

High BW Data-Center Ethernet with Unmodified Switches

Jayaram Mudigonda, HP Labs Mohammad Al-Fares, UCSD

Praveen Yalagandula, HP Labs Jeff Mogul, HP Labs

Traditional Datacenter

E-Mail, Web Servers, etc.

DC Trends

Information Explosion

HPC Applications

Application Consolidation

Virtualization

DC Fabric Goals

High bisection BW Flat network Low-cost

Ethernet: a good choice

Commodity -> Inexpensive Speeds: 10G is here 40G/100G soon Flat-addressing Self-configuring

But wait...

Spanning Tree Protocol (STP) makes Ethernet hard to scale!

Proposal 1: High-port core switch

A common current approach

Proposal 2: L3

IP Subnetting VL2 [SIGCOMM'09]

L3 routers

Proposal 3: Modify switches (HW/SW) TRILL [IETF] SEATTLE [SIGCOMM'08] PortLand [SIGCOMM'09] Not deployable today!

SPAIN

Unmodified L2 switches Multi-pathing Arbitrary topologies

SPAIN Approach

Multi-pathing via VLANs + End-host driver to spread load

SPAIN **Unmodified L2 switches** Low-cost Multi-pathing via VLANs High-BW Arbitrary topologies **DC Fabric** Minor End-host modifs **Today!**

Outline

Introduction **SPAIN Components Offline computation End-host driver Evaluation** Summary

Outline

Introduction **SPAIN Components Offline computation End-host driver Evaluation** Summary

Offline Computation

Steps:

- 1. Discover topology
- 2. Compute paths
- 3. Layout paths as VLANs

Compute paths

Goal: leverage redundancy; improve reliability

Challenges: large graphs; more paths→more resources

Compute paths

Only consider paths between edge-

ManifiedsDijkstra's; Prefer edge-disjoint paths

VLAN Layout

Simple scheme: Each Path as

VLAN

But...

IEEE 802.1Q: VLAN ID = 12 bits → 4096 VLANs!

VLAN Layout

Simple schere: Each Path as Scales to only few switches

VLAN Layout

Our approach: 1 VLAN for a set of paths

Challenge: Minimize VLANs

NP-Hard for arbitrary topologies

VLAN Layout

Heuristics:

Greedy path packing Parallel graph-coloring

VLAN Layout

VLANs = 4

Outline

Introduction **SPAIN Components Offline computation End-host driver Evaluation** Summary

SPAIN End-host Driver

SPAIN End-host Driver

SPAIN End-host Driver

Challenges

Link & switch failures Pathological flooding Interoperability Host mobility Load-balance End-host state

Failures

41 © Copyright 2010 Hewlett-Packard Development Company, L.P.

Ø

Solution:

Chirping

Chirping

Outline

Introduction **SPAIN Components Offline computation** End-host driver **Evaluation** Summary

Evaluation

Simulations

Real testbed

Topologies: CiscoDC

Core switches

Aggregation modules m = 2

Access switches per module a = 2

Topologies:CiscoDCFat-Tree[Al-fares effective]

[Al-fares et al. SIGCOMM'08] HyperX [Ahn et al. SC'09]

B-Cube

[Guo et al. SIGCOMM'09]

Ø

#ports/switch (p) = 2
Levels (l) = 2

Topologies:

CiscoDC Fat-

Tree [Al-fares et al. SIGCOMM'08] HyperX [Ahn et al. SC'09]

B-Cube

[Guo et al. SIGCOMM'09]

Metrics:

#VLANsLink-CoverageReliabilityThroughput

Topologies:

CiscoDC Fat-

Tree [Al-fares et al. SIGCOMM'08]

HyperX [Ahn et al. SC'09]

B-Cube

[Guo et al. SIGCOMM'09]

Metrics:

#VLANsLink-CoverageReliabilityThroughput

Num. of VLANs

	#switches	#VLANs
CiscoDC (8,8)	146	38
Fat-Tree (48)	2880	576
HyperX (16)	256	971
B-Cube (48,2)	2048	2048

Throughput CiscoDC **2**x 24x**Fat-Tree** Improveme nt over STP 10.5x HyperX 1.6x **B-Cube**

OpenCirrus Experiments

OpenCirrus Testbed

OpenCirrus Testbed

OpenCirrus Testbed **S**3 **S**2 S 10G links that we added

OpenCirrus Testbed

4 VLANs

Shuffle-like experiment Every server to all other servers 500MB data transfer

Link utilization in each direction

No bottlenecks

Completion times

Aggregate Goodput (Gbps) 66.7

Comparison with SSP

SPAIN Take-away **Unmodified L2 switches** Low-cost Multi-pathing via VLANs **High-BW** Arbitrary topologies **DC Fabric** Minor End-host modifs **Today!**

