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Abstract. This paper explores interposed request
routing in Slice, a new storage system architec-
ture for high-speed networks incorporating network-
attached block storage. Slice interposes a request
switching �lter | called a �proxy | along each
client's network path to the storage service (e.g.,
in a network adapter or switch). The �proxy inter-
cepts request tra�c and distributes it across a server
ensemble. We propose request routing schemes for
I/O and �le service tra�c, and explore their e�ect
on service structure.

The Slice prototype uses a packet �lter �proxy
to virtualize the standard Network File System
(NFS) protocol, presenting to NFS clients a uni-
�ed shared �le volume with scalable bandwidth and
capacity. Experimental results from the industry-
standard SPECsfs97 workload demonstrate that
the architecture enables construction of powerful
network-attached storage services by aggregating
cost-e�ective components on a switched Gigabit
Ethernet LAN.

1 Introduction

Demand for large-scale storage services is growing
rapidly. A prominent factor driving this growth is
the concentration of storage in data centers hosting
Web-based applications that serve large client pop-
ulations through the Internet. At the same time,
storage demands are increasing for scalable comput-
ing, multimedia and visualization.

A successful storage system architecture must scale
to meet these rapidly growing demands, placing
a premium on the costs (including human costs)
to administer and upgrade the system. Commer-
cial systems increasingly interconnect storage de-
vices and servers with dedicated Storage Area Net-
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works (SANs), e.g., FibreChannel, to enable incre-
mental scaling of bandwidth and capacity by attach-
ing more storage to the network. Recent advances
in LAN performance have narrowed the bandwidth
gap between SANs and LANs, creating an oppor-
tunity to take a similar approach using a general-
purpose LAN as the storage backplane. A key chal-
lenge is to devise a distributed software layer to
unify the decentralized storage resources.

This paper explores interposed request routing in
Slice, a new architecture for network storage. Slice
interposes a request switching �lter | called a
�proxy | along each client's network path to the
storage service. The �proxy may reside in a pro-
grammable switch or network adapter, or in a self-
contained module at the client's or server's interface
to the network. We show how a simple �proxy can
virtualize a standard network-attached storage pro-
tocol incorporating �le services as well as raw device
access. The Slice �proxy distributes request traf-
�c across a collection of storage and server elements
that cooperate to present a uniform view of a shared
�le volume with scalable bandwidth and capacity.

This paper makes the following contributions:

� It outlines the architecture and its implementa-
tion in the Slice prototype, which is based on a
�proxy implemented as an IP packet �lter. We
explore the impact on service structure, recon-
�guration, and recovery.

� It proposes and evaluates request routing poli-
cies within the architecture. In particular, we
introduce two policies for transparent scaling of
the name space of a uni�ed �le volume. These
techniques complement simple grouping and
striping policies to distribute �le access load.

� It evaluates the prototype using synthetic
benchmarks including SPECsfs97, an industry-
standard workload for network-attached stor-
age servers. The results demonstrate that the



Figure 1: Combining functional decomposition and
data decomposition in the Slice architecture.

system is scalable and that it complies with
the Network File System (NFS) V3 standard, a
popular protocol for network-attached storage.

This paper is organized as follows. Section 2 out-
lines the architecture and sets Slice in context with
related work. Section 3 discusses the role of the
�proxy, de�nes the request routing policies, and
discusses service structure. Section 4 describes the
Slice prototype, and Section 5 presents experimental
results. Section 6 concludes.

2 Overview

The Slice �le service consists of a collection of
servers cooperating to serve an arbitrarily large vir-
tual volume of �les and directories. To a client, the
ensemble appears as a single �le server at some vir-
tual network address. The �proxy intercepts and
transforms packets to redirect requests and to rep-
resent the ensemble as a uni�ed �le service.

Figure 1 depicts the structure of a Slice ensemble.
Each client's request stream is partitioned into three
functional request classes corresponding to the ma-
jor �le workload components: (1) high-volume I/O
to large �les, (2) I/O on small �les, and (3) oper-
ations on the name space or �le attributes. The
�proxy switches on the request type and arguments
to redirect requests to a selected server responsible
for handling a given class of requests. Bulk I/O op-
erations route directly to an array of storage nodes,
which provide block-level access to raw storage ob-
jects. Other operations are distributed among spe-
cialized �le managers responsible for small-�le I/O

and/or name space requests.

This functional decomposition diverts high-volume
data 
ow to bypass the managers, while allowing
specialization of the servers for each workload com-
ponent, e.g., by tailoring the policies for disk layout,
caching and recovery. A single server node could
combine the functions of multiple server classes; we
separate them to highlight the opportunities to dis-
tribute requests across more servers.

The �proxy selects a target server by switching on
the request type and the identity of the target �le,
name entry, or block, using a separate routing func-
tion for each request class. Thus the routing func-
tions induce a data decomposition of the volume
data across the ensemble, with the side e�ect of cre-
ating or caching data items on the selected man-
agers. Ideally, the request routing scheme spreads
the data and request workload in a balanced fashion
across all servers. The routing functions may adapt
to system conditions, e.g., to use new server sites
as they become available. This allows each work-
load component to scale independently by adding
resources to its server class.

2.1 The �proxy

An overarching goal is to keep the �proxy simple,
small, and fast. The �proxy may (1) rewrite the
source address, destination address, or other �elds of
request or response packets, (2) maintain a bounded
amount of soft state, and (3) initiate or absorb pack-
ets to or from the Slice ensemble. The �proxy does
not require any state that is shared across clients,
so it may reside on the client host or network in-
terface, or in a network element close to the server
ensemble. The �proxy is not a barrier to scalability
because its functions are freely replicable, with the
constraint that each client's request stream passes
through a single �proxy.

The �proxy functions as a network element within
the Internet architecture. It is free to discard its
state and/or pending packets without compromis-
ing correctness. End-to-end protocols (in this case
NFS/RPC/UDP or TCP) retransmit packets as
necessary to recover from drops in the �proxy. Al-
though the �proxy resides \within the network", it
acts as an extension of the service. For example,
since the �proxy is a layer-5 protocol component, it
must reside (logically) at one end of the connection
or the other; it cannot reside in the \middle" of the
connection where end-to-end encryption might hide
layer-5 protocol �elds.



2.2 Network Storage Nodes

A shared array of network storage nodes provides all
disk storage used in a Slice ensemble. The �proxy
routes bulk I/O requests directly to the network
storage array, without intervention by a �le man-
ager. More storage nodes may be added to incre-
mentally scale bandwidth, capacity, and disk arms.

The Slice block storage prototype is loosely based
on a proposal in the National Storage Industry
Consortium (NSIC) for object-based storage devices
(OBSD) [3]. Key elements of the OBSD proposal
were in turn inspired by the CMU research on Net-
work Attached Secure Disks (NASD) [8, 9]. Slice
storage nodes are \object-based" rather than sector-
based, meaning that requesters address data as log-
ical o�sets within storage objects. A storage object
is an ordered sequence of bytes with a unique iden-
ti�er. The placement policies of the �le service are
responsible for distributing data among storage ob-
jects so as to bene�t fully from all of the resources
in the network storage array.

A key advantage of OBSDs and NASDs is that they
allow for cryptographic protection of storage object
identi�ers if the network is insecure [9]. This protec-
tion allows the �proxy to reside outside of the server
ensemble's trust boundary. In this case, the dam-
age from a compromised �proxy is limited to the
�les and directories that its client(s) had permis-
sion to access. However, the Slice request routing
architecture is compatible with conventional sector-
based storage devices if every �proxy resides inside
the service trust boundary.

This storage architecture is orthogonal to the ques-
tion of which level arranges redundancy to tolerate
disk failures. One alternative is to provide redun-
dancy of disks and other vulnerable components in-
ternally to each storage node. A second option is for
the �le service software to mirror data or maintain
parity across the storage nodes. In Slice, the choice
to employ extra redundancy across storage nodes
may be made on a per-�le basis through support
for mirrored striping in our prototype's I/O routing
policies. For stronger protection, a Slice con�gura-
tion could employ redundancy at both levels.

The Slice block service includes a coordinator mod-
ule for �les that span multiple storage nodes. The
coordinator manages optional block maps (Sec-
tion 3.1) and preserves atomicity of multisite op-
erations (Section 3.3.2). A Slice con�guration may
include any number of coordinators, each managing
a subset of the �les (Section 4.2).

2.3 File Managers

File management functions above the network stor-
age array are split across two classes of �le man-
agers. Each class governs functions that are com-
mon to any �le server; the architecture separates
them to distribute the request load and allow im-
plementations specialized for each request class.

� Directory servers handle name space opera-
tions, e.g., to create, remove, or lookup �les and
directories by symbolic name; they manage di-
rectories and mappings from names to identi-
�ers and attributes for each �le or directory.

� Small-�le servers handle read and write opera-
tions on small �les and the initial segments of
large �les (Section 3.1).

Slice �le managers are dataless; all of their state is
backed by the network storage array. Their role is to
aggregate their structures into larger storage objects
backed by the storage nodes, and to provide memory
and CPU resources to cache and manipulate those
structures. In this way, the �le managers can bene�t
from the parallel disk arms and high bandwidth of
the storage array as more storage nodes are added.

The principle of dataless �le managers also plays a
key role in recovery. In addition to its backing ob-
jects, each manager journals its updates in a write-
ahead log [10]; the system can recover the state of
any manager from its backing objects together with
its log. This allows fast failover, in which a surviving
site assumes the role of a failed server, recovering its
state from shared storage [12, 4, 24].

2.4 Summary

Interposed request routing in the Slice architecture
yields three fundamental bene�ts:

� Scalable �le management with content-based re-
quest switching. Slice distributes �le service re-
quests across a server ensemble. A good request
switching scheme induces a balanced distribu-
tion of �le objects and requests across servers,
and improves locality in the request stream.

� Direct storage access for high-volume I/O. The
�proxy routes bulk I/O tra�c directly to the
network storage array, removing the �le man-
agers from the critical path. Separating re-
quests in this fashion eliminates a key scaling
barrier for conventional �le services [8, 9]. At
the same time, the small-�le servers absorb and



aggregate I/O operations on small �les, so there
is no need for the storage nodes to handle small
objects e�ciently.

� Compatibility with standard �le system clients.
The �proxy factors request routing policies out
of the client-side �le system code. This allows
the architecture to leverage a minimal comput-
ing capability within the network elements to
virtualize the storage protocol.

2.5 Related Work

A large number of systems have interposed new sys-
tem functionality by \wrapping" an existing inter-
face, including kernel system calls [14], internal in-
terfaces [13], communication bindings [11], or mes-
saging endpoints. The concept of a proxy mediating
between clients and servers [23] is now common in
distributed systems. We propose to mediate some
storage functions by interposing on standard storage
access protocols within the network elements. Net-
work �le services can bene�t from this technique be-
cause they have well-de�ned protocols and a large
installed base of clients and applications, many of
which face signi�cant scaling challenges today.

The Slice �proxy routes �le service requests based
on their content. This is analogous to the HTTP
content switching features o�ered by some net-
work switch vendors (e.g., Alteon, Arrowpoint, F5),
based in part on research demonstrating improved
locality and load balancing for large Internet server
sites [20]. Slice extends the content switching con-
cept to a �le system context.

A number of recent commercial and research ef-
forts investigate techniques for building scalable
storage systems for high-speed switched LAN net-
works. These system are built from disks dis-
tributed through the network, and attached to ded-
icated servers [16, 24, 12], cooperating peers [4, 26],
or the network itself [8, 9]. We separate these sys-
tems into two broad groups.

The �rst group separates �le managers (e.g., the
name service) from the block storage service, as in
Slice. This separation was �rst proposed for the
Cambridge Universal File Server [6]. Subsequent
systems adopted this separation to allow bulk I/O
to bypass �le managers [7, 12], and it is now a basic
tenet of research in network-attached storage de-
vices including the CMU NASD work on devices for
secure storage objects [8, 9]. Slice shows how to
incorporate placement and routing functions essen-
tial for this separation into a new �lesystem struc-
ture for network-attached storage. The CMU NASD

project integrated similar functions into network
�le system clients [9]; the Slice model decouples
these functions, preserving compatibility with ex-
isting clients. In addition, Slice extends the NASD
project approach to support scalable �le manage-
ment as well as high-bandwidth I/O for large �les.

A second group of scalable storage systems lay-
ers the �le system functions above a network stor-
age volume using a shared disk model. Policies
for striping, redundancy, and storage site selection
are speci�ed on a volume basis; cluster nodes coor-
dinate their accesses to the shared storage blocks
using an ownership protocol. This approach has
been used with both log-structured (Zebra [12] and
xFS [4]) and conventional (Frangipani/Petal [16, 24]
and GFS [21]) �le system organizations. The clus-
ter may be viewed as \serverless" if all nodes are
trusted and have direct access to the shared disk,
or alternatively the entire cluster may act as a �le
server to untrusted clients using a standard network
�le protocol, with all I/O passing through the clus-
ter nodes as they mediate access to the disks.

The key bene�ts of Slice request routing apply
equally to these shared disk systems when untrusted
clients are present. First, request routing is a key to
incorporating secure network-attached block stor-
age, which allows untrusted clients to address stor-
age objects directly without compromising the in-
tegrity of the �le system. That is, a �proxy could
route bulk I/O requests directly to the devices,
yielding a more scalable system that preserves com-
patibility with standard clients and allows per-�le
policies for block placement, parity or replication,
prefetching, etc. Second, request routing enhances
locality in the request stream to the �le servers, im-
proving cache e�ectiveness and reducing block con-
tention among the servers.

The shared disk model is used in many commercial
systems, which increasingly interconnect storage de-
vices and servers with dedicated Storage Area Net-
works (SANs), e.g., FibreChannel. This paper ex-
plores storage request routing for Internet networks,
but the concepts are equally applicable in SANs.

Our proposal to separate small-�le I/O from the re-
quest stream is similiar in concept to the Amoeba
Bullet Server [25], a specialized �le server that op-
timizes small �les. As described in Section 4.4,
the prototype small-�le server draws on techniques
from the Bullet Server, FFS fragments [19], and
SquidMLA [18], a Web proxy server that maintains
a user-level \�lesystem" of small cached Web pages.



3 Request Routing Policies

This section explains the structure of the �proxy
and the request routing schemes used in the Slice
prototype. The purpose is to illustrate concretely
the request routing policies enabled by the architec-
ture, and the implications of those policies for the
way the servers interact to maintain and recover
consistent �le system states. We use the NFS V3
protocol as a reference point because it is widely
understood and our prototype supports it.

The �proxy intercepts NFS requests addressed to
virtual NFS servers, and routes the request to a
physical server by applying a function to the re-
quest type and arguments. It then rewrites the IP
address and port to redirect the request to the se-
lected server. When a response arrives, the �proxy
rewrites the source address and port before forward-
ing it to the client, so the response appears to orig-
inate from the virtual NFS server.

The request routing functions must permit recon-
�guration to add or remove servers, while minimiz-
ing state requirements in the �proxy. The �proxy
directs most requests by extracting relevant �elds
from the request, perhaps hashing to combine mul-
tiple �elds, and interpreting the result as a logical
server site ID for the request. It then looks up the
corresponding physical server in a compact routing
table. Multiple logical sites may map to the same
physical server, leaving 
exibility for recon�guration
(Section 3.3.1). The routing tables constitute soft
state; the mapping is determined externally, so the
�proxy never modi�es the tables.

The �proxy examines up to four �elds of each re-
quest, depending on the policies con�gured:

� Request type. Routing policies are keyed by the
NFS request type, so the �proxy may employ
di�erent policies for di�erent functions. Table 1
lists the important NFS request groupings dis-
cussed in this paper.

� File handle. Each NFS request targets a spe-
ci�c �le or directory, named by a unique identi-
�er called a �le handle (or fhandle). Although
NFS fhandles are opaque to the client, their
structure can be known to the �proxy, which
acts as an extension of the service. Directory
servers encode a �leID in each fhandle, which
the �proxies extract as a routing key.

� Read/write o�set. NFS I/O operations specify
the range of o�sets covered by each read and

write. The �proxy uses these �elds to select
the server or storage node for the data.

� Name component. NFS name space requests
include a symbolic name component in their ar-
guments (see Table 1). A key challenge for scal-
ing �le management is to obtain a balanced dis-
tribution of these requests. This is particularly
important for name-intensive workloads with
small �les and heavy create/lookup/remove ac-
tivity, as often occurs in Internet services for
mail, news, message boards, and Web access.

We now outline some �proxy policies that use these
�elds to route speci�c request groups.

3.1 Block I/O

Request routing for read/write requests have two
goals: separate small-�le read/write tra�c from
bulk I/O, and decluster the blocks of large �les
across the storage nodes for the desired access prop-
erties (e.g., high bandwidth or a speci�ed level of
redundancy). We address each in turn.

When small-�le servers are con�gured, the proto-
type's routing policy de�nes a �xed threshold o�set
(e.g., 64KB); the �proxy directs I/O requests be-
low the threshold to a small-�le server selected from
the request fhandle. The threshold o�set is neces-
sary because the size of each �le may change at any
time. Thus the small-�le servers also receive a sub-
set of the I/O requests on large �les; they receive
all I/O below the threshold, even if the target �le
is large. In practice, large �les have little impact
on the small-�le servers because there tends to be
a small number of these �les, even if they make up
a large share of the stored bytes. Similarly, large
�le I/O below the threshold is limited by the band-
width of the small-�le server, but this a�ects only
the �rst threshold bytes, and becomes progressively
less signi�cant as the �le grows.

The �proxy redirects I/O tra�c above the thresh-
old directly to the network storage array, using some
placement policy to select the storage site(s) for each
block. A simple option is to employ static strip-
ing and placement functions that compute on the
block o�set and/or �leID. More 
exible placement
policies would allow the �proxy to consider other
factors, e.g., load conditions on the network or stor-
age nodes, or �le attributes encoded in the fhandle.
To generalize to more 
exible placement policies,
Slice optionally records block locations in per-�le
block maps managed by the block service coordina-
tors. The �proxies interact with the coordinators



Name Space Operations

lookup(dir, name) returns (fhandle, attr) Look up a name in dir; return handle and attributes.

create(dir, name) returns (fhandle, attr)

mkdir(dir, name) returns (fhandle, attr)

Create a �le/directory and update the parent entry/link

count and modify timestamp.

remove(dir, name), rmdir(dir, name) Remove a �le/directory or hard link and update the parent

entry/link count and modify timestamp.

link(olddir, oldname, newdir, newname)

returns (fhandle, attr)

Create a new name for a �le, update the �le link count,

and update modify timestamps on the �le and newdir.

rename(olddir, oldname, newdir, newname)

returns (fhandle, attr)

Rename an existing �le or hard link; update the link count

and modify timestamp on both the old and new parent.

Attribute Operations

getattr(object) returns (attr) Retrieve the attributes of a �le or directory.

setattr(object, attr) Modify the attributes of a �le or directory, and update its

modify timestamp.

I/O Operations

read(�le, o�set, len) returns (data, attr) Read data from a �le, updating its access timestamp.

write(�le, o�set, len) returns (data, attr) Write data to a �le, updating its modify timestamp.

Directory Retrival

readdir(dir, cookie) returns (entries, cookie) Read some or all of the entries in a directory.

Table 1: Some important Network File System (NFS) protocol operations.

to fetch and cache fragments of the block maps as
they handle I/O operations on �les.

As one example of an attribute-based policy, Slice
supports a mirrored striping policy that replicates
each block of a mirrored �le on multiple storage
nodes, to tolerate failures up to the replication de-
gree. Mirroring consumes more storage and net-
work bandwidth than striping with parity, but it is
simple and reliable, avoids the overhead of comput-
ing and updating parity, and allows load-balanced
reads [5, 16].

3.2 Name Space Operations

E�ectively distributing name space requests
presents di�erent challenges from I/O request rout-
ing. Name operations involve more computation,
and name entries may bene�t more from caching
because they tend to be relatively small and
fragmented. Moreover, directories are frequently
shared. Directory servers act as synchronization
points to preserve integrity of the name space, e.g.,
to prevent clients from concurrently creating a �le
with the same name, or removing a directory while
a name create is in progress.

A simple approach to scaling a �le service is to parti-
tion the name space into a set of volumes, each man-
aged by a single server. Unfortunately, this volume
partitioning strategy compromises transparency
and increases administrative overhead in two ways.
First, volume boundaries are visible to clients as
mount points, and naming operations such as link
and rename cannot cross volume boundaries. Sec-

ond, the system develops imbalances if volume loads
grow at di�erent rates, requiring intervention to
repartition the name space. This may be visible to
users through name changes to existing directories.

An important goal of name management in Slice
is to automatically distribute the load of a single
�le volume across multiple servers, without impos-
ing user-visible volume boundaries. We propose two
alternative name space routing policies to achieve
this goal. Mkdir switching yields balanced dis-
tributions when the average number of active di-
rectories is large relative to the number of direc-
tory server sites, but it binds large directories to a
single server. For workloads with very large direc-
tories, name hashing yields probabilistically bal-
anced request distributions independent of work-
load. The cost of this e�ectiveness is that more
operations cross server boundaries, increasing the
cost and complexity of coordination among the di-
rectory servers (Section 4.3).

Mkdir switching works as follows. In most cases,
the �proxy routes name space operations to the di-
rectory server that manages the parent directory;
the �proxy identi�es this server by indexing its rout-
ing table with the �leID from the parent directory
fhandle in the request (refer to Table 1). On amkdir
request, the �proxy decides with probability p to
redirect the request to a di�erent directory server,
placing the new directory | and its descendents |
on a di�erent site from the parent directory. The
policy uniquely selects the new server by hashing
on the parent fhandle and the symbolic name of the



new directory; this guarantees that races over name
manipulation involve at most two sites. Reducing
directory a�nity by increasing p makes the policy
more aggressive in distributing name entries across
sites; this produces a more balanced load, but more
operations involve multiple sites. Section 5 presents
experimental data illustrating this tradeo�.

Name hashing extends this approach by routing
all name space operations using a hash on the name
component and its position in the directory tree,
as given by the parent directory fhandle. This ap-
proach represents the entire volume name space as
a uni�ed global hash table distributed among the
directory servers. It views directories as distributed
collections of name entries, rather than as �les ac-
cessed as a unit. Con
icting operations on any given
name entry (e.g., create/create, create/remove, re-
move/lookup) always hash to the same server, where
they serialize on the shared hash chain. Operations
on di�erent entries in the same directory (e.g., cre-
ate, remove, lookup) may proceed in parallel at mul-
tiple sites. For good performance, name hashing

requires su�cient memory to keep the hash chains
memory-resident, since the hashing function sacri-
�ces locality in the hash chain accesses. Also, read-
dir operations span multiple sites; this is the right
behavior for large directories, but it increases read-
dir costs for small directories.

3.3 Storage Service Structure

Request routing policies impact storage service
structure. The primary challenges are coordination
and recovery to maintain a consistent view of the
�le volume across all servers, and recon�guration to
add or remove servers within each class.

Most of the routing policies outlined above are in-
dependent of whether small �les and name entries
are bound to the server sites that create them. One
option is for the servers to share backing objects
from a shared disk using a block ownership proto-
col (see Section 2.5); in this case, the role of the
�proxy is to enhance locality in the request stream
to each server. Alternatively, the system may use
�xed placement in which items are controlled by
their create sites unless recon�guration or failover
causes them to move; with this approach backing
storage objects may be private to each site, even if
they reside on shared network storage. Fixed place-
ment stresses the role of the request routing pol-
icy in the placement of new name entries or data
items. The next two subsections discuss recon�gu-
ration and recovery issues for the Slice architecture
with respect to these structural alternatives.

3.3.1 Recon�guration

Consider the problem of recon�guration to add or
remove �le managers, i.e., directory servers, small-
�le servers, or map coordinators. For requests
routed by keying on the �leID, the system updates
�proxy routing tables to change the binding from
�leIDs to physical servers if servers join or depart
the ensemble. To keep the tables compact, Slice
maps the �leID to a smaller logical server ID before
indexing the table. The number of logical servers
de�nes the size of the routing tables and the mini-
mal granularity for rebalancing. The �proxy's copy
of the routing table is a \hint" that may become
stale during recon�guration; the �proxy may load
new tables lazily from an external source, assuming
that servers can identify misdirected requests.

This approach generalizes to policies in which the
logical server ID is derived from a hash that includes
other request arguments, as in the name hashing

approach. For name hashing systems and other
systems with �xed placement, the recon�guration
procedure must move logical servers from one phys-
ical server to another. One approach is for each
physical server to use multiple backing objects, one
for each hosted logical server, and recon�gure by re-
assigning the binding of physical servers to backing
objects in the shared network storage array. Other-
wise, recon�guration must copy data from one back-
ing object to another. In general, an ensemble with
N servers must move 1/Nth of its data to rebalance
after adding or losing a physical server [15].

3.3.2 Atomicity and Recovery

File systems have strong integrity requirements and
frequent updates; the system must preserve their in-
tegrity through failures and concurrent operations.
The focus on request routing naturally implies that
the multiple servers must manage distributed state.

File managers prepare for recovery by generating a
write-ahead log in shared storage. For systems that
use the shared-disk model without �xed placement,
all operations execute at a single manager site, and
it is necessary and su�cient for the system to pro-
vide locking and recovery procedures for the shared
disk blocks [24]. For systems with �xed placement,
servers do not share blocks directly, but some oper-
ations must update state at multiple sites through
a peer-peer protocol. Thus there is no need for dis-
tributed locking or recovery of individual blocks, but
the system must coordinate logging and recovery
across sites, e.g., using two-phase commit.



For mkdir switching, the operations that update
multiple sites are those involving the \orphaned"
directories that were placed on di�erent sites from
their parents. These operations include the redi-
rected mkdirs themselves, associated rmdirs, and
any rename operations involving the orphaned en-
tries. Since these operations are relatively infre-
quent, as determined by the redirection probability
parameter p, it is acceptable to perform a full two-
phase commit as needed to guarantee their atom-
icity on systems with �xed placement. However,
name hashing requires �xed placement | un-
less the directory servers support �ne-grained dis-
tributed caching | and any name space update in-
volves multiple sites with probability (N � 1)=N
or higher. While it is possible to reduce commit
costs by logging asynchronously and coordinating
rollback, this approach weakens failure properties
because recently completed operations may be lost
in a failure.

Shared network storage arrays present their own
atomicity and recovery challenges. In Slice, the
block service coordinators preserve atomicity of op-
erations involving multiple storage nodes, including
mirrored striping, truncate/remove, and NFS V3
write commitment (commit). Amiri et al. [1] ad-
dresses atomicity and concurrency control issues for
shared storage arrays; the Slice coordinator proto-
col complements [1] with an intention logging pro-
tocol for atomic �lesystem operations [2]. The basic
protocol is as follows. At the start of the opera-
tion, the �proxy sends to the coordinator an inten-
tion to perform the operation. The coordinator logs
the intention to stable storage. When the opera-
tion completes, the �proxy noti�es the coordinator
with a completion message, asynchronously clearing
the intention. If the coordinator does not receive
the completion within some time bound, it probes
the participants to determine if the operation com-
pleted, and initiates recovery if necessary. A failed
coordinator recovers by scanning its intentions log,
completing or aborting operations in progress at the
time of the failure. In practice, the protocol elimi-
nates some message exchanges and log writes from
the critical path of most common-case operations
by piggybacking messages, leveraging the NFS V3
commit semantics, and amortizing intention logging
costs across multiple operations.

4 Implementation

The Slice prototype is a set of loadable kernel mod-
ules for the FreeBSD operating system. The pro-
totype includes a �proxy implemented as a packet

�lter below the Internet Protocol (IP) stack, and
kernel modules for the basic server classes: block
storage service and block storage coordinator, di-
rectory server, and small-�le server. A given server
node may be con�gured for any subset of the Slice
server functions, and each function may be present
at an arbitrary number of nodes. The following sub-
sections discuss each element of the Slice prototype
in more detail.

4.1 The �proxy

The Slice �proxy is a loadable packet �lter module
that intercepts packets exchanged with registered
NFS virtual server endpoints. The module is con-
�gurable to run as an intermediary at any point
in the network between a client and the server en-
semble, preserving compatibility with NFS clients.
Our premise is that the functions of the �proxy are
simple enough to integrate more tightly with the
network switching elements, enabling wire-speed re-
quest routing. The �proxy may also be con�gured
below the IP stack on each client node, to avoid the
store-and-forward delays imposed by host-based in-
termediaries in our prototype.

The �proxy is a nonblocking state machine with soft
state consisting of pending request records and rout-
ing tables for I/O redirection, mkdir switching,
and name hashing, as described in Section 3. The
prototype statically con�gures the policies and ta-
ble sizes for name space operations and small-�le
I/O; it does not yet detect and refresh stale rout-
ing tables for recon�guration. These policies use the
MD5 [22] hash function; we determined empirically
that MD5 yields a combination of balanced distri-
bution and low cost that is superior to competing
hash functions available to us. For reads and writes
beyond the threshold o�set the �proxy may use ei-
ther a static block placement policy or a local cache
of per-�le block maps supplied by a block service
coordinator (see Section 4.2).

The �proxy also maintains a cache over �le at-
tribute blocks returned in NFS responses from the
servers. Directory servers maintain the authorita-
tive attributes for �les; the system must keep these
attributes current to re
ect I/O tra�c to the block
storage nodes, which a�ects the modify time, ac-
cess time, and/or size attributes of the target �le.
The �proxy updates these attributes in its cache as
each operation completes, and returns a complete
set of attributes to the client in each response (some
clients depend on this behavior, although the NFS
speci�cation does not require it). The �proxy gen-
erates an NFS setattr operation to push modi�ed at-



tributes back to the directory server when it evicts
attributes from its cache, or when it intercepts an
NFS V3 write commit request from the client. Most
clients issue commit requests for modi�ed �les from
a periodic system update daemon, and when a user
process calls fsync or close on a modi�ed �le.

The prototype may yield weaker attribute consis-
tency than some NFS implementations. First, at-
tribute timestamps are no longer assigned at a cen-
tral site; we rely on the Network Time Protocol
(NTP) to keep clocks synchronized across the sys-
tem. Most NFS installations already use NTP to
allow consistent assignment and interpretation of
timestamps across multiple servers and clients. Sec-
ond, a read or an uncommitted write is not guar-
anteed to update the attribute timestamps if the
�proxy fails and loses its state. In the worst case
an uncommitted write might complete at a stor-
age node but not a�ect the modify time at all (if
the client also fails before reissuing the write). The
NFS V3 speci�cation permits this behavior: uncom-
mitted writes may a�ect any subset of the modi�ed
data or attributes. Third, although the attribute
timestamps cached and returned by each �proxy
are always current with respect to operations from
clients bound to that �proxy, they may drift be-
yond the \three second window" that is the de facto
standard in NFS implementations for concurrently
shared �les. We consider this to be acceptable since
NFS V3 o�ers no �rm consistency guarantees for
concurrently shared �les anyway. Note, however,
that NFS V4 proposes to support consistent �le
sharing through a leasing mechanism similar to NQ-
NFS [17]; it will then be su�cient for the �proxy to
propagate �le attributes when a client renews or re-
linquishes a lease for the �le. The current �proxy
bounds the drift by writing back modi�ed attributes
at regular intervals.

Since the �proxy modi�es the contents of request
and response packets, it must update the UDP or
TCP checksums to match the new packet data. The
prototype �proxy recomputes checksums incremen-
tally, generalizing a technique used in other packet
rewriting systems. The �proxy's di�erential check-
sum code is derived from the FreeBSD implemen-
tation of Network Address Translation (NAT). The
cost of incremental checksum adjustment is propor-
tional to the number of modi�ed bytes and is in-
dependent of the total size of the message. It is
e�cient because the �proxy rewrites at most the
source or destination address and port number, and
in some cases certain �elds of the �le attributes.

4.2 Block Storage Service

The Slice block storage servers use a kernel mod-
ule that exports disks to the network. The stor-
age nodes serve a 
at space of storage objects
named by unique identi�ers; storage is addressed by
(object; logicalblock), with physical allocation con-
trolled by the storage node software as described
in Section 2.2. The key operations are a subset
of NFS, including read, write, commit, and remove.
The storage nodes accept NFS �le handles as object
identi�ers, using an external hash to map them to
storage objects. Our current prototype uses the Fast
File System (FFS) as a storage manager within each
storage node. The storage nodes prefetch sequential
�les up to 256 KB beyond the current access, and
also leverage FFS write clustering.

The block storage service includes a coordinator im-
plemented as an extension to the storage node mod-
ule. Each coordinator manages a set of �les, selected
by �leID. The coordinator maintains optional per-
�le block maps giving the storage site for each logi-
cal block of the �le; these maps are used for dynamic
I/O routing policies (Section 3.1). The coordinator
also implements the intention logging protocol to
preserve failure atomicity for �le accesses involving
multiple storage sites (Section 3.3.2), including re-
move/truncate, consistent write commitment, and
mirrored writes, as described in [2]. The coordina-
tor backs its intentions log and block maps within
the block storage service using a static placement
function. A more failure-resilient implementation
would employ redundancy across storage nodes.

4.3 Directory Servers

Our directory server implementations use �xed
placement and support both the name hashing

and mkdir switching policies. The directory
servers store directory information as webs of linked
�xed-size cells representing name entries and �le at-
tributes, allocated from memory zones backed by
the block storage service. These cells are indexed
by hash chains keyed by an MD5 hash �ngerprint
on the parent �le handle and name. The directory
servers place keys in each newly minted �le handle,
allowing them to locate any resident cell if presented
with an fhandle or an (fhandle,name) pair. At-
tribute cells may include a remote key to reference
an entry on another server, enabling cross-site links
in the directory structure. Thus the name entries
and attribute cells for a directory may be distributed
arbitrarily across the servers, making it possible to
support both name hashing and mkdir switch-

ing policies easily within the same code base.



Figure 2: Small-�le server data structures.

Given the distribution of entries across directory
servers, some NFS operations involve multiple sites.
The �proxy interacts with a single site for each re-
quest. Directory servers use a simple peer-peer pro-
tocol to update link counts for create/link/remove
and mkdir/rmdir operations that cross sites, and
to follow cross-site links for lookup, getattr/setattr,
and readdir. For name hashing we implemented
rename as a link followed by a remove.

Support for recovery and recon�guration is incom-
plete in our prototype. Directory servers log their
updates, but the recovery procedure itself is not im-
plemented, nor is the support for shifting ownership
of blocks and cells across servers.

4.4 Small-�le Servers

The small-�le server is implemented by a module
that manages each �le as a sequence of 8KB logical
blocks. Figure 2 illustrates the key data structures
and their use for a read or write request. The lo-
cations for each block are given by a per-�le map
record. The server accesses this record by index-
ing an on-disk map descriptor array using the �leID
from the fhandle. Like the directory server, storage
for small-�le data is allocated from zones backed by
objects in the block storage service.

Each map record gives a �xed number of (o�-
set,length) pairs mapping 8KB �le extents to re-
gions within a backing object. Each logical block
may have less than the full 8KB of physical space
allocated for it; physical storage for a block rounds
the space required up to the next power of two to
simplify space management. New �les or writes to
empty segments are allocated space according to
best �t, or if no good fragment is free, a new re-
gion is allocated at the end of the backing storage
object. The best-�t variable fragment approach is
similar to SquidMLA [18].

This structure allows e�cient space allocation and
supports �le growth. For example, a 8300 byte �le
would consume only 8320 bytes of physical storage
space, 8192 bytes for the �rst block, and 128 for the
remaining 108 bytes. Under a create-heavy work-
load, the small-�le allocation policy lays out data on

backing objects sequentially, batching newly created
�les into a single stream for e�cient disk writes. The
small-�le servers comply with the NFS V3 commit
speci�cation for writes below the threshold o�set.

Map records and data from the small-�le server
backing objects are cached in the kernel �le bu�er
cache. This structure performs well if �le accesses
and the assignment of �leIDs show good locality. In
particular, if the directory servers assign �leIDs with
good spatial locality, and if �les created together
are accessed together, then the cost of reading the
map records is amortized across multiple �les whose
records �t in a single block.

5 Performance

This section presents experimental results from the
Slice prototype to show the overheads and scaling
properties of the interposed request routing archi-
tecture. We use synthetic benchmarks to stress dif-
ferent aspects of the system, then evaluate whole-
system performance using the industry-standard
SPECsfs97 workload.

The storage nodes for the test ensemble are Dell
PowerEdge 4400s with a 733 MHz Pentium-III Xeon
CPU, 256MB RAM, and a ServerWorks LE chipset.
Each storage node has eight 18GB Seagate Cheetah
drives (ST318404LC) connected to a dual-channel
Ultra-160 SCSI controller. Servers and clients are
450 MHz Pentium-III PCs with 512MB RAM and
Asus P2B motherboards using a 440BX chipset.
The machines are linked by a Gigabit Ethernet net-
work with Alteon ACEnic 710025 adapters and a
32-port Extreme Summit-7i switch. The switch and
adapters use 9KB (\Jumbo") frames; the adapters
run locally modi�ed �rmware that supports header
splitting for NFS tra�c. The adapters occupy a
64-bit/66 MHz PCI slot on the Dell 4400s, and a
32-bit/33 MHz PCI slot on the PCs. All kernels are
built from the same FreeBSD 4.0 source pool.

single client saturation

read 62.5 MB/s 437 MB/s
write 38.9 MB/s 479 MB/s

read-mirrored 52.9 MB/s 222 MB/s
write-mirrored 32.2 MB/s 251 MB/s

Table 2: Bulk I/O bandwidth in the test ensemble.

Read/write performance. Table 2 shows raw
read and write bandwidth for large �les. Each test
(dd) issues read or write system calls on a 1.25 GB
�le in a Slice volume mounted with a 32KB NFS



block size and a read-ahead depth of four blocks.
The �proxies use a static I/O routing function to
stripe large-�le data across the storage array. We
measure sequential access bandwidth for unmirrored
�les and mirrored �les with two replicas.

The left column of Table 2 shows the I/O band-
width driven by a single PC client. Writes saturate
the client CPU below 40 MB/s, the maximum band-
width achievable through the FreeBSD NFS/UDP
client stack in this con�guration. We modi�ed
the FreeBSD client for zero-copy reading, allowing
higher bandwidth with lower CPU utilization; in
this case, performance is limited by a prefetch depth
bound in FreeBSD. Mirroring degrades read band-
width because the client �proxies alternate between
the two mirrors to balance the load, leaving some
prefetched data unused on the storage nodes. Mir-
roring degrades write bandwidth because the client
host writes to both mirrors.

The right column of Table 2 shows the aggregate
bandwidth delivered to eight clients, saturating the
storage node I/O systems. Each storage node
sources reads to the network at 55 MB/s and sinks
writes at 60 MB/s. While the Cheetah drives each
yield 33 MB/s of raw bandwidth, achievable disk
bandwidth is below 75 MB/s per node because the
4400 backplane has a single SCSI channel for all of
its internal drive bays, and the FreeBSD 4.0 driver
runs the channel in Ultra-2 mode because it does
not yet support Ultra-160.

Operation CPU

Packet interception 0.7%
Packet decode 4.1%

Redirection/rewriting 0.5%
Soft state logic 0.8%

Table 3: �proxy CPU cost for 6250 packets/second.

Overhead of the �proxy. The interposed re-
quest routing architecture is sensitive to the costs
to intercept and redirect �le service protocol pack-
ets. Table 3 summarizes the CPU overheads for a
client-based �proxy under a synthetic benchmark
that stresses name space operations, which place
the highest per-packet loads on the �proxy. The
benchmark repeatedly unpacks (untar) a set of zero-
length �les in a directory tree that mimics the
FreeBSD source distribution. Each �le create gen-
erates seven NFS operations: lookup, access, create,
getattr, lookup, setattr, setattr. We used iprobe (In-
struction Probe), an on-line pro�ling tool for Alpha-
based systems, to measure the �proxy CPU cost on

a 500 MHz Compaq 21264 client (4MB L2). This
untar workload generates mixed NFS tra�c at a
rate of 3125 request/response pairs per second.

The client spends 6.1% of its CPU cycles in the
�proxy. Redirection replaces the packet destination
and/or ports and restores the checksum as described
in Section 4.1, consuming a modest 0.5% of CPU
time. The cost of managing soft state for attribute
updates and response pairing accounts for 0.8%.
The most signi�cant cost is the 4.1% of CPU time
spent decoding the packets to prepare for rewrit-
ing. Nearly half of the cost is to locate the o�-
sets of the NFS request type and arguments; NFS
V3 and ONC RPC headers each include variable-
length �elds (e.g., access groups and the NFS V3 �le
handle) that increase the decoding overhead. Mi-
nor protocol changes could reduce this complexity.
While this complexity a�ects the cost to implement
the �proxy in network elements, it does not limit
the scalability of the Slice architecture.
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Figure 3: Directory service scaling.

Directory service scaling. We used the name-
intensive untar benchmark to evaluate scalability
of the prototype directory service using the name
hashing and mkdir switching policies. For
mkdir switching we chose p = 1=N , i.e., the
�proxy redirects 1=Nth of the mkdir requests to dis-
tribute the directories across the N server sites. In
this test, a variable number of client processes exe-
cute the untar benchmark on �ve client PCs. Each
process creates 36,000 �les and directories gener-
ating a total of 250,000 NFS operations. For this
experiment, in which the name space spans many
directories, mkdir switching and name hashing

perform identically.

Figure 3 shows the average total latency perceived
by each client process as a function of the num-
ber of processes. We use multiple client nodes to
avoid client saturation, and vary the number of di-
rectory servers; each line labeled \Slice-N" has N



PCs acting as directory servers. For comparison,
the N-MFS line measures an NFS server exporting
a memory-based �le system (FreeBSD MFS). MFS
initially performs better due to Slice logging and
update tra�c, but the MFS server's CPU quickly
saturates with more clients. In contrast, the Slice
request routing schemes spread the load among mul-
tiple directory servers, and both schemes show good
scaling behavior with more servers. Each server sat-
urates at 6000 ops/s generating about 0.5 MB/s of
log tra�c.
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Figure 4: Impact of a�nity for mkdir switching.

Figure 4 shows the e�ect of varying directory a�n-
ity (1 � p) for mkdir switching under the name-
intensive untar workload. The X-axis gives the
probability 1 � p that a new directory is placed
on the same server as its parent; the Y-axis shows
the average untar latency observed by the clients.
This test uses four client nodes hosting one, four,
eight, or sixteen client processes against four direc-
tory servers. For light workloads, latency is unaf-
fected by a�nity, since a single server can handle the
load. For heavier workloads, increasing directory
a�nity along the X-axis initially yields a slight im-
provement as the number of cross-server operations
declines. Increasing a�nity toward 100% ultimately
degrades performance due to load imbalances. This
simple experiment indicates that mkdir switch-

ing can produce even distributions while redirect-
ing fewer than 20% of directory create requests. A
more complete study is needed to determine the best
parameters under a wider range of workloads.

Overall performance and scalability. We
now report results from SPECsfs97, the industry-
standard benchmark for network-attached storage.
SPECsfs97 runs as a group of workload generator
processes that produce a realistic mix of NFS V3
requests, check the responses against the NFS stan-
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dard, and measure latency and delivered throughput
in I/O operations per second (IOPS). SPECsfs is de-
signed to benchmark servers but not clients; it sends
and receives NFS packets from user space without
exercising the client kernel NFS stack. SPECsfs is a
demanding, industrial-strength, self-scaling bench-
mark. We show results as evidence that the pro-
totype is fully functional, complies with the NFS
V3 standard, and is independent of any client
NFS implementation, and to give a basis for judg-
ing prototype performance and scalability against
commercial-grade servers.

The SPECsfs �le set is skewed heavily toward small
�les: 94% of �les are 64 KB or less. Although small
�les account for only 24% of the total bytes accessed,
most SPECsfs I/O requests target small �les; the
large �les serve to \pollute" the disks. Thus satura-
tion throughput is determined largely by the num-
ber of disk arms. The Slice con�gurations for the
SPECsfs experiments use a single directory server,
two small-�le servers, and a varying number of stor-
age nodes. Figures 5 and 6 report results; lines la-
beled \Slice-N" use N storage nodes.

Figure 5 gives delivered throughput for SPECsfs97
in IOPS as a function of o�ered load. As a baseline,
the graph shows the 850 IOPS saturation point of
a single FreeBSD 4.0 NFS server on a Dell 4400
exporting its disk array as a single volume (us-
ing the CCD disk concatenator). Slice-1 yields
higher throughput than the NFS con�guration due
to faster directory operations, but throughput un-
der load is constrained by the disk arms. The results
show that Slice throughput scales with larger num-
bers of storage nodes, up to 6600 IOPS for eight
storage nodes with a total of 64 disks.

Figure 6 gives average request latency as a function
of delivered throughput. Latency jumps are evi-
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dent in the Slice results as the ensemble over
ows
its 1 GB cache on the small-�le servers, but the
prototype delivers acceptable latency at all work-
load levels up to saturation. For comparison, we
include vendor-reported results from spec.org for a
recent (4Q99) commercial server, the EMC Celerra
File Server Cluster Model 506. The Celerra 506 uses
32 Cheetah drives for data and has 4 GB of cache.
EMC Celerra is an industry-leading product: it de-
livers better latency and better throughput than the
Slice prototype in the nearest equivalent con�gura-
tion (Slice-4 with 32 drives), as well as better reli-
ability through its use of RAID with parity. What
is important is that the interposed request routing
technique allows Slice to scale to higher IOPS lev-
els by adding storage nodes and/or �le manager
nodes to the LAN. Celerra and other commercial
storage servers are also expandable, but the highest
IOPS ratings are earned by systems using a volume
partitioning strategy to distribute load within the
server. For example, this Celerra 506 exports eight
separate �le volumes. The techniques introduced in
this paper allow high throughputs without imposing
volume boundaries; all of the Slice con�gurations
serve a single uni�ed volume.

6 Conclusion

This paper explores interposed request routing in
Slice, a new architecture for scalable network-
attached storage. Slice interposes a simple redi-
recting �proxy along the network path between the
client and an ensemble of storage nodes and �le
managers. The �proxy virtualizes a client/server �le
access protocol (e.g., NFS) by applying con�gurable
request routing policies to distribute data and re-
quests across the ensemble. The ensemble nodes
cooperate to provide a uni�ed, scalable �le service.

The Slice �proxy distributes requests by request
type and by target object, combining functional de-

composition and data decomposition of the request
tra�c. We describe two policies for distributing
name space requests, mkdir switching and name
hashing, and demonstrate their potential to auto-
matically distribute name space load across servers.
These techniques complement simple grouping and
striping policies to distribute �le access load.

The Slice prototype delivers high bandwidth and
high request throughput on an industry-standard
NFS benchmark, demonstrating scalability of the
architecture and prototype. Experiments with a
simple �proxy packet �lter show the feasibility of
incorporating the request routing features into net-
work elements. The prototype demonstrates that
the interposed request routing architecture enables
incremental construction of powerful distributed
storage services while preserving compatibility with
standard �le system clients.

Availability. For more information please visit the
Web site at http://www.cs.duke.edu/ari/slice.
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