### THE ARCHITECTURE AND IMPLEMENTATION OF AN EXTENSIBLE WEB CRAWLER

Jonathan Hsieh Steve Gribble Hank Levy University of Washington NSDI '10, San Jose, CA





- The web is an ever-changing, interesting, and incredibly massive database of information
   + Google,7/25/08: 1 trillion unique URLS in index
- There are many <u>crawler applications</u> that scour the web to harvest data



### TWO CATEGORIES OF CRAWLER APPS

 Crawl the entire web and use <u>all</u> of the content



 Crawl the entire web and use <u>a small subset</u> of the content



# "NEEDLE IN A HAYSTACK" CRAWLER APPS

- Crawler Applications do two tasks:
  - + Crawl the entire web
  - + Application specific work
- × Crawling at web scale is hard
  - + Expensive
  - + Operationally difficult
  - + Discards most documents









### THE EXTENSIBLE CRAWLER



- × Client uses filter language to inject filters
- The crawler harvests webpages and dispatches documents
- × A filter engine evaluates documents
- **×** Document matches are collected by crawler apps

# THE EXTENSIBLE CRAWLER



- × Client uses filter language to inject filters
- The crawler harvests webpages and dispatches documents
- × A filter engine evaluates documents
- × Document matches are collected by crawler apps

# ARCHITECTURAL GOALS

- The extensible crawler is a **<u>service</u>** that must be:
- Flexible
  - Support a diverse set of crawler applications
  - Expressive filter language for complex web data
- Scalable
  - large filter sets (10's millions-billions)
    - efficient filter execution
  - high document throughput (100k docs/s)
    - commodity cluster architecture
- Low Latency
  - support real-time applications

# SEARCH ENGINE VS EXTENSIBLE CRAWLER

#### × Search engine

- Millions of humans
   constantly enter one
   query at a time
  - × Queries are keywords
  - × Query latency important
  - Return only the top-ranked subset of matches
- Process a stream of queries against a document index

#### × Extensible crawler

- + Hundreds of **programs** periodically enter millions of filters
  - Filters are conjuncts of expressions.
  - × Doc latency important
  - × Returns all matches
- + Process a stream of documents against a filter index

Motivation

### ARCHITECTURE

Implementation and Evaluation

Conclusion

## **ARCHITECTURE HIGHLIGHTS**



× Design Tradeoffs of Filter Language× Efficient Filter Evaluation

## **ARCHITECTURE HIGHLIGHTS**



× Design Tradeoffs of Filter Language× Efficient Filter Evaluation

## **ARCHITECTURE HIGHLIGHTS**



- × Design Tradeoffs of Filter Language
- **×** Efficient Filter Evaluation
- **×** Achieving Scale with Commodity Clusters

# FILTER LANGUAGE

- The filter language needs to be expressive
  - + Support a wide variety of apps
  - + Web data is complex, largely unstructured

#### **×** Examples:

- + **substring** ("Jonathan Hsieh")
- + **regex** ("Jonathan. {1,20} Hsieh")
- + substring("Jonathan") AND substring
  ("Hsieh")

### LANGUAGE TRADEOFFS

- Filter engine transforms and executes filters
- × Efficient
  - + indexing and evaluation
- × Expressive
  - support complex data and diverse apps
- × Accurate
  - + we promise 100% recall
  - we permit false positives (less than 100% precision) to gain efficiency



# NAÏVE FILTER EVALUATION

```
inject filters
for D = next document
  for each F in set of filters
    if F accepts D
       forward to collector
    else
       drop
```

× One pass per document per filter

+ Work = # documents \* # filters

× Not cost efficient

### **INDEXED FILTER EVALUATION**

```
index and inject filters
for D = next document
   if filterIndex accepts D
      forward to collector
   else
      drop
```

#### × Indexing filters.

- + Trade memory for CPU
- + Execute all filters simultaneously for less than linear cost.
- + Compile cost is amortized because filters change infrequently
- × Single pass per document

# EXAMPLE: INDEXING

- Execution of many substrings
  - + One pass per filter
- Execution of Aho-Corasick DFA in one pass
  - + One pass for all filters





# SCALING FILTERS



# SCALING FILTERS



### **SCALING DOCUMENT THROUGHPUT**



# **DISTRIBUTING WORK ACROSS MACHINES**

#### x Document partitioning

- + Every document must be evaluated by <u>a pod</u>
- + Pods are independent
- + Document workload is embarrassingly parallel
- × Filter set partitioning
  - + Every document must evaluated by every machine in a pod
  - + Constrained by **slowest node** in a pod

Motivation Architecture

### IMPLEMENTATION AND EVALUATION

Conclusion

## IMPLEMENTATION AND EVALUATION

Worker execution optimization
 + Relaxing and Staging filters

Pod filter partitioning strategies
 + Random vs Sorted

Prototype crawler applications

# **RELAXING FILTERS**

substring("General Motors said on
Wednesday") that it had a positive cash
flow of \$1 billion in the six months
after emerging from bankruptcy
protection").

 Indexing is not always efficient
 Relax filters to a less precise version

- + False positives now possible
- + Trade accuracy for reduced resource requirements

universe of all possible documents

relaxed matches

exact

matches

# **STAGING FILTERS**

- Relaxing introduces false positives
  - A relaxed filter may accept too many documents
- Solution: Optional second phase called staging
  - If a relaxed filter matches in first stage, only execute its full filter in second stage
  - Clean up false positives if cheap enough



## EXAMPLE: RELAXING FILTERS

regex(`<script language="javascript"> eval
(unescape("%66%75%6e%63%74%69%6f%6e%20%.
{4}%28%.{4}%29%7b%76%61%72%20')

## EXAMPLE: RELAXING FILTERS

substring(`<script language="javascript">
eval(unescape("%66%75%6e%63%74%69%6f%6e
%20%')
AND substring(`%28%')

**AND** substring(`%29%7b%76%61%72%20')

**×** Relaxing a malware regular expression

+ Relax regex into a conjunct of substrings

## EXAMPLE: RELAXING FILTERS

substring(`<script language="javascript">
eval(unescape("%66%75%6e%63%74%69%6f%6e
%20%')
AND substring(`%28%')
AND substring(`%29%7b%76%61%72%20')

- + Relax regex into a conjunct of substrings
- + Relax conjunct into a single term

### EXAMPLE: RELAXING FILTERS

substring(`<script language="javascript">
eval(unescape("%66%75%6e%63%74%69%6f%6e
%20%')

- + Relax regex into a conjunct of substrings
- + Relax conjunct into a single term

### EXAMPLE: RELAXING FILTERS

substring(`<script language="javascript">
eval(unescape("%66%75%6e%63%74%69%6f%6e
%20%')

- + Relax regex into a conjunct of substrings
- + Relax conjunct into a single term
- + Relax long substring into short substring

### EXAMPLE: RELAXING FILTERS

substring(`<script language="javascript">
eval(unescape("%66%75%6e%63%74%69%6f%6e
%20%')\_

- + Relax regex into a conjunct of substrings
- + Relax conjunct into a single term
- + Relax long substring into short substring

### EXAMPLE: RELAXING FILTERS

substring(`<script language="javascript">
eval(unescape("%66%75%6e%63%74%69%6f%6e
%20%')\_

- + Relax regex into a conjunct of substrings
- + Relax conjunct into a single term
- + Relax long substring into short substring
- + Select relaxations carefully!

### EXAMPLE: RELAXING FILTERS

substring(`<script language="javascript">
eval(unescape("%66%75%6e%63%74%69%6f%6e
%20%')

- + Relax regex into a conjunct of substrings
- + Relax conjunct into a single term
- + Relax long substring into short substring
- + Select relaxations carefully!

### EXAMPLE: RELAXING FILTERS

**substring**('75%6e%63%74%69%6f%6e%20%')

- + Relax regex into a conjunct of substrings
- + Relax conjunct into a single term
- + Relax long substring into short substring
- + Select relaxations carefully!

### **IMPACT OF INDEXED FILTER EXECUTION**



× Naïve filter execution is not cost effective

**× Index** filters to use memory instead of CPU

+ Each machines does more work

### INDEXED FILTER MEMORY USAGE



- × Indexing is very memory intensive.
- **× Relax** filters for less memory consumption
  - + Order of magnitude less memory used
  - + Order of magnitude more filters on a worker

# FILTER SET PARTITIONING

- Indexes for large filter sets are too big for a single machine
  - + Partition filters and build indexes on subsets
- Different strategies affect pod performance
  - + Random: cheap and quick
  - + Sorted: sharing efficiences

random partitioning

As banks deal with fraud...

Defense Secretary Robert ..

Democrats are embolden..

Air travelers stranded in ..

sorted partitioning (alpha)

Air travelers stranded in ..

As banks deal with fraud...

Defense Secretary Robert ..

Democrats are embolden..

### PARTITIONING AND LOAD BALANCING



- **×** Random filter partitioning has low throughput variance
- Sorted partitioning (alphabetizing) improves most nodes' throughput, but has high variance.
- **×** Compensate for variance by blacklisting troublesome filters

## PROTOTYPE CRAWLER APPLICATIONS

- Copyright Violation/Plagiarism
  - + Sentences from Wikipedia, AP, and Reuters articles
- × Web Malware Detection
  - + Regexes from ClamAV web malware signatures
- × Vanity/Online Identity Service
  - + Regexes generated from names in a university directory

# **APPLICATIONS RESULTS**

Applications tested against 3.68M web documents
 + Gathered by Nutch 0.9 crawler and seeded by DMOZ

|              |                | Copyright | Malware | Identity |
|--------------|----------------|-----------|---------|----------|
| # filters    |                | 251,657   | 3,128   | 10,622   |
| Relaxed-only | Doc Hit Rate   | 0.664%    | 45.4%   | 69.0%    |
|              | Throughput     |           |         |          |
|              | (docs/s)       | 8,535     | 8,534   | 7,244    |
| Relax+staged | Doc Hit Rate   | 0.016%    | 0.009%  | 13.1%    |
|              | Throughput     |           |         |          |
|              | (docs/s)       | 8,229     | 6,354   | 592      |
|              | # machines for |           |         |          |
|              | 100k docs/s    | 12.2      | 15.7    | 169      |

Motivation Architecture Implementation and Evaluation



# CONCLUSIONS

- We introduced the service, the architecture, and the implementation of the extensible crawler
  - + Flexible filter language for efficiently filtering complex web data
  - + Scalable and cost-efficient on commodity clusters architecture
  - + Low latency to support real-time web applications



