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Computing in the year 201X 
2 

 Illusion of infinite resources 
 Pay only for resources used 
 Quickly scale up or scale down … 

Data 



Programming model in year 201X 
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  Frameworks available to ease cloud programming 
  MapReduce: Parallel processing on clusters of machines 

Reduce Map 

Output 

Data 

•  Data mining 
•  Genomic computation 
•  Social networks 



Programming model in year 201X 
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  Thousands of users upload their data  
 Healthcare, shopping transactions, census, click stream  

  Multiple third parties mine the data for better service 

  Example: Healthcare data 
  Incentive to contribute: Cheaper insurance policies, 

new drug research, inventory control in drugstores… 
  Fear: What if someone targets my personal data? 

  Insurance company can find my illness and increase premium 



Privacy in the year 201X ? 
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Output 

Information 
leak? 

•  Data mining 
•  Genomic computation 
•  Social networks Health Data 

Untrusted MapReduce 
program 



Use de-identification? 
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  Achieves ‘privacy’ by syntactic transformations 
 Scrubbing , k-anonymity … 

  Insecure against attackers with external information 
 Privacy fiascoes: AOL search logs, Netflix dataset 

Run untrusted code on the original data? 

How do we ensure privacy of the users? 



Audit the untrusted code? 

  Audit all MapReduce 
programs for correctness? 

Aim: Confine the code 
instead of auditing 
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Also, where is the source code? 

Hard to do! Enlightenment? 



This talk: Airavat 
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Framework for privacy-preserving MapReduce 
computations with untrusted code. 

Airavat is the elephant of the clouds (Indian mythology). 

Untrusted 
Program Protected 

Data 

Airavat 



Airavat guarantee 
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Bounded information leak* about any individual data 
after performing a MapReduce computation. 

*Differential privacy 

Untrusted 
Program Protected 

Data 

Airavat 



Outline 
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  Motivation 
  Overview 
  Enforcing privacy 
  Evaluation 
  Summary 



map(k1,v1)  list(k2,v2) 
reduce(k2, list(v2))  list(v2) 

Data 1 

Data 2 

Data 3 

Data 4 

Output 

Background: MapReduce 
11 

Map phase Reduce phase 



iPad 

Tablet PC 

iPad 

Laptop 

MapReduce example 
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Map(input){ if (input has iPad) print (iPad, 1) } 

Reduce(key, list(v)){ print (key + “,”+ SUM(v)) } 

(iPad,  2) 

Counts no. of 
iPads sold 

SUM 

Map phase Reduce phase 



Airavat model 
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  Airavat framework runs on the cloud infrastructure  
 Cloud infrastructure:  Hardware + VM 
 Airavat: Modified MapReduce + DFS + JVM + SELinux 

Cloud infrastructure 

Airavat framework 1

Trusted 



Airavat model 
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  Data provider uploads her data on Airavat 
 Sets up certain privacy parameters 

Cloud infrastructure 

Data provider 

2

Airavat framework 1

Trusted 



Airavat model 
15 

  Computation provider writes data mining algorithm 
 Untrusted, possibly malicious 

Cloud infrastructure 

Data provider 

2

Airavat framework 1

3

Computation  
provider 

Output 

Program 

Trusted 



Threat model 
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  Airavat runs the computation, and still protects the 
privacy of the data providers 

Cloud infrastructure 

Data provider 

2

Airavat framework 1

3

Computation  
provider 

Output 

Program 

Trusted 

Threat 



Roadmap 
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  What is the programming model? 

  How do we enforce privacy? 

  What computations can be supported in Airavat? 



Programming model 
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MapReduce 
program for 
data mining  

Split MapReduce into untrusted mapper + trusted reducer 

Data Data 
No need to audit Airavat 

Untrusted 
Mapper Trusted 

Reducer 

Limited set of stock reducers 



Programming model 
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MapReduce 
program for 
data mining  

Data Data 
No need to audit Airavat 

Untrusted 
Mapper Trusted 

Reducer 

Need to confine the mappers ! 

Guarantee: Protect the privacy of data providers 



Challenge 1: Untrusted mapper 
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  Untrusted mapper code copies data, sends it over 
the network 

Peter 

Meg 

Reduce Map 

Peter 

Data 

Chris 

Leaks using system 
resources 



Challenge 2: Untrusted mapper 
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  Output of the computation is also an information 
channel  

Output 1 million if 
Peter bought Vi*gra 

Peter 

Meg 

Reduce Map 

Data 

Chris 



Airavat mechanisms 
22 

Prevent leaks through 
storage channels like network 
connections, files… 

Reduce Map 

Mandatory access control Differential privacy  

Prevent leaks through 
the output of the 
computation  

Output 

Data 



Back to the roadmap 
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  What is the programming model? 

  How do we enforce privacy? 
 Leaks through system resources 
 Leaks through the output 

  What computations can be supported in Airavat? 

Untrusted mapper + Trusted reducer 



Airavat confines the untrusted code 

MapReduce 
+ DFS 

SELinux 

Untrusted 
program 

Given by the 
computation provider 

Add mandatory 
access control (MAC) 

Add MAC policy  

Airavat 



Airavat confines the untrusted code 

MapReduce 
+ DFS 

SELinux 

Untrusted 
program 

  We add mandatory access control to 
the MapReduce framework 

  Label input, intermediate values, 
output 

  Malicious code cannot leak labeled 
data 

Data 1 

Data 2 

Data 3 

Output 

Access  
control label MapReduce 



Airavat confines the untrusted code 

MapReduce 
+ DFS 

SELinux 

Untrusted 
program 

  SELinux policy to enforce MAC 
  Creates trusted and untrusted 

domains 
  Processes and files are labeled to 

restrict interaction 
  Mappers reside in untrusted 

domain 
 Denied network access, limited file 

system interaction 



But access control is not enough 
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  Labels can prevent the output from been read 
  When can we remove the labels? 

iPad 

Tablet PC 

iPad 

Laptop 

(iPad,  2) 

Output leaks the presence 
of Peter ! Peter 

if (input belongs-to Peter)  
       print (iPad, 1000000) 

SUM 

Access control 
label Map phase Reduce phase 

(iPad, 1000002) 



But access control is not enough 
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Need mechanisms to enforce that the output does not 
violate an individual’s privacy. 



Background: Differential privacy 
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A mechanism is differentially private if every output is 
produced with similar probability whether any given 

input is included or not 

Cynthia Dwork. Differential Privacy. ICALP 2006 



Differential privacy (intuition) 
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A mechanism is differentially private if every output is 
produced with similar probability whether any given 

input is included or not 

Output distribution 

F(x) 

A 

B 

C 

Cynthia Dwork. Differential Privacy. ICALP 2006 



Differential privacy (intuition) 
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A mechanism is differentially private if every output is 
produced with similar probability whether any given 

input is included or not 

Similar output distributions 

Bounded risk for D if she includes her data! 

F(x) F(x) 

A 

B 

C 

A 

B 

C 

D 

Cynthia Dwork. Differential Privacy. ICALP 2006 



Achieving differential privacy 
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  A simple differentially private mechanism 

  How much noise should one add? 

Tell me f(x) 

f(x)+noise 
… 

xn 

x1 



Achieving differential privacy 
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  Function sensitivity (intuition): Maximum effect of any 
single input on the output 
 Aim: Need to conceal this effect to preserve privacy 

  Example: Computing the average height of the 
people in this room has low sensitivity 
 Any single person’s height does not affect the final 

average by too much 
 Calculating the maximum height has high sensitivity 



Achieving differential privacy 
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  Function sensitivity (intuition): Maximum effect of any 
single input on the output 
 Aim: Need to conceal this effect to preserve privacy 

  Example: SUM over input elements drawn from [0, M] 

X1 

X2 

X3 

X4 

SUM Sensitivity = M 
Max. effect of any input element is M 



Achieving differential privacy 
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  A simple differentially private mechanism 

f(x)+Lap(∆(f)) 
… 

xn 

x1 
Tell me f(x) 

Intuition: Noise needed to mask the effect of a single input 

Lap = Laplace distribution ∆(f) = sensitivity 



Back to the roadmap 
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  What is the programming model? 

  How do we enforce privacy? 
 Leaks through system resources 
 Leaks through the output 

  What computations can be supported in Airavat? 

Untrusted mapper + Trusted reducer 

MAC 



Enforcing differential privacy 
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  Mapper can be any piece of Java code (“black box”) 
but… 

  Range of mapper outputs must be declared in advance 
 Used to estimate “sensitivity” (how much does a single input 

influence the output?) 
 Determines how much noise is added to outputs to ensure 

differential privacy 

  Example: Consider mapper range [0, M]  
  SUM has the estimated sensitivity of M 



Enforcing differential privacy 
38 

  Malicious mappers may output values outside the range 
  If a mapper produces a value outside the range, it is 

replaced by a value inside the range 
  User not notified… otherwise possible information leak 

Data 1 

Data 2 

Data 3 

Data 4 

Range 
enforcer 

Noise 

Mapper 

Reducer 

Range 
enforcer 

Mapper 

Ensures that code is not 
more sensitive than declared 



Enforcing sensitivity 
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  All mapper invocations must be independent 

  Mapper may not store an input and use it later when 
processing another input 
 Otherwise, range-based sensitivity estimates may be 

incorrect 

  We modify JVM to enforce mapper independence 
  Each object is assigned an invocation number 
  JVM instrumentation prevents reuse of objects from 

previous invocation 



Roadmap. One last time 
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  What is the programming model? 

  How do we enforce privacy? 
 Leaks through system resources 
 Leaks through the output 

  What computations can be supported in Airavat? 

Untrusted mapper + Trusted reducer 

MAC 

Differential Privacy 



What can we compute? 
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  Reducers are responsible for enforcing privacy 
 Add an appropriate amount of random noise to the outputs  

  Reducers must be trusted 
  Sample reducers: SUM, COUNT, THRESHOLD 
  Sufficient to perform data mining algorithms, search log 

processing, recommender system etc. 

  With trusted mappers, more general computations are 
possible 
 Use exact sensitivity instead of range based estimates 



Sample computations 
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  Many queries can be done with untrusted mappers 
 How many iPads were sold today? 
 What is the average score of male students at UT? 
 Output the frequency of security books that sold 
    more than 25 copies today. 

  … others require trusted mapper code 
  List all items and their quantity sold 

Sum 

Mean 
Threshold 

Malicious mapper can encode 
information in item names 



Revisiting Airavat guarantees 
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  Allows differentially private MapReduce computations 
  Even when the code is untrusted 

  Differential privacy => mathematical bound on 
information leak 

  What is a safe bound on information leak ? 
 Depends on the context, dataset 
 Not our problem 



Outline 
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  Motivation 
  Overview 
  Enforcing privacy 
  Evaluation 
  Summary 



Implementation details 
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SELinux 
policy 
Domains for 
trusted and 
untrusted  
programs 

Apply 
restrictions on 
each domain 

MapReduce 

Modifications 
to support 
mandatory 

access control 

Set of trusted 
reducers 

JVM  

Modifications 
to enforce 

mapper 
independence 

450 LoC 5000 LoC 

500 LoC 

LoC = Lines of Code 



Evaluation : Our benchmarks 
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  Experiments on 100 Amazon EC2 instances 
 1.2 GHz, 7.5 GB RAM running Fedora 8 

Benchmark Privacy 
grouping 

Reducer 
primitive 

MapReduce 
operations 

Accuracy 
metric 

AOL queries Users THRESHOLD,
SUM 

Multiple % queries 
released 

kNN 
recommender 

Individual 
rating 

COUNT, SUM Multiple RMSE 

K-Means Individual 
points 

COUNT, SUM Multiple, till 
convergence 

Intra-cluster 
variance 

Naïve Bayes Individual 
articles 

SUM Multiple Misclassification 
rate 



Performance overhead 
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Overheads are less than 32%  



Evaluation: accuracy 
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  Accuracy increases with decrease in privacy guarantee 
  Reducer : COUNT, SUM 

0 

20 

40 

60 

80 
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0 0.5 1 1.5 

k-Means 

Naïve Bayes 

Privacy parameter 

A
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y 
(%
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No information 
leak 

Decrease in privacy guarantee 

*Refer to the paper for remaining benchmark results 



Related work: PINQ 
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  Set of trusted LINQ primitives 

  Airavat confines untrusted code and ensures that its 
outputs preserve privacy 
 PINQ requires rewriting code with trusted primitives 

  Airavat provides end-to-end guarantee across the 
software stack 
  PINQ guarantees are language level 

[McSherry   SIGMOD 2009] 



Airavat in brief 
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  Airavat is a framework for privacy preserving 
MapReduce computations 

  Confines untrusted code 
  First to integrate mandatory access control with 

differential privacy for end-to-end enforcement 

Protected 

Airavat 

Untrusted 
Program 



Thank you 
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  Airavat is a framework for privacy preserving 
MapReduce computations 

  Confines untrusted code 
  First to integrate mandatory access control with 

differential privacy for end-to-end enforcement 

Protected 

Airavat 

Untrusted 
Program 


