
Airavat: Security and Privacy for
MapReduce

Indrajit Roy, Srinath T.V. Setty, Ann Kilzer,

Vitaly Shmatikov, Emmett Witchel

The University of Texas at Austin

Computing in the year 201X
2

 Illusion of infinite resources
 Pay only for resources used
 Quickly scale up or scale down …

Data

Programming model in year 201X
3

  Frameworks available to ease cloud programming
  MapReduce: Parallel processing on clusters of machines

Reduce Map

Output

Data

•  Data mining
•  Genomic computation
•  Social networks

Programming model in year 201X
4

  Thousands of users upload their data
 Healthcare, shopping transactions, census, click stream

  Multiple third parties mine the data for better service

  Example: Healthcare data
  Incentive to contribute: Cheaper insurance policies,

new drug research, inventory control in drugstores…
  Fear: What if someone targets my personal data?

  Insurance company can find my illness and increase premium

Privacy in the year 201X ?
5

Output

Information
leak?

•  Data mining
•  Genomic computation
•  Social networks Health Data

Untrusted MapReduce
program

Use de-identification?
6

  Achieves ‘privacy’ by syntactic transformations
 Scrubbing , k-anonymity …

  Insecure against attackers with external information
 Privacy fiascoes: AOL search logs, Netflix dataset

Run untrusted code on the original data?

How do we ensure privacy of the users?

Audit the untrusted code?

  Audit all MapReduce
programs for correctness?

Aim: Confine the code
instead of auditing

7

Also, where is the source code?

Hard to do! Enlightenment?

This talk: Airavat
8

Framework for privacy-preserving MapReduce
computations with untrusted code.

Airavat is the elephant of the clouds (Indian mythology).

Untrusted
Program Protected

Data

Airavat

Airavat guarantee
9

Bounded information leak* about any individual data
after performing a MapReduce computation.

*Differential privacy

Untrusted
Program Protected

Data

Airavat

Outline
10

  Motivation
  Overview
  Enforcing privacy
  Evaluation
  Summary

map(k1,v1)  list(k2,v2)
reduce(k2, list(v2))  list(v2)

Data 1

Data 2

Data 3

Data 4

Output

Background: MapReduce
11

Map phase Reduce phase

iPad

Tablet PC

iPad

Laptop

MapReduce example
12

Map(input){ if (input has iPad) print (iPad, 1) }

Reduce(key, list(v)){ print (key + “,”+ SUM(v)) }

(iPad, 2)

Counts no. of
iPads sold

SUM

Map phase Reduce phase

Airavat model
13

  Airavat framework runs on the cloud infrastructure
 Cloud infrastructure: Hardware + VM
 Airavat: Modified MapReduce + DFS + JVM + SELinux

Cloud infrastructure

Airavat framework 1

Trusted

Airavat model
14

  Data provider uploads her data on Airavat
 Sets up certain privacy parameters

Cloud infrastructure

Data provider

2

Airavat framework 1

Trusted

Airavat model
15

  Computation provider writes data mining algorithm
 Untrusted, possibly malicious

Cloud infrastructure

Data provider

2

Airavat framework 1

3

Computation
provider

Output

Program

Trusted

Threat model
16

  Airavat runs the computation, and still protects the
privacy of the data providers

Cloud infrastructure

Data provider

2

Airavat framework 1

3

Computation
provider

Output

Program

Trusted

Threat

Roadmap
17

  What is the programming model?

  How do we enforce privacy?

  What computations can be supported in Airavat?

Programming model
18

MapReduce
program for
data mining

Split MapReduce into untrusted mapper + trusted reducer

Data Data
No need to audit Airavat

Untrusted
Mapper Trusted

Reducer

Limited set of stock reducers

Programming model
19

MapReduce
program for
data mining

Data Data
No need to audit Airavat

Untrusted
Mapper Trusted

Reducer

Need to confine the mappers !

Guarantee: Protect the privacy of data providers

Challenge 1: Untrusted mapper
20

  Untrusted mapper code copies data, sends it over
the network

Peter

Meg

Reduce Map

Peter

Data

Chris

Leaks using system
resources

Challenge 2: Untrusted mapper
21

  Output of the computation is also an information
channel

Output 1 million if
Peter bought Vi*gra

Peter

Meg

Reduce Map

Data

Chris

Airavat mechanisms
22

Prevent leaks through
storage channels like network
connections, files…

Reduce Map

Mandatory access control Differential privacy

Prevent leaks through
the output of the
computation

Output

Data

Back to the roadmap
23

  What is the programming model?

  How do we enforce privacy?
 Leaks through system resources
 Leaks through the output

  What computations can be supported in Airavat?

Untrusted mapper + Trusted reducer

Airavat confines the untrusted code

MapReduce
+ DFS

SELinux

Untrusted
program

Given by the
computation provider

Add mandatory
access control (MAC)

Add MAC policy

Airavat

Airavat confines the untrusted code

MapReduce
+ DFS

SELinux

Untrusted
program

  We add mandatory access control to
the MapReduce framework

  Label input, intermediate values,
output

  Malicious code cannot leak labeled
data

Data 1

Data 2

Data 3

Output

Access
control label MapReduce

Airavat confines the untrusted code

MapReduce
+ DFS

SELinux

Untrusted
program

  SELinux policy to enforce MAC
  Creates trusted and untrusted

domains
  Processes and files are labeled to

restrict interaction
  Mappers reside in untrusted

domain
 Denied network access, limited file

system interaction

But access control is not enough
27

  Labels can prevent the output from been read
  When can we remove the labels?

iPad

Tablet PC

iPad

Laptop

(iPad, 2)

Output leaks the presence
of Peter ! Peter

if (input belongs-to Peter)
 print (iPad, 1000000)

SUM

Access control
label Map phase Reduce phase

(iPad, 1000002)

But access control is not enough
28

Need mechanisms to enforce that the output does not
violate an individual’s privacy.

Background: Differential privacy
29

A mechanism is differentially private if every output is
produced with similar probability whether any given

input is included or not

Cynthia Dwork. Differential Privacy. ICALP 2006

Differential privacy (intuition)
30

A mechanism is differentially private if every output is
produced with similar probability whether any given

input is included or not

Output distribution

F(x)

A

B

C

Cynthia Dwork. Differential Privacy. ICALP 2006

Differential privacy (intuition)
31

A mechanism is differentially private if every output is
produced with similar probability whether any given

input is included or not

Similar output distributions

Bounded risk for D if she includes her data!

F(x) F(x)

A

B

C

A

B

C

D

Cynthia Dwork. Differential Privacy. ICALP 2006

Achieving differential privacy
32

  A simple differentially private mechanism

  How much noise should one add?

Tell me f(x)

f(x)+noise
…

xn

x1

Achieving differential privacy
33

  Function sensitivity (intuition): Maximum effect of any
single input on the output
 Aim: Need to conceal this effect to preserve privacy

  Example: Computing the average height of the
people in this room has low sensitivity
 Any single person’s height does not affect the final

average by too much
 Calculating the maximum height has high sensitivity

Achieving differential privacy
34

  Function sensitivity (intuition): Maximum effect of any
single input on the output
 Aim: Need to conceal this effect to preserve privacy

  Example: SUM over input elements drawn from [0, M]

X1

X2

X3

X4

SUM Sensitivity = M
Max. effect of any input element is M

Achieving differential privacy
35

  A simple differentially private mechanism

f(x)+Lap(∆(f))
…

xn

x1
Tell me f(x)

Intuition: Noise needed to mask the effect of a single input

Lap = Laplace distribution ∆(f) = sensitivity

Back to the roadmap
36

  What is the programming model?

  How do we enforce privacy?
 Leaks through system resources
 Leaks through the output

  What computations can be supported in Airavat?

Untrusted mapper + Trusted reducer

MAC

Enforcing differential privacy
37

  Mapper can be any piece of Java code (“black box”)
but…

  Range of mapper outputs must be declared in advance
 Used to estimate “sensitivity” (how much does a single input

influence the output?)
 Determines how much noise is added to outputs to ensure

differential privacy

  Example: Consider mapper range [0, M]
  SUM has the estimated sensitivity of M

Enforcing differential privacy
38

  Malicious mappers may output values outside the range
  If a mapper produces a value outside the range, it is

replaced by a value inside the range
  User not notified… otherwise possible information leak

Data 1

Data 2

Data 3

Data 4

Range
enforcer

Noise

Mapper

Reducer

Range
enforcer

Mapper

Ensures that code is not
more sensitive than declared

Enforcing sensitivity
39

  All mapper invocations must be independent

  Mapper may not store an input and use it later when
processing another input
 Otherwise, range-based sensitivity estimates may be

incorrect

  We modify JVM to enforce mapper independence
  Each object is assigned an invocation number
  JVM instrumentation prevents reuse of objects from

previous invocation

Roadmap. One last time
40

  What is the programming model?

  How do we enforce privacy?
 Leaks through system resources
 Leaks through the output

  What computations can be supported in Airavat?

Untrusted mapper + Trusted reducer

MAC

Differential Privacy

What can we compute?
41

  Reducers are responsible for enforcing privacy
 Add an appropriate amount of random noise to the outputs

  Reducers must be trusted
  Sample reducers: SUM, COUNT, THRESHOLD
  Sufficient to perform data mining algorithms, search log

processing, recommender system etc.

  With trusted mappers, more general computations are
possible
 Use exact sensitivity instead of range based estimates

Sample computations
42

  Many queries can be done with untrusted mappers
 How many iPads were sold today?
 What is the average score of male students at UT?
 Output the frequency of security books that sold
 more than 25 copies today.

  … others require trusted mapper code
  List all items and their quantity sold

Sum

Mean
Threshold

Malicious mapper can encode
information in item names

Revisiting Airavat guarantees
43

  Allows differentially private MapReduce computations
  Even when the code is untrusted

  Differential privacy => mathematical bound on
information leak

  What is a safe bound on information leak ?
 Depends on the context, dataset
 Not our problem

Outline
44

  Motivation
  Overview
  Enforcing privacy
  Evaluation
  Summary

Implementation details
45

SELinux
policy
Domains for
trusted and
untrusted
programs

Apply
restrictions on
each domain

MapReduce

Modifications
to support
mandatory

access control

Set of trusted
reducers

JVM

Modifications
to enforce

mapper
independence

450 LoC 5000 LoC

500 LoC

LoC = Lines of Code

Evaluation : Our benchmarks
46

  Experiments on 100 Amazon EC2 instances
 1.2 GHz, 7.5 GB RAM running Fedora 8

Benchmark Privacy
grouping

Reducer
primitive

MapReduce
operations

Accuracy
metric

AOL queries Users THRESHOLD,
SUM

Multiple % queries
released

kNN
recommender

Individual
rating

COUNT, SUM Multiple RMSE

K-Means Individual
points

COUNT, SUM Multiple, till
convergence

Intra-cluster
variance

Naïve Bayes Individual
articles

SUM Multiple Misclassification
rate

Performance overhead
47

0

0.2

0.4

0.6

0.8

1

1.2

1.4

AOL Cov. Matrix k-Means N-Bayes

Copy
Reduce
Sort
Map
SELinux

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Overheads are less than 32%

Evaluation: accuracy
48

  Accuracy increases with decrease in privacy guarantee
  Reducer : COUNT, SUM

0

20

40

60

80

100

0 0.5 1 1.5

k-Means

Naïve Bayes

Privacy parameter

A
cc

ur
ac

y
(%

)

No information
leak

Decrease in privacy guarantee

*Refer to the paper for remaining benchmark results

Related work: PINQ
49

  Set of trusted LINQ primitives

  Airavat confines untrusted code and ensures that its
outputs preserve privacy
 PINQ requires rewriting code with trusted primitives

  Airavat provides end-to-end guarantee across the
software stack
  PINQ guarantees are language level

[McSherry SIGMOD 2009]

Airavat in brief
50

  Airavat is a framework for privacy preserving
MapReduce computations

  Confines untrusted code
  First to integrate mandatory access control with

differential privacy for end-to-end enforcement

Protected

Airavat

Untrusted
Program

Thank you
51

  Airavat is a framework for privacy preserving
MapReduce computations

  Confines untrusted code
  First to integrate mandatory access control with

differential privacy for end-to-end enforcement

Protected

Airavat

Untrusted
Program

