
Hedera: Dynamic Flow Scheduling
for Data Center Networks

Mohammad Al-Fares Sivasankar Radhakrishnan
Barath Raghavan* Nelson Huang Amin Vahdat

UC San Diego * Williams College

- USENIX NSDI 2010 -

Motivation

• Current data center networks support tens
of thousands of machines

• Limited port-densities at the core routers
 Horizontal expansion = increasingly
relying on multipathing

!"#$%&'($)*
#$%&'($)*

+++ +++ +++

+++

+++

+++

+++

+++ +++ +++

+++

+++

!""#$"%&'()

*+"$

,(#$

Motivation

• MapReduce / Hadoop -style
workloads have substantial
BW requirements

• Shuffle phase stresses
network interconnect

• Oversubscription / Bad
forwarding Jobs often
bottlenecked by network

Map

Reduce

Map Map

Reduce Reduce

Input Dataset

Output Dataset

MapReduce Workflow

Contributions

• Integration + working implementation of:

1. Centralized Data Center routing control

2. Flow Demand Estimation

3. Efficient + Fast Scheduling Heuristics

• Enables more efficient utilization of network
infrastructure

• Upto 96% of optimal bisection bandwidth,
> 2X better than standard techniques

Background

• Current industry standard: Equal-Cost Multi-Path (ECMP)

• Given a packet to a subnet with multiple paths,
forward packet based on a hash of packet’s headers

• Originally developed as a wide-area / backbone TE tool

• Implemented in: Cisco / Juniper / HP ... etc.

Local
Collision

Downstream
Collision

Core 0 Core 1 Core 2 Core 3

Agg 0

Flow A
Flow B
Flow C
Flow D

Agg 1 Agg 2

Background

• ECMP drawback: Static + Oblivious to link-utilization!

• Causes long-term local/downstream flow collisions

• On 27K-host fat-tree and a randomized matrix,
ECMP wastes average of 61% of bisection
bandwidth!

Local
Collision

Downstream
Collision

Core 0 Core 1 Core 2 Core 3

Agg 0

Flow A
Flow B
Flow C
Flow D

Agg 1 Agg 2

Problem Statement

Problem:

Given a dynamic traffic matrix of flow demands,
how do you find paths that maximize network
bisection bandwidth?

Constraint:

Commodity Ethernet switches + No end-host mods

Problem Statement

• Single path forwarding (no flow splitting)

• Expressed as Binary Integer Programming (BIP)

• Combinatorial, NP-complete

• Exact solvers CPLEX/GLPK impractical for realistic networks

k

∑
i=1

fi(u,v)≤ c(u,v) ∑
w∈V

fi(u,w) = 0 (u �= si, ti)

∀v,u : fi(u,v) =− fi(v,u)

∑
w∈V

fi(si,w) = di

∑
w∈V

fi(w, ti) = di

1.	 Capacity	 Constraint 2.	 Flow	 Conserva5on 3.	 Demand	 Sa5sfac5on

MULTI-COMMODITY FLOW problem:

Problem Statement

• Polynomial-time algorithms known for 3-stage
Clos Networks (based on bipartite edge-coloring)

• None for 5-stage Clos (3-tier fat-trees)

• Need to target arbitrary/general DC topologies!

k

∑
i=1

fi(u,v)≤ c(u,v) ∑
w∈V

fi(u,w) = 0 (u �= si, ti)

∀v,u : fi(u,v) =− fi(v,u)

∑
w∈V

fi(si,w) = di

∑
w∈V

fi(w, ti) = di

1.	 Capacity	 Constraint 2.	 Flow	 Conserva5on 3.	 Demand	 Sa5sfac5on

Architecture

• Hedera : Dynamic Flow Scheduling

• Optimize achievable bisection bandwidth by
assigning flows non-conflicting paths

• Uses flow demand estimation + placement
heuristics to find good flow-to-core mappings

2. Estimate
Flow Demands

3. Schedule
Flows

1. Detect
Large Flows

Architecture

• Scheduler operates a tight control-loop:

1. Detect large flows

2. Estimate their bandwidth demands

3. Compute good paths and insert flow
entries into switches

2. Estimate
Flow Demands

3. Schedule
Flows

1. Detect
Large Flows

Elephant Detection

Elephant Detection

• Scheduler continually polls edge switches
for flow byte-counts

• Flows exceeding B/s threshold are “large”

• > %10 of hosts’ link capacity in our
implementation (i.e. > 100Mbps)

• What if only “small” flows ?

• Default ECMP load-balancing efficient

Elephant Detection

• Hedera complements ECMP!

• Default forwarding uses ECMP

• Hedera schedules large flows that cause
bisection bandwidth problems

Demand Estimation

Demand Estimation

• Empirical measurement of flow rates are
not suitable / sufficient for flow scheduling

• Current TCP flow-rates may be
constrained to inefficient forwarding

• Need to find the flows’ overall fair
bandwidth allocation, to better inform
placement algorithms

Motivation:

Demand Estimation

• TCP’s AIMD + Fair Queueing try to achieve
max-min fairness in steady state

• When routing is a degree of freedom,
establishing max-min fair demands is hard

• Ideal case: find max-min fair bandwidth
allocation as if constrained by host-NIC

Demand Estimation

• Given traffic matrix of large flows, modify each
flow’s size at Src + Dst iteratively:

1. Sender equally distributes unconverged
bandwidth among outgoing flows

2. NIC-limited receivers decrease exceeded
capacity equally between incoming flows

3. Repeat until all flows converge

• Guaranteed to converge in O(|F|) time

Demand Estimation
A

B

C

X

Y

Flow Estimate Conv. ?

A X

A Y

B Y

C Y

Sender Available
Unconv. BW Flows Share

A 1 2 1/2

B 1 1 1

C 1 1 1

Senders

Demand Estimation

Recv RL? Non-SL
Flows Share

X No - -

Y Yes 3 1/3

Receivers

A

B

C

X

Y

Flow Estimate Conv. ?

A X 1/2

A Y 1/2

B Y 1

C Y 1

Demand Estimation
A

B

C

X

Y

Flow Estimate Conv. ?

A X 1/2

A Y 1/3 Yes

B Y 1/3 Yes

C Y 1/3 Yes

Sender Available
Unconv. BW Flows Share

A 2/3 1 2/3

B 0 0 0

C 0 0 0

Senders

Demand Estimation
A

B

C

X

Y

Flow Estimate Conv. ?

A X 2/3 Yes

A Y 1/3 Yes

B Y 1/3 Yes

C Y 1/3 Yes

Recv RL? Non-SL
Flows Share

X No - -

Y No - -

Receivers

Placement Heuristics

Global First-Fit
?

Flow A
Flow B
Flow C

? ?

• New flow detected, linearly search all possible paths from SD

• Place flow on first path whose component links can fit that flow

0 1 2 3

Scheduler

Global First-Fit
Flow A
Flow B
Flow C

• Flows placed upon detection, are not moved

• Once flow ends, entries + reservations time out

0 1 2 3

Scheduler

Simulated Annealing

• Probabilistic search for good flow-to-core mappings

• Goal: Maximize achievable bisection bandwidth

• Current flow-to-core mapping generates neighbor
state

• Calculate total exceeded bandwidth capacity

• Accept move to neighbor state if bisection BW gain

• Few thousand iterations for each scheduling round

• Avoid local-minima; non-zero prob. to worse state

Simulated Annealing

• Implemented several optimizations that
reduce the search-space significantly:

• Assign a single core switch to each
destination host

• Incremental calculation of exceeded capacity

• .. among others

Simulated Annealing
0 1 2 3

Flow A
Flow B
Flow C

• Example run: 3 flows, 3 iterations

Core
2
1
0

? ? ?
2
0
2

?
2
0
3

Scheduler

Simulated Annealing
0 1 3

Flow A
Flow B
Flow C

• Final state is published to the switches and used
as the initial state for next round

Core ? ? ? ?
2
0
3

2

Scheduler

Fault-Tolerance

Fault-Tolerance
0 1 3

Flow A
Flow B
Flow C

• Link / Switch failure: Use PortLand’s fault notification protocol

• Hedera routes around failed components

2

Scheduler

Fault-Tolerance
0 1 3

Flow A
Flow B
Flow C

• Scheduler failure:

• Soft-state, not required for correctness (connectivity)

• Switches fall back to ECMP

2

Scheduler

Implementation

Implementation
• 16-host testbed

• k=4 fat-tree data-plane

• 20 machines; 4-port
NetFGPAs / OpenFlow

• Parallel 48-port non-blocking
Quanta switch

• 1 Scheduler machine

• Dynamic traffic monitoring

• OpenFlow routing control

Evaluation - Testbed

0

3

6

9

12

15

Sta
g1(.2,.3)

Sta
g2(.2,.3)

Sta
g1(.5,.3)

Sta
g2(.5,.3)

Str
ide(2

)

Str
ide(4

)

Str
ide(8

)

Bi
se

ct
io

n
Ba

nd
w

id
th

 (
G

bp
s)

Communication Pattern

ECMP Global First-Fit Simulated Annealing Non-blocking

Evaluation - Testbed

0

3

6

9

12

15

Rand0
Rand1

RandBij0

RandBij1
RandX2

RandX3
Hotsp

ot

Bi
se

ct
io

n
Ba

nd
w

id
th

 (
G

bp
s)

Communication Pattern

ECMP Global First-Fit Simulated Annealing Non-blocking

Data Shuffle
ECMP GFF SA Control

Total	 Shuffle	 Time	 (s) 438.4 335.5 336.0 306.4

Avg.	 Comple5on	 Time	 (s) 358.1 258.7 262.0 226.6

Avg.	 Bisec5on	 BW	 (Gbps) 2.81 3.89 3.84 4.44

Avg.	 host	 goodput	 (MB/s) 20.9 29.0 28.6 33.1

• 16-hosts: 120 GB all-to-all in-memory shuffle

• Hedera achieves 39% better bisection BW
over ECMP, 88% of ideal non-blocking switch

Evaluation - Simulator

• For larger topologies:

• Models TCP’s AIMD behavior when
constrained by the topology

• Stochastic flow arrival times / Bytes

• Calibrated its performance against testbed

• What about ns2 / OMNeT++ ?

• Packet-level simulators impractical at these
network scales

Simulator - 8,192 hosts (k=32)

0

1000

2000

3000

4000

5000

6000

7000

Sta
g(.5

,0)

Sta
g(.2

,.3)

Str
ide(1

)

Str
ide(1

6)

Str
ide(2

56)
RandBij

Rand

Bi
se

ct
io

n
Ba

nd
w

id
th

 (
G

bp
s)

Communication Pattern

ECMP Global First-Fit Simulated Annealing Non-blocking

Reactiveness
• Demand Estimation:

• 27K hosts, 250K flows, converges < 200ms

• Simulated Annealing:

• Asymptotically dependent on # of flows + # iter:

• 50K flows and 10K iter: 11ms

• Most of final bisection BW: first few hundred iter

• Scheduler control loop:

• Polling + Estimation + SA = 145ms for 27K hosts

Limitations

• Dynamic workloads,
large flow turnover
faster than control loop

• Scheduler will be
continually chasing
the traffic matrix

• Need to include penalty
term for unnecessary
SA flow re-assignments

Flow Size

M
at

ri
x

St
ab

ili
ty

St
ab

le
U

ns
ta

bl
e

ECMP Hedera

Future Work

• Improve utility function of Simulated Annealing

• SA movement penalties (TCP)

• Add flow priorities (QoS)

• Incorporate other metrics: e.g. Power

• Release combined system: PortLand + Hedera (6/1)

• Perfect, non-centralized, per-packet Valiant Load
Balancing

Conclusions

• Simulated Annealing delivers significant
bisection BW gains over standard ECMP

• Hedera complements ECMP

• RPC-like traffic is fine with ECMP

• If you’re running MapReduce/Hadoop jobs
on your network, you stand to benefit
greatly from Hedera; tiny investment!

Questions?

http://cseweb.ucsd.edu/~malfares/

http://cseweb.ucsd.edu/~malfares/
http://cseweb.ucsd.edu/~malfares/

Traffic Overhead

• 27K host network:

• Polling: 72B / flow * 5 flows/host * 27K
hosts / 0.1 sec = < 100MB/s for DC

• Could also use data-plane

