A Sybil-Proof Distributed Hash Table

Chris Lesniewski-Laas M. Frans Kaashoek
MIT

28 April 2010
NSDI
http://pdos.csail.mit.edu/whanau/slides.pptx
Distributed Hash Table

- Interface: PUT(key, value), GET(key)→value
- Route to peer responsible for key
The Sybil attack on open DHTs

- Create many pseudonyms (Sybils), join DHT
- Sybils join the DHT as usual, disrupt routing
Sybil state of the art

Chord, Pastry, Tapestry, CAN

The Sybil Attack [Douceur], Security Considerations [Sit, Morris]

Restricted tables [Castro et al]

BFT [Rodrigues, Liskov]

SPROUT, Turtle, Bootstrap graphs

Puzzles [Borisov]

CAPTCHA [Rowaihy et al]

SybilLimit [Yu et al]

SybilInfer, SumUp, DSybil

(This work)

P2P mania!
Contribution

• Whānau: an efficient Sybil-proof DHT protocol
 – GET cost: $O(1)$ messages, one RTT latency
 – Cost to build routing tables: $O(\sqrt{N \log N})$ storage/bandwidth per node (for N keys)
 – Oblivious to number of Sybils!

• Proof of correctness
• PlanetLab implementation
• Large-scale simulations vs. powerful attack
Division of labor

• Application provides **integrity**
• Whānau provides **availability**

• E.g., application signs values using private key
• Proc \(\text{GET}(\text{key}) \):

 Until valid \textit{value} found:

 Try \textit{value} = \text{LOOKUP}(\text{key})

 Repeat
Approach

• Use a social network to limit Sybils
 – Addresses brute-force attack
• New technique: *layered identifiers*
 – Addresses clustering attacks
Two main phases

- **SETUP**: periodically build tables using social links
- **LOOKUP**: use tables to route efficiently
Social links created
Social links maintained over Internet
Social network

Honest region

Sybil region

Attack edges
Random walks

c.f. SybilLimit [Yu et al 2008]
Building tables using random walks

c.f. SybilLimit [Yu et al 2008]

What have we accomplished?

• Small fraction (e.g. < 50%) of bad nodes in routing tables
• Bad fraction is independent of number of Sybil nodes
Social Network → SETUP → Routing Tables → LOOKUP

PUT(key, value) → Put Queue → key → value → value
Routing table structure

- \(O(\sqrt{n}) \) fingers and \(O(\sqrt{n}) \) keys stored per node
- Fingers have random IDs, cover all keys WHP
- Lookup: query closest finger to target key

Finger tables:
- \((ID, address)\)

Key tables:
- \((key, value)\)

Keys: Keynes, Zyzzyva, Aardvark, Kelvin
From social network to routing tables

- Finger table: randomly sample $O(\sqrt{n})$ nodes
- Most samples are honest
Honest nodes pick IDs uniformly

Plenty of fingers near key
Sybil ID clustering attack

[Hypothetical scenario: 50% Sybil IDs, 50% honest IDs]
Honest layered IDs mimic Sybil IDs
Every range is balanced in some layer
Two layers is not quite enough

Layer 0

Ratio = 1 honest : 10 Sybils

Layer 1

Ratio = 10 honest : 100 Sybils
Log \(n \) parallel layers is enough

- \(\log n \) layered IDs for each node
- Lookup steps:
 1. Pick a random layer
 2. Pick a finger to query
 3. GOTO 1 until success or timeout
Main theorem: secure DHT routing

If we run Whānau’s SETUP using:

1. A social network with walk length = $O(\log n)$
 and number of attack edges = $O(n/\log n)$
2. Routing tables of size $\Omega(\sqrt{N \log N})$ per node

Then, for any input key and all but εn nodes:

- Each lookup attempt (i.e., coin flip) succeeds with probability $\Omega(1)$
- Thus $\text{GET}(key)$ uses $O(1)$ messages (expected)
Evaluation: Hypotheses

1. Random walk technique yields good samples

2. Lookups succeed under clustering attacks

3. Layered identifiers are necessary for security

4. Performance scales the same as a one-hop DHT

5. Whānau handles network failures and churn
Method

• Efficient message-based simulator
 – Social network data spidered from Flickr, Youtube, DBLP, and LiveJournal (n=5.2M)
 – Clustering attack, varying number of attack edges

• PlanetLab implementation
Escape probability

[Flickr social network: \(n \approx 1.6M \), average degree \(\approx 9.5 \)]
Walk length tradeoff

[Graph showing the relationship between random walk length and walk length tradeoff for different numbers of attack edges and clumpiness.]

[Flickr social network: n ≈ 1.6M, average degree ≈ 9.5]
Whānau delivers high availability

[Flickr social network: $n \approx 1.6M$, $3\sqrt{n} \approx 4000$]
Everything rests on the model...
Contributions

• Whānau: an efficient Sybil-proof DHT
 – Use a social network to filter good nodes
 – Resist up to $O(n/\log n)$ attack edges
 – Table size per node: $O(\sqrt{N \log N})$
 – Messages to route: $O(1)$

• Introduced layers to combat clustering attacks