
the basic Devil constructs, and then present ad-
vanced Devil features that allow the description
of devices with contorted addressing modes.

2.1 Basic Devil

Ports, registers, and device variables are the
basic layers of abstraction that describe the in-
terface of a device. We now present their usage
by describing in detail the Devil specification
of the Logitech Busmouse (see Figure 1), and
a fragment of the NE2000 Ethernet controller.

Ports. The port abstraction is at the basis
of the communication with the device. A port
hides the fact that, depending on how the de-
vice is mapped, it can be operated via either
I/O or memory operations. A device often has
several communication points whose addresses
are derived from one or more base addresses.
Therefore, the port constructor, denoted by @,
takes as arguments a ranged port and a con-
stant offset (e.g., base@1 as illustrated by line 4
of the Busmouse specification). To enable veri-

fication, the range of valid offsets must be spec-
ified within the entry point declaration (e.g.,
port@{0..3} as illustrated by line 1 of the Bus-
mouse specification).

Registers. Registers define the granularity
of interaction with a device; as such register
size (in number of bits) must be explicitly spec-
ified. Registers are typically defined using two
ports: one for reading and one for writing.
Only one port needs to be provided when read-
ing and writing share the same port, or when
the register is read-only or write-only.

A register declaration may be associated
with a mask to specify bit constraints. An el-
ement of this mask can either be ‘*’ to denote
a relevant bit, ‘0’ or ‘1’ to denote a bit that is
irrelevant when read but has a fixed value (0 or
1) when written, or ‘-’ to denote a bit that is ir-
relevant whether read or written. As an exam-
ple, consider the declaration of the write-only
register index_reg in line 16 of the Busmouse
specification.

register index_reg =
write base@2, mask ’1..00000’ : bit[8];

This mask indicates that only bits 6 and 5
are relevant. Also, bit 7 is forced to 1 when
written while bits 4 through 0 are forced to 0.
Proper register masking is performed as part of
the stubs generated by the Devil compiler.

Device variables. In order to minimize the
number of I/O operations required for com-
municating with a device, hardware designers
often group several independent values into a
single register. Accessing these values requires
bit mask and shift operations which are error-
prone in a general programming language such
as C. Devil abstracts values as device variables,
which are defined as a sequence of bit regis-
ters. Device variables are strongly typed in or-
der to detect potential misuses of the device.
Possible types are booleans, enumerated types,
signed or unsigned integers of various sizes, and
ranges or sets of integers. In line 17 of the Bus-
mouse specification, the 5th and 6th bit of the
index_reg register make up a two-bit unsigned
integer variable (i.e., a variable that can take
a value from 0 to 3). The private attribute

means that the index variable is not defined in
the functional interface of the Busmouse con-
troller and can not be directly accessed by the
driver programmer.

private variable index = index_reg[6..5] : int(2);

Access pre-actions. Device functionalities
are often extended by mapping multiple reg-
isters to a single physical address. Examples
are index-based addressing mode and banks of
registers. As a result, accessing such registers
requires the setting of a specific context which
may involve several I/O operations. To cap-
ture this situation, Devil allows pre-actions to
be attached to a register. Lines 19 and 20 of
the Busmouse specification declare two read-
only registers on the same port base@0, pro-
vided that the variable index is set either to 0
or 1 prior to the port access.

register x_low = read base@0, mask ’****....’,
pre {index = 0} : bit[8];

register x_high = read base@0, mask ’****....’,
pre {index = 1} : bit[8];

Register concatenation. Device variables
can be spread over several registers. As illus-
trated by line 25 of the Busmouse specification,
constructing the dx variable requires concate-
nation of the two registers x_high and x_low.
The 8-bit variable dx is obtained by concaten-
ing the four lower bits of register x_high with
the four lower bits of register x_low.

variable dx = x_high[3..0] # x_low[3..0], ...

Enumerated types. Devil allows defining
an enumerated type to abstract the concrete
representation of bit values. The symbols <=,
=> and <=> define read, write and read-write
constraints, respectively. Enumerated types
are used to specify the valid values of a de-
vice variable. As an example, the config vari-
able declaration shown in line 9 of the Bus-
mouse specification declares the two modes
(CONFIGURATION and DEFAULT_MODE) that can
be written to the config variable.

variable config = cr[0] : {
CONFIGURATION => ’1’, DEFAULT_MODE => ’0’ };

Caching and synchronization. Sharing
one or more registers between variables induces
cache and synchronization problems. When
one variable needs to be written independently

from the others, the Devil compiler has to de-
termine a value to assign to the other vari-
ables. The choice of value depends on whether
the access to that variable is idempotent. A
Devil variable can be associated with a behav-
ior qualifier that specifies the access semantics.
No qualifier (the default case) means that the
access is idempotent and thus can be redone
without side effect; consequently, the variable
value can be cached. Such a behavior is often
associated with variables that serve as param-
eters.

A trigger behavior means that a write (or
read) access to the variable induces a side effect
on the controller. Since the side effect cannot
be re-done, multiple trigger variables cannot be
defined on a register unless a neutral value is
provided. Command variables usually have a
trigger behavior. The following fragment from
an NE2000 Ethernet controller presents exam-
ples of the trigger behavior.

register cmd = base@0 : bit[8];
variable st = cmd[1..0],

write trigger except NEUTRAL;
variable txp = cmd[2],

write trigger except NOP;
variable rd = cmd[5..3],

write trigger except NODMA;
private variable page = cmd[7..6] : int(2);

In this example, the register cmd is split into
four variables. While the page variable has an
idempotent behavior, the variables st, txp and
rd trigger an action when written, except for
specific values (NEUTRAL, NOP and NODMA).2

Finally, a volatile behavior specifies that a
read operation is not idempotent; two succes-
sive reads may deliver different values. When
one needs to get a consistent value of several
volatile variables, it is necessary to read them
together in one or multiple read operations and
cache the result for later use. To do so, Devil
allows several variables to be grouped using a
structure. The use of a structure is demon-
strated by the dx, dy and buttons variables
of the Busmouse specification (lines 19 to 22).

structure mouse_state = {
variable dx =

x_high[3..0] # x_low[3..0], volatile :...
variable dy =

y_high[3..0] # y_low[3..0], volatile :...
variable buttons = y_high[7..5], volatile : ...

};

2These values are defined using an enumerated type,
not shown here.

To access field variables dy and buttons, the
programmer first has to read the mouse_state
structure. Stubs generated for the structure
perform the effective I/O operations, while
stubs for the field variables access only the
cache. It should be noted that since dy and
buttons share the y_high register, y_high is
read only once. Use of the stubs by the driver
programmer is detailed in section 4.1.

Cache and synchronization issues are usu-
ally only informally documented by hardware
vendors. When programming controllers in
a general programming language, cache and
synchronization issues are typically solved in
an ad-hoc manner that limits code re-use and
driver evolution. In fact, the lack of a rigorous
description of variable behaviors often leads to
laborious testing until the expected functional-
ity is obtained. Also, without specific language
support, no verification of the correct usage of
variables is possible; this opens opportunities
for undetected errors.

Assessment. By clearly defining the seman-
tics of variable behavior, a Devil specification
serves as knowledge repository for the correct
use of a device. In fact, the driver programmer
is guided by the interface generated from the
Devil specification. This simplifies driver de-
velopment and improves re-use. Furthermore,
verification is possible at two design stages: (i)
on the Devil specification itself so as to check
consistency of declarations, (ii) on the correct
usage of interface procedures generated by the
Devil compiler. These advantages are even
more crucial when the device interface is awk-
ward and contorted. The next section presents
advanced Devil constructions which permit to
handle these situations.

2.2 Advanced Devil

To maximize performance, most modern de-
vices offer a simple, flat interface to registers.
However, devices are rarely built from scratch
and many of them are evolutions or supersets of
previous controllers. For example, today’s PCs
still rely on DMA, interrupt and graphics con-
trollers that were designed more than twenty
years ago.

Design constraints of older devices were
guided not only by performance but also by
technology and the size of the available I/O
address space. Adding functionalities to a de-
vice while maintaining backward compatibil-
ity induces tricks for addressing additional reg-
isters. These issues result in contorted ad-
dressing modes, making the programming of
such devices even more complex and error-
prone. Devil has been specifically targeted to-
wards supporting such devices. Let us now
present some of the advanced Devil features
using fragments from the Devil specifications
of the 8237A DMA, the 8259A interrupt, the
Crystal CS4236B, and the IDE controllers.

Register serialization. The 8237A DMA
controller provides 16-bit counters through a
single 8-bit port. As illustrated by the following
example, constructing the counter x requires
concatenation of the two registers cnt_high
and cnt_low. Since these registers are accessed
through the same port, a reading order has to
be specified (cnt_low then cnt_high). Finally,
a pre-action attached to cnt_low (write any
value to the flip-flop variable) permits to re-
set an internal pointer to this register.

register cnt_low =
data, pre {flip_flop = *} : bit[8];

register cnt_high = data : bit[8];
variable x = cnt_high # cnt_low : int(16)

serialized as {cnt_low; cnt_high};

Control-flow based serialization. The
8259A interrupt controller possesses various ex-
ecution modes that depend on the hardware
configuration (processor type, cascaded/single
controller) [12]. Initialization of the controller
is performed by writing to configuration vari-
ables defined over four initialization registers.
The initialization sequence varies with the ac-
tual values of configuration variables. Addi-
tionally, three of the configuration registers
(e.g., icw2, icw3, icw4) are mapped to a
single port and their addressing is implicitly
done by previously written configuration val-
ues. The following example shows how such
an addressing mode can be specified in Devil:
configuration variables are grouped together
within the init structure. Writing variables
of this structure into registers is ordered using
tests on variable values.

register icw1 =
write base@0, mask ’...1....’ : bit[8];

register icw2 = write base@1 : bit[8];
register icw3 = write base@1 : bit[8];
register icw4 =

write base@1, mask ’000.....’ : bit[8];

structure init = {
variable sngl = icw1[1] : {

SINGLE => ’1’, CASCADED => ’0’ };
variable ic4 = icw1[0] : bool;
...
variable microprocessor = icw4[0] : {

X8086 => ’1’, MCS80_85 => ’0’ };
} serialized as {

icw1;
icw2;
if (sngl == SINGLE) icw3;
if (ic4 == true) icw4;

};

Automata based addressing mode.
Among the chips we have studied, the Crys-
tal CS4236B sound chip is one of the most
complex. This chip is compatible with the
Windows Sound System standard [5], but pos-
sesses 18 additional registers. These registers
are doubly indexed through the I23 index.
Writing a specific device variable converts
I23 from an extended address register into an
extended data register. To convert I23 back to
an address register, the control register must
be written. In order to specify this automata,
Devil offers the notion of private variables that
are not mapped to a specific register (xm in
the following example). These variables can be
used as memory cells and can be updated when
writing a register or a device variable. The
code below shows how the extended registers
of the CS4236B can be specified using Devil.

private variable xm : bool;
register control =

base@0, set {xm = false} : bit[8];
variable IA = control : int{0..31};

// Indexed Registers I0 - I31
register I(i : int{0..31}) =

base@1, pre {IA = i} : bit[8];
register I23 = I(23), mask ’......0.’;

variable ACF = I23[0] : bool;
structure XS = {

variable XA = I23[2,7..4] : int(5);
variable XRAE = I23[3], set {xm = XRAE},

write trigger for true : bool;
};

// Extended Registers X0-X17,X25
register X(j : int{0..17,25}) = base@1,

pre {XS = {XA=>j; XRAE=>true}} : bit[8];

Block transfer. On some processors, such
as those of the Pentium family, replacing a

C loop over a variable read/write by a dedi-
cated looping instruction (e.g., rep on the Pen-
tium) is often more efficient. Variables with a
block transfer usage have to be identified with a
block keyword. For those variables, the Devil
compiler generates two processor-specific block
transfer stubs in addition to the single access
stubs. The Ide_data variable declaration from
the IDE specification shown below illustrates
the use of the block attribute.

variable Ide_data =
ide_data, trigger, volatile, block : int(16);

Other features of Devil are not detailed here.
These features include access post-actions, ar-
rays, register constructors and conditional dec-
larations depending on device modes. A com-
plete description of Devil can be found in [17].

3 Property Verification

Devil has been designed to express domain-
specific information about the functional inter-
face of devices. Because this information is
made explicit, Devil enables a variety of ver-
ifications that are beyond the scope of general
programming languages. As a result, more er-
rors can be caught earlier in the driver develop-
ment process. In turn, debugging is easier and
less time-consuming. Finally, the robustness of
the driver is improved since the programmer
has guarantees over the correctness of low-level
interactions.

This section summarizes the properties that
can be verified both when a Devil description
is compiled and when the resulting interface
implementation is used.

3.1 Verification of Devil specifica-
tions

Due to the declarative nature of the Devil
language, it is possible to verify the follow-
ing properties that ensure the consistency of
a specification:

Strong typing. Devil abstractions (e.g.,
ports, registers, variables) are strongly typed:
all uses of these abstractions can be matched

against their definition to check type correct-
ness. Types describe usage constraints for reg-
isters and variables that are read or write only.
Also, various size checks can be performed: the
size of data accesses on ports, the size of regis-
ters, the size of variables derived from conver-
sion functions, the size of bit masks, and the
size of bit patterns that are associated a sym-
bolic name in enumerated types, port ranges,
and bit ranges for register fragments.

No omission. All declared entities in a Devil
specification must be used at least once. This
constraint concerns port arguments in a device
declaration, values of ranged port offsets, regis-
ters, and register bits (although some bits can
be declared irrelevant using bit masks). Read
elements of a type mapping must be exhaus-
tive. Also, a type for reading (as well as possi-
bly writing) must be used with a readable vari-
able. The same holds for writing.

No double definition. All entities in a
Devil specification must be declared at most
once. This constraint concerns port arguments
in a device declaration, ports, registers, types,
symbolic names and bit patterns in enumerated
types and variables.

No overlapping definitions. Port and reg-
ister descriptions must not overlap. More pre-
cisely, each port must appear only once in
the register definitions, except when registers
are defined using disjoint pre-actions or masks.
However, the same port may be used for read-
ing from one register and writing to another.
No bit of a single register can be used in the
definition of two different variables.

3.2 Verification of interface usage

Verification of the correct usage of the gener-
ated interface can be both static and dynamic.
In the latter case, run-time checks are option-
ally included in the code for debugging pur-
poses.

When writing to a variable, a check can be
performed to verify that the written value falls

within the range specified by the variable type.
If the value is constant, the check can generally
be done at compile time. However, because the
type system of C is not powerful enough to ex-
press all Devil types, not all such verifications
can be implemented at compile time. In this
situation, checks have to be implemented in de-
bug mode using run-time checks. Finally, run-
time checks can optionally be generated after
variable reads. Such checks are useful for ver-
ifying that a device behaves accordingly to its
Devil specification.

Our experience in re-engineering drivers
showed that dynamic checks allow the early de-
tection of usage errors, preventing them from
becoming insidious bugs. This is particularly
valuable for kernel-mode drivers, which are
tricky to step through with a debugger. More-
over, since the checks are automatically and
systematically inserted and removed by the
compiler, their use is easy and safe.

4 Comparison with Hand-
Crafted Drivers

To assess our approach, we now compare the
use of Devil and C. First, we analyse issues re-
lated to code development. Then, we report on
a study based on mutation analysis to evaluate
the robustness of Devil and C implementations.
Finally, we discuss the performance of drivers
that use the C library automatically generated
from a Devil specification.

4.1 Driver development

To illustrate the benefits of Devil in terms
of separation of concerns and readability, we
compare a fragment of the original C imple-
mentation of the Logitech Busmouse driver (see
Figure 2) with the use of the interface (see
Figure 3) generated from the equivalent Devil
specification.

In a traditional C driver, the program-
mer writes code that accesses the device with
assembly-language-level operations (e.g., bit
manipulations). For example, the C code
needed to express the concatenation of the four
lower bits of registers y_high and y_low is te-
dious. As shown in Figure 2-a, macros are often

defined so as to factorize common expressions
or associate names with commands. Neverthe-
less, it is rather difficult to understand the be-
havior of the device from the implementation;
maintenance of this code is error-prone and not
easy.

Using Devil, driver development is a two
stage process: first the chip is specified in Devil,
then code is written using the stubs generated
from the specification. Describing the device
as opposed to coding improves readability. For
instance, the Devil description of the variable
dy in the Busmouse specification (see line 26 of
Figure 1) consists of a straightforward concate-
nation of two bit-fragments. The Devil specifi-
cation is so close to a device description that it
can be used for documentation purposes.

When writing the driver code, the program-
mer first has to include Devil-generated stubs
and to speficy configuration information. For
instance, in Figure 3-a, Busmouse stubs are
used in debug mode and in a single device
configuration (#define DEVIL_NO_REF). Fur-
ther communication with the device is encapsu-
lated in stubs (see Figure 3-b). Therefore, the
driver programmer only has to focus on oper-
ating the device using abstract values. Writing
the hardware operating code becomes a very
simple task, especially if the programmer can
use an existing Devil specification.

4.2 Robustness

As discussed in Section 3, Devil exposes
properties that can be automatically checked.
This section evaluates the benefits of these
checks in terms of software robustness.

Detecting bugs as early as possible is cru-
cial during the development process. A study
by DeMillo and Mathur found that simple er-
rors (e.g., typographic errors, inattention er-
rors) represent a significant fraction, though
not the majority, of the errors in production
programs. This study also revealed that such
errors can remain hidden for a long time. Even
though their study was concerned with the de-
velopment of TEX, which differs from device
drivers, these observations remain pertinent,
and are even more important considering the
permissive nature of a language such as C, es-

#define MSE_DATA_PORT 0x23c
#define MSE_CONTROL_PORT 0x23e
...
#define MSE_READ_Y_LOW 0xc0
#define MSE_READ_Y_HIGH 0xe0

dy = (inb(MSE_DATA_PORT) & 0xf);
outb(MSE_READ_Y_HIGH, MSE_CONTROL_PORT);
buttons = inb(MSE_DATA_PORT);
dy |= (buttons & 0xf) << 4;
buttons = ((buttons >> 5) & 0x07);

2a. Macro definition 2b. Macro usage

Figure 2: Fragment of the original Linux driver for the Logitech Busmouse

#define DEVIL_NO_REF
#define dev_name bm
#define DEVIL_DEBUG
#include "busmouse.dil.h"

bm_get_mouse_state();
dy = bm_get_dy();
buttons = bm_get_buttons();

3a. Interface usage 3b. Stub usage

#define bm_get_mouse_state() (\
outb(1, bm_cache.__dil_base__+2); bm_cache.cache_mouse_state.cache_get_x_high = inb(bm_cache.__dil_base__); \
outb(0, bm_cache.__dil_base__+2); bm_cache.cache_mouse_state.cache_get_x_low = inb(bm_cache.__dil_base__); \
outb(3, bm_cache.__dil_base__+2); bm_cache.cache_mouse_state.cache_get_y_high = inb(bm_cache.__dil_base__); \
outb(2, bm_cache.__dil_base__+2); bm_cache.cache_mouse_state.cache_get_y_low = inb(bm_cache.__dil_base__))

#define bm_get_dy() (\
(bm_cache.cache_mouse_state.cache_get_y_high & 0xfu) << 4 | bm_cache.cache_mouse_state.cache_get_y_low & 0xfu)

#define bm_get_buttons() ((bm_cache.cache_mouse_state.cache_get_y_high & 0xe0u) >> 5)

3c. Generated stubs (after inlining)

Figure 3: Fragment of the Devil based driver for the Logitech Busmouse

pecially when used to write low-level code.

In order to evaluate the impact of Devil on
driver robustness, we have estimated the num-
ber of errors that can be detected automati-
cally by the C and Devil compilers/checkers.3

The error-detection coverage is computed using
a mutation analysis technique [1, 8].

For a program P , mutation analysis produces
a set of alternate programs, each generated by
modifying a single statement of P , according to
mutation rules. In our experiment, the muta-
tion rules introduce errors in operators, iden-
tifiers and literal constants. Such errors are
generated by inserting, replacing or removing
a character from the targeted token. For ex-
ample, the logical operator || can be replaced
by the bit operator |, the number 121 can be
replaced by 21, etc. Mutation rules are defined
so as to ensure that the resulting mutant is syn-
tactically correct, and actually modifies the se-
mantics of the program. Therefore, detection
of the mutation introduced error by the com-

3In our current experiments, the benefit of run-time
checks in Devil generated interfaces are not taken into
account.

piler occurs only if the mutant violates a prop-
erty of the language (e.g., C or Devil).

In a C driver, we are only interested in test-
ing the hardware operating code. Accordingly,
we manually insert tags to mark the corre-
sponding regions in the original C code, and
only apply mutations to the tagged regions. In
a Devil-based driver, mutations have to be ap-
plied both to the Devil specification of the de-
vice, and to procedure calls to the generated
interface (this C code is denoted by CDevil in
the rest of the paper).

Our experiments compare the error-
detection coverage of C against the error-
detection coverages of the Devil specification
and CDevil . It should be noted that our
measurements reflect the worst case for Devil
for the following reasons. First, the mutation
rules for C and Devil have been chosen so
that C is always favored. Second, since a
driver often uses a subset of a device, the
Devil specification offers more mutation sites
(possible errors) than the original C driver.
Finally, Devil specifications should ideally
come from the device manufacturer or widely

Device Language
lines

Number of
mutation

sites

Mutants
per site

Undetected
mutants
per site

Mutation Sites
with

undetected mutants

Ratio
to C

C 36 62 36.6 26.8 45.3 -
Logitech Devil 21 81 15.9 0.2 1.0 -
Busmouse CDevil 18 21 13.5 5.0 7.7 5.9

Devil+CDevil 102 15.4 1.2 8.7 5.2

C 64 95 29.0 18.8 61.8 -
IDE Devil 127 277 17.1 1.6 26.6 -

(Intel PIIX4) CDevil 81 42 22.6 7.4 13.3 4.6
Devil+CDevil 319 17.5 2.0 39.9 1.6

C 204 247 14.7 12.6 212.4 -
Ethernet Devil 144 456 15.0 1.1 33.7 -
(NE2000) CDevil 137 258 48.7 12.5 66.1 3.2

Devil+CDevil 714 27.2 4.7 99.8 2.1

Table 1: Language Error-Detection Coverage Analysis

available public-domain libraries. Thus, one
can expect them to be bug-free and errors only
to appear in CDevil .

Measurement analysis. Our study focuses
on three different devices (e.g., Logitech Bus-
mouse, NE2000 Ethernet, and IDE controllers)
and their corresponding Linux 2.2-12 drivers.
Table 1 presents the results of the mutation
analysis. Overall, the experiments show that
the probability of undetected errors is 1.6 to
5.2 times higher in C hand-crafted drivers than
in Devil-based driver (Devil + CDevil). When
comparing C to CDevil only (assuming that the
specification is correct), the propensity of un-
detected errors 3.2 to 5.9 times higher in C.
Finally, it can also be observed that mutation
errors in Devil specifications are nearly always
detected.

The first column of Table 1 represents the
number of possible mutation sites (s). The sec-
ond column shows the number of mutants (i.e.,
errors) which can be injected for each site (ms).
For example, given an integer of two digits in
base ten, 50 mutants can be generated (2 for
removing a digit, 30 for inserting a new digit,
and 18 for replacing a digit). The third column
shows, for each mutation site, the number of
mutants not detected by the compiler/checker
(ums).

To enable the comparison between C, Devil
and CDevil we are interested in measuring the
number of mutation sites that have undetected
mutants (sum). To compute this value, we
have to balance the number of undetected mu-
tants per site by the number of mutation sites

(sum = ums/ms∗s). For example, consider the
Logitech Busmouse C driver. It has 62 muta-
tion sites. For each site, 36.6 mutants are gen-
erated (on average) and 26.8 are not detected
by the compiler. This give us 45.3 sites with
undetected mutants.

4.3 Performance

It is well-recognized that the performance
of drivers is critical for the overall system
performance. Furthermore, as demonstrated
by Thekkath and Levy for high-performance
RPCs [18], the performance of the hardware
operating code has a significant impact on the
overall driver performance. While Devil can
improve readability and robustness of driver
hardware operating code, its usefulness de-
pends on the efficiency of the generated code:
using Devil must not induce significant execu-
tion overhead.

In order to evaluate the benefit and impact
of Devil on driver development, we are re-
engineering various Linux drivers and testing
them on a bi-processor PC.4 Among the drivers
and devices in a Unix system, we chose to im-
plement first the IDE and the accelerated X11
drivers for two reasons: (i) they are representa-
tive of performance intensive drivers and they
illustrate totally different device access behav-
ior.

In the rest of this section, we first identify
4The PC is a DELL Precision 210 with the follow-

ing configuration: two Pentium II 450 MHz, Intel PIIX4
PCI chipset, Maxtor model 91000D8 UDMA2 19.5Gb
disk with 512Kb cache, 3Dlabs Permedia2 graphic con-
troller.

Standard driver Devil driver

Transfer
mode

Sectors
per

interrupt

I/O
Size

in bits

I/O
Operations

Throughput
in Mb/s

I/O
Operations

Throughput
in Mb/s

Devil/Stand.
throughput

ratio

DMA - - 14 14.25 20 14.25 100 %

PIO

16
32 7 +

#s(1+128)
16

8.17 10 +
#s(3+128)

16
7.36 90 %

16 7 +
#s(1+256)

16
4.45 10 +

#s(3+256)
16

3.94 88 %

8
32 7 +

#s(1+128)
8

8.09 10 + #s(3+128)
8

7.28 89 %

16 7 +
#s(1+256)

8
4.42 10 +

#s(3+256)
8

3.91 88 %

1
32 7 + #s(1 + 128) 6.93 10 + #s(3 + 128) 6.36 91 %

16 7 + #s(1 + 256) 4.06 10 + #s(3 + 256) 3.63 89 %

Table 2: IDE Linux driver comparative performance results (using C loops)

the possible penalties induced by Devil, and
then we compare the performance of the IDE
and accelerated X11 Devil-based drivers with
the original ones.

Micro-analysis Interface procedures gener-
ated by the Devil compiler contain I/O as well
as bit-shift and bit-mask instructions. These
procedures are optimized by the Devil compiler
and implemented as pre-processor macros or in-
lined functions. Therefore, there is no execu-
tion overhead for a single Devil interface pro-
cedure as compared to hand-crafted C instruc-
tions.

In one situation, we observed that Devil
could induce an execution penalty. Accessing
independent device variables (i.e., variables not
grouped in a structure) defined over a single
register, requires multiple Devil interface calls.
Each additional call induces additional I/O, as
compared to an hand-crafted driver. Neverthe-
less, as we found in our re-engineering of the
IDE and Permedia2 driver, such variables are
often parameters and rarely affect the perfor-
mance of the critical path.

IDE driver Table 2 compares the perfor-
mance of a Devil-based IDE driver with that
of the original C driver. IDE throughput mea-
surements were obtained using the standard
Linux hdparm utility. We wrote two Devil spec-
ifications for this driver: a specification of the
IDE controller and a specification of the Intel
PIIX4 PCI busmaster IDE.

We have run the IDE driver in both Ultra

DMA-2 and several PIO modes, varying the
size of I/O (16 or 32 bits) and the number
of sectors transfered per interrupt. In DMA
mode, Devil induces 6 additional I/O opera-
tions to prepare the command. Because of the
long duration of the DMA transfer, there is no
impact on the available throughput. In the PIO
modes, there are 3 additional I/O operations
to prepare the command, plus 2 for each inter-
rupt (#s denotes the total number of sectors
accessed). When using a C loop over a single
variable read, we measured a 10% throughput
penalty. When using block transfer stubs that
use a rep instruction, we did not observe an
impact on the available throughput.

Permedia2 X11 driver Tables 3 and 4
show the performance Devil-based X11 driver
for the 3Dlabs Permedia2 graphics controller.
Throughput measurements were obtained us-
ing the xbench utility. We have modified the
3Dlabs X11 server, which is based on a Xfree86-
3.3.6 implementation. Although the Perme-
dia2 chip provides acceleration for both 2D
and 3D, the X11 server does not support 3D
operations. Additionally, to minimize device-
dependant code, many 2D primitives are imple-
mented in software in Xfree86. In fact, hard-
ware acceleration is only used for implementing
the fill rectangle and screen area copy
primitives.

Unlike many I/O devices, the Permedia2
controller maps registers into the memory ad-
dress space. In fact, processor accesses are de-
coded by the controller and stored in a FIFO.
Before accessing the chip, the driver must wait
for free entries in the FIFO. This wait loop in-

Display Rectangle Standard Driver Devil Driver Devil/Stand.
Mode Size I/O Throughput I/O Throughput Throughput

(bits/pixel) (pixels) Operations (rect./s) Operations (rect./s) Ratio

2x2 984838 949052 96 %
8 10x10 3(#w) + 15 589621 3(#w) + 17 585350 99 %

100x100 38472 38438 100 %
400x400 3762 3762 100 %

2x2 982338 945916 96 %
16 10x10 3(#w) + 15 333670 3(#w) + 17 332499 100 %

100x100 21022 21033 100 %
400x400 2221 2221 100 %

2x2 978605 945884 97 %
24 10x10 2(#w) + 10 235119 2(#w) + 10 234716 100 %

100x100 3693 3693 100 %
400x400 244 243 100 %

2x2 957534 929833 97 %
32 10x10 3(#w) + 15 251522 3(#w) + 17 251584 100 %

100x100 10466 10466 100 %
400x400 899 899 100 %

Table 3: Comparative Performance of Permedia2 Xfree86 Driver: Rectangle Test

Display Copy Standard Driver Devil Driver Devil/Stand.
Mode Size I/O Throughput I/O Throughput Throughput

(bits/pixel) (pixels) Operations (copies/s) Operations (copies/s) Ratio

2x2 149553 144494 97 %
8 10x10 3(#w) + 15 123584 3(#w) + 17 122300 99 %

100x100 10662 10638 100 %
400x400 764 764 100 %

2x2 145084 136755 94 %
16 10x10 3(#w) + 15 85994 3(#w) + 17 85561 99 %

100x100 3502 3512 100 %
400x400 238 238 100 %

2x2 144385 144521 100 %
24 10x10 2(#w) + 9 77443 2(#w) + 9 77605 100 %

100x100 1716 1716 100 %
400x400 114 114 100 %

2x2 142335 142598 100 %
32 10x10 2(#w) + 9 69762 2(#w) + 9 69804 100 %

100x100 1703 1701 100 %
400x400 111 111 100 %

Table 4: Comparative Performance of Permedia2 Xfree86 Driver: Screen Copy Test

duces one I/O operation per iteration. In Ta-
bles 3 and 4, #w denotes the number of itera-
tions per wait loop. In the driver we modified,
2 or 3 wait loops are performed per primitive
call.

The time for execution of a drawing com-
mand by the Permedia2 controller is propor-
tional to the number of drawn pixels and their
depth. Therefore, the overhead induced by
Devil is more perceptible for shortest com-
mands. The worst case is reached for 2x2 pixel
commands in 8 or 16 bit mode, where Devil
induces a performance penalty of up to 6%.
For primitive calls involving more than 100 pix-
els (which are the most common in practice),
99% to 100% of the performance of the origi-
nal server is obtained (always 100% in 24 bit
mode).

5 Related Work

Our work on device drivers started with a
study of graphic display adaptors for a X11
server. We developed a language, called GAL,
aimed at specifying device drivers in this con-
text [19]. Although successful as a proof of con-
cept, GAL covered a very restricted domain.

The goal of the UDI project5 is to make
device drivers source-portable across OS plat-
forms. To do so, they have normalized the API
between the OS and the lower part of device
drivers [14]. Besides showing the timeliness of
our work, UDI focuses only on the high-level

5The UDI (Uniform Driver Interface) project is the
result of a collaboration of several computer companies
including Compaq, HP and IBM.

part of drivers and their interaction with the
OS.

Windows-specific driver generators like Blue-
Water System’s WinDK [4] and NuMega’s
DriverWorks [6] provide a graphical interface
for specifying the main features of a driver.
They produce a driver skeleton that consists of
invocations of coarse-grained library functions.
To our knowledge, no existing driver generators
cover the communication with the device.

Languages for specifying digital circuits and
systems have existed for many years. The
VHDL standard [11], widely used in this do-
main, is one of the most expressive. It ad-
dresses several aspects of chip design such
as documentation, simulation and synthesis.
VHDL provides both high-level and low-level
abstractions: arrays and loops are supported,
as well as bit-vector literals and bit extrac-
tion. However, all VHDL abstractions focus on
the inner workings of circuits, not their high-
level programming interface. As a consequence,
chip interfaces are not explicitly denoted, and
VHDL compilers perform limited consistency
checks. Interestingly, VHDL allows attaching
arbitrary strings to variables. Using them to
add interface-specific information is possible,
but would require a normalized syntax and
compiler support, which in some way amounts
to embedding Devil concepts in VHDL.

The New Jersey Machine-Code Toolkit [15]
helps programmers write applications that pro-
cess machine code at an assembly-language
level of abstraction. Guided by a instruction
set specification, the toolkit generates the code
for reading or generating binary. Some simple
verifications iare also done at the specification
level.

6 Conclusion and Future Work

This paper has presented a new approach
to developing hardware operating code that is
based on an IDL named Devil. This IDL en-
ables hardware communication to be described
using high-level, domain-specific constructs in-
stead of being written with assembly-language-
like operations. Raising the implementation
level of this layer of a device driver dramati-

cally reduces the risk of errors. Devil has shown
to be expressive enough to specify a wide va-
riety of devices such as the DMA, interrupt,
Ethernet, IDE disk, sound, mouse and video
controllers.

Because Devil significantly raises the level of
abstraction of communication with the hard-
ware, Devil specifications are more readable,
maintainable and re-usable than equivalent C
code.

We have developed a compiler that checks
the consistency of a Devil specification and
automatically generates low-level code that is
mostly comparable to hand-crafted code. We
have assessed our approach by conducting ex-
periments aimed at comparing hardware oper-
ating code in C or Devil for robustness and per-
formance. We have demonstrated that our ap-
proach enables hardware operating code to be
more robust than C, with mostly comparable
performance.

Our future work aims to improve the per-
formance of the output of our Devil com-
piler. Specifically, we want to enhance per-
formance by factorizing and scheduling de-
vice communications and by better exploit-
ing special-purpose assembly-level instructions.
The key advantage of introducing optimiza-
tions at the compiler level is that these ad-
vanced techniques are transparently available
to any Devil programmer. As a result, our work
reduces the need to have a highly experienced
programmer to write hardware operating code
since part of this expertise is captured by the
compiler.

We are currently building a public domain
library of Devil specifications for common de-
vices such as those found in PCs. Our purpose
is to setup a WWW repository that would help
dissemination of expertise about hardware and
facilitate the development of device drivers.

Acknowledgment.

We thank Julia Lawall from DIKU and the
other members of the Compose group for help-
ful comments on earlier versions of this paper.
We also thank Timothy Roscoe and the anony-
mous reviewers for their valuable inputs.

This work has been partly supported by
France Telecom under the CTI contract
991B726, the French Ministry of Research
and Technology under the Phenix contract
99S0362, and the French Ministry of Education
and Research.

Availability

The Devil compiler, Devil specifications
and Devil-based drivers mentioned in the pa-
per are available at the following web page
http://www.irisa.fr/compose/devil.

References

[1] A. T. Agree, T. A. Budd, R. A. DeMillo,
R. J. Lipton, and F. G. Sayward. Muta-
tion analysis. Technical Report GIT-ICS-
79/08, School of Information and Com-
puter Science, Georgia Institute of Tech-
nology, Atlanta, GA, USA, September
1979.

[2] B.N. Bershad, T.E. Anderson, E.D. La-
zowska, and H.M. Levy. Lightweight re-
mote procedure call. ACM Transactions
on Computer Systems, 8(1):37–55, Febru-
ary 1990.

[3] A. Birrell and B. Nelson. Implementing re-
mote procedure calls. ACM Transactions
on Computer Systems, 2(1):39–59, Febru-
ary 1984.

[4] BlueWater Systems, Inc. WinDK Users
Manual.
URL: www.bluewatersystems.com.

[5] Cirrus Logic, Inc, P.O. Box 17847,
Austin, TX 78760. CrystalClearTM Single
Chip Audio System (CS4236B), Septem-
ber 1997. URL: www.cirrus.com.

[6] Compuware NuMega. DriverWorks User’s
Guide. URL: www.numega.com.

[7] E. N. Dekker and J. M. Newcomer. De-
veloping Windows NT device drivers : A
programmer’s handbook. Addison-Wesley,
first edition, March 1999.

[8] R. A. DeMillo, R. J. Lipton, and F. G.
Sayward. Hints on test data selection:

help for the practicing programmer. Com-
puter, 11(4):34–41, April 1978.

[9] R. Draves, M. Jones, and M. Thomp-
son. MIG - The MACH Interface Genera-
tor. School of Computer Science, Carnegie
Mellon University, July 1989.

[10] E. Eide, K. Frei, B. Ford, J. Lepreau, and
G. Lindstrom. Flick: A flexible, opti-
mizing IDL compiler. In Proceedings of
the ACM SIGPLAN ’97 Conference on
Programming Language Design and Imple-
mentation, pages 44–56, Las Vegas, NV,
USA, June 15–18, 1997.

[11] IEEE Standards. 1076-1993 Standard
VHDL Language Reference Manual, 1994.
URL: standards.ieee.org.

[12] H. P. Messmer. The Indispensable PC
Hardware Book. Addison-Wesley, third
edition, 1997. page 669, figure 26.6.

[13] S. O’Malley, T. Proebsting, and A.B.
Montz. USC: A universal stub compiler.
In Proceedings of Conference on Commu-
nication Architectures, Protocols and Ap-
plications, London (UK), September 1994.

[14] Project UDI. UDI Specifications, Version
1.0, September 1999. URL: www.project-
udi.org.

[15] Norman Ramsey and Mary F. Fernandez.
The new jersey machine-code toolkit. In
Proceedings of the Winter USENIX Con-
ference, New Orleans, LA, January 1995.

[16] A. Rubini. Linux Device Drivers. O’Reilly,
first edition, February 1998.

[17] L. Réveillère, F. Mérillon, C. Consel,
R. Marlet, and G. Muller. The Devil
language. Research Report 1319, IRISA,
Rennes, France, May 2000.

[18] C.A. Thekkath and H.M. Levy. Limits to
low-latency communication on high-speed
networks. ACM Transactions on Com-
puter Systems, 11(2):179–203, May 1993.

[19] S. Thibault, R. Marlet, and C. Consel.
Domain-specific languages: from design to
implementation – application to video de-
vice drivers generation. IEEE Transac-
tions on Software Engineering, 25(3):363–
377, May–June 1999.

