MapReduce Online

Tyson Condie
UC Berkeley

Joint work with
Neil Conway, Peter Alvaro, and Joseph M. Hellerstein (UC Berkeley)
Khaled Elmeleegy and Russell Sears (Yahoo! Research)
MapReduce Programming Model

• Think data-centric
 – Apply a two step transformation to data sets

• **Map step:** *Map(k₁, v₁) → list(k₂, v₂)*
 – Apply map function to input records
 – Assign output records to groups

• **Reduce step:** *Reduce(k₂, list(v₂)) → list(v₃)*
 – Consolidate groups from the map step
 – Apply reduce function to each group
MapReduce System Model

- Shared-nothing architecture
 - Tuned for massive data parallelism
 - Many maps operate on portions of the input
 - Many reduces, each assigned specific groups

- Batch-oriented computations over massive data
 - Runtimes range in minutes to hours
 - Execute on tens to thousands of machines
 - Failures common (fault tolerance crucial)

- Fault tolerance via operator restart since ...
 - Operators complete before producing any output
 - Atomic data exchange between operators
Life Beyond Batch

• MapReduce often used for analytics on streams of data that arrive continuously
 – Click streams, network traffic, web crawl data, ...

• Batch approach: buffer, load, process
 – High latency
 – Hard to scale for real-time analysis

• Online approach: run MR jobs continuously
 – Analyze data as it arrives
Online Query Processing

- Two domains of interest (at massive scale):
 1. **Online aggregation**
 - Interactive data analysis (watch answer evolve)
 2. **Stream processing**
 - Continuous (real-time) analysis on data streams

- Blocking operators are a poor fit
 - Final answers only
 - No infinite streams

- Operators need to pipeline
 - BUT we must retain fault tolerance
A Brave New MapReduce World

• Pipelined MapReduce
 – Maps can operate on infinite data *(Stream processing)*
 – Reduces can export early answers *(Online aggregation)*

• Hadoop Online Prototype (HOP)
 – Preserves Hadoop interfaces and APIs
 – Pipelining fault tolerance model
Outline

1. Hadoop Background
2. Hadoop Online Prototype (HOP)
3. Performance (blocking vs. pipelining)
4. Future Work
Wordcount Job

• Map step
 – Parse input into a series of words
 – For each word, output <word, 1>

• Reduce step
 – For each word, list of counts
 – Sum counts and output <word, sum>

• Combine step (optional)
 – Preaggregate map output
 – Same as the reduce step in wordcount
Master

Client

Submit wordcount

Workers

reduce

reduce

map

schedule
Map step

- Apply map function to the input block
- Assign a **group id (color)** to output records
- **group id** = hash(key) mod # reducers

![Diagram showing the map and reduce processes]

Block 1

- Cat
- Rabbit
- Dog
- Turtle
- Cat
- Rabbit

HDFS

Workers

Map step

- Apply map function to the input block
- Assign a **group id (color)** to output records
- **group id** = hash(key) mod # reducers
Group step (optional)

- Sort map output by **group id** and **key**

```
Workers

map

| Cat, 1  
| Cat, 1  
| Dog, 1  
| Rabbit, 1 
| Rabbit, 1 
| Turtle, 1 |

reduce

reduce
```
Combine step (optional)

- Apply combiner function to map output
 - Usually reduces the output size

```
Cat, 2
Dog, 1
Rabbit, 2
Turtle, 1
```
Commit step

- Final output stored on local file system
- Register file location with TaskTracker

Workers

- Local FS
- map
- Cat, 2
- Dog, 1
- Rabbit, 2
- Turtle, 1
- reduce
- reduce
Shuffle step

- Reduce tasks **pull** data from map output locations
Group step (required)

- When all sorted runs are received
- merge-sort runs (optionally apply combiner)
Reduce step

- Call reduce function on each <key, list of values>
- Write final output to HDFS

```
Cat, 5,1,3,4,...
Dog, 1,4,2,5,...

Cat, 25
Dog, 14

Rabbit, 2,5,1,7,...
Turtle, 4,2,3,3,...

Rabbit, 23
Turtle, 16

HDFS

Workers
```
Outline

1. Hadoop MR Background

2. Hadoop Online Prototype (HOP)
 - Implementation
 - Online Aggregation
 - Stream Processing (see paper)

3. Performance (blocking vs. pipelining)

4. Future Work
Hadoop Online Prototype (HOP)

• *Pipelining* between operators
 – Data **pushed** from producers to consumers
 – Data transfer scheduled concurrently with operator computation

• HOP API
 ✓ No changes required to existing clients
 • Pig, Hive, Jaql **still work**
 + Configuration for pipeline/block modes
 + JobTracker accepts a series of jobs
Pipelining Data Unit

• Initial design: pipeline *eagerly* (each record)
 – Prevents map side *group* and *combine* step
 – Map computation can block on network I/O

• Revised design: pipeline small sorted runs (spills)
 – **Task thread**: apply (map/reduce) function, buffer output
 – **Spill thread**: sort & combine buffer, spill to a file
 – **TaskTracker**: service consumer requests
Simple Adaptive Policy

• **Halt** pipeline when ...
 1. Unserviced spill files backup **OR**
 2. Effective combiner

• **Resume** pipeline by first ...
 – merging & combining accumulated spill files into a single file
 ➢ Map tasks adaptively take on more work
Pipelined shuffle step

- Each map task can send multiple sorted runs
Pipelined shuffle step

- Each map task can send multiple sorted runs
- Reducers perform early group + combine during shuffle
 ➔ Also done in blocking but more so when pipelining
Pipelined Fault Tolerance (PFT)

• Simple PFT design:
 – Reduce treats in-progress map output as *tentative*
 – If map dies then throw away its output
 – If map succeeds then accept its output

• Revised PFT design:
 – Spill files have *deterministic boundaries* and are assigned a *sequence number*
 – **Correctness**: Reduce tasks ensure spill files are idempotent
 – **Optimization**: Map tasks avoid sending redundant spill files
Online Aggregation

- Execute reduce task on intermediate data
 - Intermediate results published to HDFS
Example Approximation Query

• The data:
 – Wikipedia traffic statistics (1TB)
 – Webpage clicks/hour
 – 5066 compressed files (each file = 1 hour click logs)

• The query:
 – `group by language and hour`
 – `count clicks and fraction of hour`

• The approximation:
 – Final answer \(\approx (\text{intermediate click count} \times \text{scale-up factor}) \)
 1. **Job progress**: \(1.0 / \text{fraction of input received by reducers} \)
 2. **Sample fraction**: \(\text{total # of hours} / \# \text{hours sampled} \)
• Bar graph shows results for a single hour (1600)
 – Taken less than 2 minutes into a ~2 hour job!
• **Approximation error**: $|estimate - actual| / actual$

 – Job progress assumes hours are uniformly sampled

 – Sample fraction \approx sample distribution of each hour
Outline

1. Hadoop MR Background
2. Hadoop Online Prototype (HOP)
3. Performance (blocking vs. pipelining)
 - Does block size matter?
4. Future Work
Large vs. Small Block Size

• Map input is a single block (Hadoop default)
 – Increasing block size => fewer maps with longer runtimes

• Wordcount on 100GB randomly generated words
 – 20 extra-large EC2 nodes: 4 cores, 15GB RAM
 • Slot capacity: 80 maps (4 per node), 60 reduces (3 per node)
 – Two jobs: large vs. small block size
 • Job 1 (large): 512MB (240 maps/blocks)
 • Job 2 (small): 32MB (3120 maps/blocks)
 – Both jobs hard coded to use 60 reduce tasks
• Poor CPU and I/O overlap
 – Especially in blocking mode
• Pipelining + adaptive policy less sensitive to block sizes
 – BUT incurs extra sorting between shuffle and reduce steps
• Improves CPU and I/O overlap
 – BUT idle periods still exist in blocking mode shuffle step
 – AND increases scheduler overhead (3120 maps)
 – AND increases HDFS (NameNode) memory pressure
• Adaptive policy finds the right degree of pipelined parallelism
 – Based on runtime dynamics (reducer load, network capacity, etc.)
Future Work

1. Blocking vs. Pipelining
 - Comprehensive performance study at scale
 - Hadoop optimizer
2. Online Aggregation
 - Random sampling of the input
 - Better UI for approximate results
3. Stream Processing
 - Better interface for window management
 - Support for high-level query languages
Thank you!

More information: http://boom.cs.berkeley.edu

HOP code: http://code.google.com/p/hop/
• Simple wordcount on two (small) EC2 nodes
 1. Map machine: 2 map slots
 2. Reduce machine: 2 reduce slots
• Input 2GB data, 512MB block size
 – So job contains 4 maps and (a hard-coded) 2 reduces
Simple wordcount on two (small) EC2 nodes

1. Map machine: 2 map slots
2. Reduce machine: 2 reduce slots

Input 2GB data, 512MB block size
 – So job contains 4 maps and (a hard-coded) 2 reduces
Recall in blocking mode ...

• Operators block
 – Poor CPU and I/O overlap
 – Reduce task idle periods

• Only the final answer is fetched
 – So more data is fetched resulting in...
 – Network traffic spikes
 – Especially when a group of maps finish
CPU Utilization

Map tasks loading 2GB of data

Mapper CPU

Reducer CPU

Pipelining reduce tasks start working (presorting) early

Map step more I/O bound

Amazon Cloudwatch

Time Range: 1 Hour

13 min. 7 min.

Blocking Job Start

Pipelining Job Start
Recall in blocking mode ...

• Operators block
 – Poor CPU and I/O overlap
 – Reduce task idle periods

• Only the final answer is fetched
 – So more data is fetched at once resulting in...
 – Network traffic spikes
 – Especially when a group of maps finish
Network Traffic

First 2 maps finish and send output

3rd map finishes and sends output

Steady network traffic

Amazon Cloudwatch
Benefits of Pipelining

• Online aggregation
 – An *early* view of the result from a running computation
 – Interactive data analysis (you say when to stop)

• Stream processing
 – Tasks operate on *infinite* data streams
 – Real-time data analysis

• Performance? Pipelining can ...
 – Improve CPU and I/O overlap
 – Steady network traffic (fewer load spikes)
 – Improve cluster utilization (reducers do more work)
Stream Processing

• Map and reduce tasks run *continuously*
 – *Scheduler*: wait for required slot capacity

• Map tasks stream spill files
 – Input taken from arbitrary source
 • MapReduce job, TCP socket, log files, etc.
 – Garbage collection handled by system

• Window management done at reducer
 – Reduce output is an infinite series of windowed results
 – Window boundary based on time, record counts, etc.
Real-time Monitoring System

• Use MapReduce to monitor MapReduce
 – Economy of Mechanism

• **Agents** monitor machines
 – Implemented as a continuous map task
 – Record statistics of interest (/proc, log files, etc.)

• **Aggregators** group agent-local statistics
 – Implemented as reduce tasks
 – Aggregate statistics along machine, rack, datacenter
 – Reduce windows: 1, 5, and 15 second load averages
• Monitor /proc/vmstat for swapping
 – Alert triggered after some threshold
• Alert reported around a second after passing threshold
 – Faster than the (~5 second) TaskTracker reporting interval
 ? Feedback loop to the JobTracker for better scheduling
Pipelined shuffle step

- Each map task can send multiple sorted runs
- Reducers perform early group + combine during shuffle
 ➔ Also done in blocking but more so when pipelining
Hadoop Architecture

• Hadoop MapReduce
 – Single master node (**JobTracker**), many worker nodes (**TaskTrackers**)
 – Client submits a *job* to the JobTracker
 – JobTracker splits each job into *tasks* (map/reduce)
 – Assigns tasks to TaskTrackers on demand

• Hadoop Distributed File System (HDFS)
 – Single name node, many data nodes
 – Data is stored as fixed-size (e.g., 64MB) blocks
 – HDFS typically holds map input and reduce output
Performance

• Why block?
 – Effective combiner
 – Reduce step is a bottleneck

• Why pipeline?
 – Improve cluster utilization
 – Smooth out network traffic