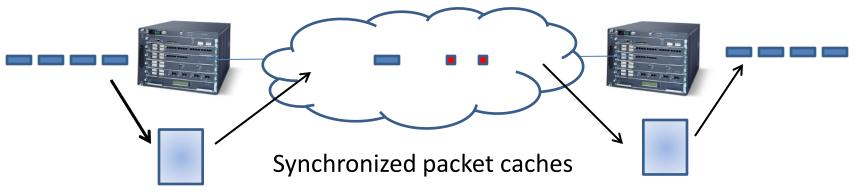

EndRE: An End-System Redundancy Elimination Service for Enterprises

Ram Ramjee Microsoft Research India

Bhavish Aggarwal[^], Aditya Akella^{*}, Ashok Anand^{*}, Athula Balachandran[~], Pushkar Chitnis[^], Chitra Muthukrishnan^{*}, and George Varghese#

^: Microsoft Research India *: University of Wisconsin-Madison ~: CMU #: University of California, San Diego

Enterprise Dilemma

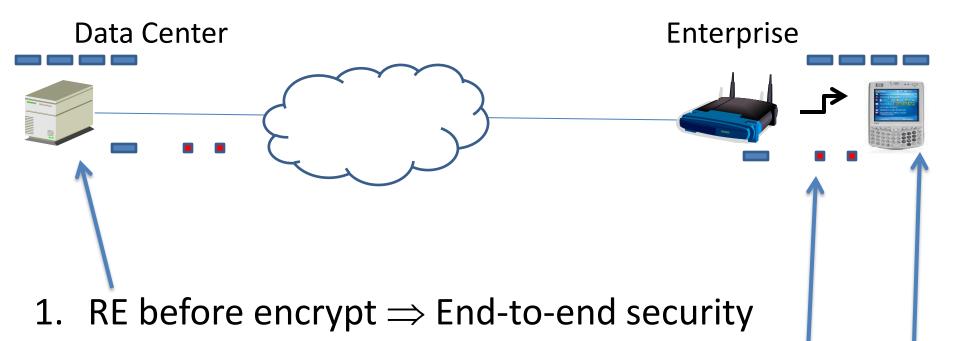


- Large enterprises have a global footprint
- Data centers consolidated to save management cost
- Diminished performance due to Wide Area Network (WAN) bandwidth and latency constraints

Middlebox-based WAN Optimizers

Data Center

Enterprise


- Protocol independent redundancy elimination using synchronized in-memory caches at two ends [Spring & Wetherall, Sigcomm 2000]
- Disk-based caches for large static objects
- Current leaders: RiverBed, Juniper, Cisco,...
- Annual revenue > \$1Billion
- Are middleboxes the right approach for enterprises?

Issues with Middleboxes


- 1. End-to-end security and encryption
 - Either no RE or require key sharing
- 2. Resource-constrained mobile smartphones
 - No RE on the bandwidth limited 2.5/3G wireless link
- 3. Cost

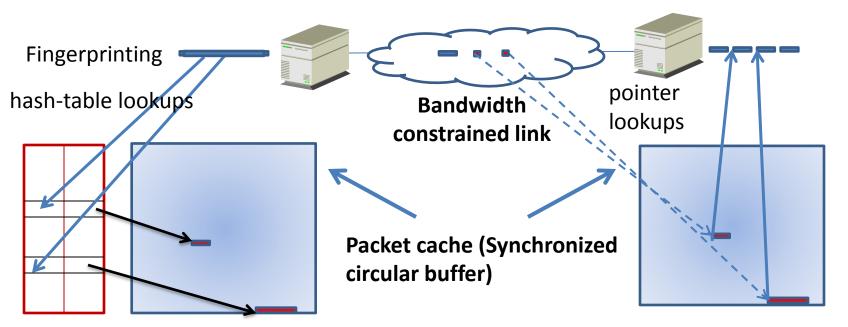
End-to-End RE: Benefits

- 2. RE on mobiles \Rightarrow Bandwidth savings over wireless
- 3. Bandwidth savings + simple decode \Rightarrow Energy gains
- 4. Operate above TCP \Rightarrow Latency gains

Our Contributions

1. EndRE Design

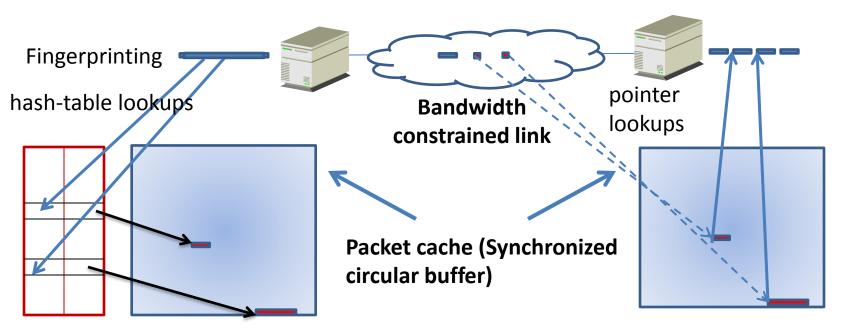
- New SAMPLEBYTE fingerprinting for fast processing: 10X speedup
- Optimized data structures for reducing memory overhead by 33-75%
- 2. Evaluation of benefits
 - Analysis using 6TB of packet traces from 11 sites over 44 days
 - Small-scale deployment


Outline

- Overview
- Design of EndRE
- EndRE costs and benefits
- Summary

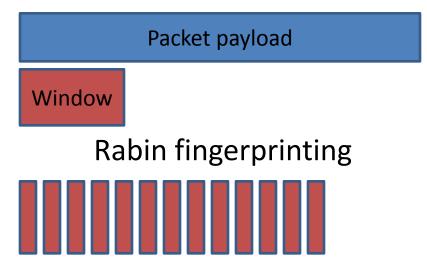
EndRE: Design Goals

- > Opportunistic use of limited end host resources
- 1. Fast and adaptive RE processing
 - Lightweight and tunable depending on server load
- 2. Parsimonious memory usage
 - Data structure and design optimizations to reduce memory overhead
- 3. Asymmetric
 - Simple client decoding


Redundancy Elimination: Overview

Need to quickly identify repeated content (≈32 bytes)

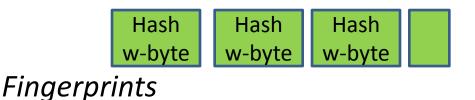
- Identifying all matches (optimal) impractical
- Sampling-based approach necessary but comes at the cost of missed redundancy identification


Redundancy Elimination: Overview

- 1. Fingerprinting
 - Generate representative fingerprints of packet
 - New SAMPLEBYTE fingerprinting algorithm
- 2. Matching & Encoding
 - Lookup fingerprints in a hash-table of cache fingerprints
 - Max-Match: Byte-by-byte comparison between cache & packet
 - Chunk-Match: Full chunk matches (see paper)
 - Encode matched region with (position, length) tuples

1. Fingerprinting: MODP

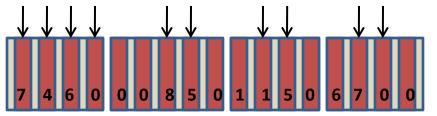
• Compute fingerprints based on *content* [Spring & Wetherall]


Value sampling: sample those fingerprints whose value is 0 mod p

+ Robust to small changes in content ⇒ better bandwidth savings
- Rabin hashes expensive and not adaptive ⇒ lower speed

1. Fingerprinting: FIXED

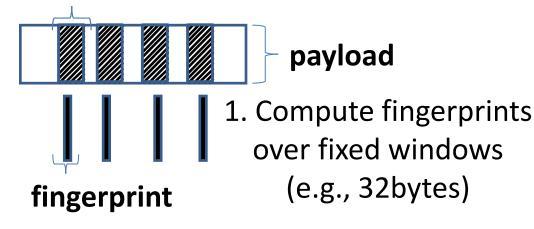
• Fingerprints chosen at *fixed intervals by position* in the packet

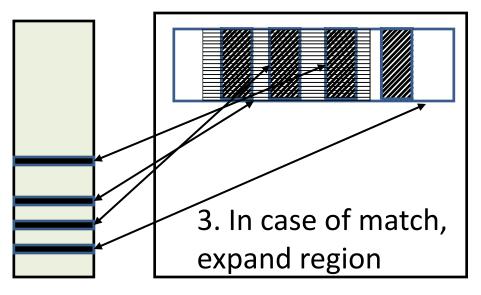


- + Simple selection criteria and tunable \Rightarrow fast and adaptive
- A small insertion/deletion in content will result in failure in detecting redundancy ⇒ lower bandwidth savings

1. Fingerprinting: SAMPLEBYTE

 Can we get the speed/adaptability of FIXED and the robustness of MODP?

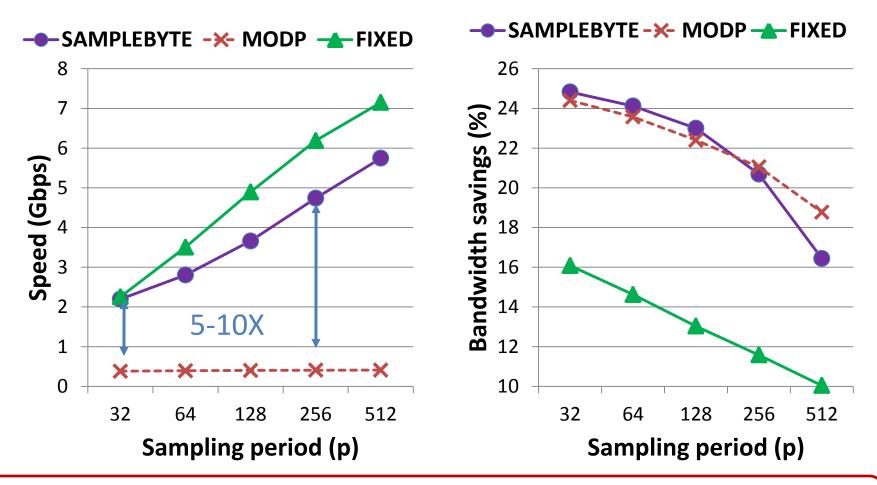

Choose marker if F(singlebyte) = 1; e.g., F(0) = 1, F(5) =1 Once chosen, **skip p/2** bytes


Fingerprints

- F(singlebyte) derived from training data using a greedy strategy
- + Content-based \Rightarrow bandwidth savings close to MODP?
- + Simple selection & tunable skipping \Rightarrow speed/adaptability of FIXED?

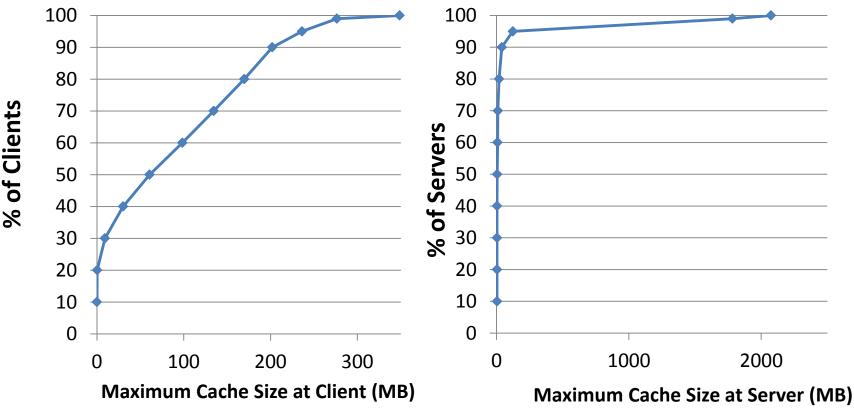
2. Matching & Encoding: Max-Match

2. Lookup in Fingerprint hash table


Fingerprint hash table Packet Cache

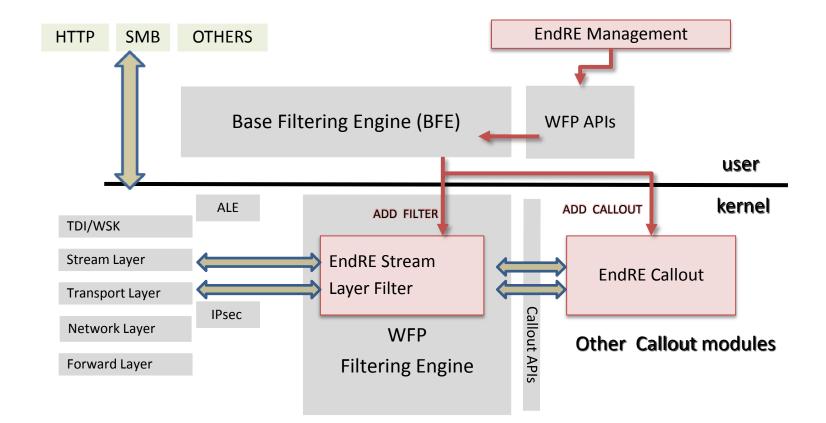
- Approach used in Spring & Wetherall
 - Meta data overhead is
 67% of cache size
- Collisions are not costly
 - Simple hash function
 - Overwrite hash table
 - No deletion
- Don't store fingerprints!
 - Use the table index to implicitly represent part/all of fingerprint
- Meta data overhead is 6-12% of cache size

Outline


- Overview
- Design of EndRE
- EndRE costs and benefits
- Summary

Fingerprinting Algorithms: Comparison

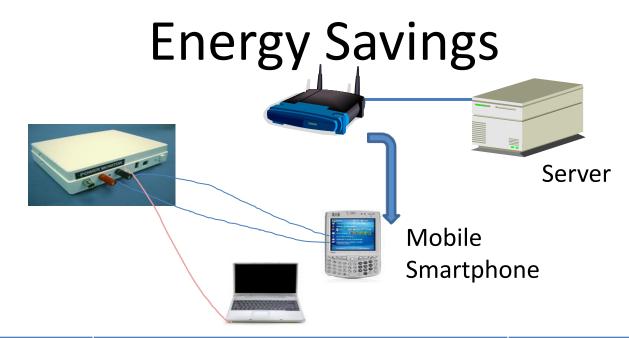
SAMPLEBYTE delivers bandwidth savings similar to MODP while operating at speeds similar to FIXED


EndRE Memory Requirements: 44-day 11-enterprise Trace Analysis

Median/Max memory requirement at Client is 60/360MB

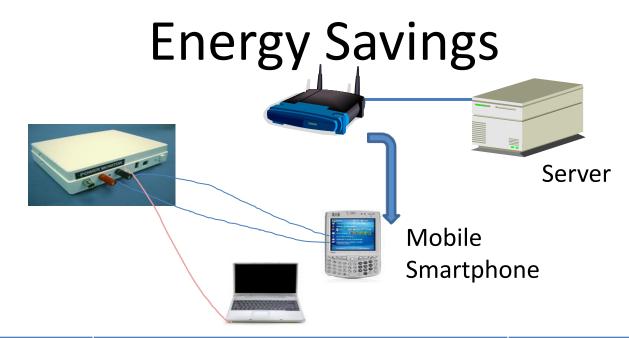
Memory requirement at server tunable, at cost of reduced savings

Implementation



EndRE pilot deployment on laptops/desktops over one week with 11 users for HTTP traffic (1.7GB) delivered bandwidth savings of 31%

Bandwidth Savings (~2 weeks)


Enterprise Site	Trace Size (GB)	Middle (2GB) % savings	EndRE (1-10 MB) % savings	Middle + large-files %savings	EndRE + large-files % savings
1.	173	71	47	72	56
2.	8	33	24	33	33
3.	71	34	26	35	32
4.	58	45	24	47	30
5.	69	39	27	42	37
6.	80	34	22	36	28
7.	80	31	26	33	33
8.	142	34	22	40	30
9.	198	44	16	46	26
10.	117	27	21	30	30
Avg/Site	100	39	26	41	34

EndRE delivers average bandwidth savings of 26-34%, a significant portion of the 39-41% savings of middlebox

	None	ZLIB (LZ)			EndRE		
	Energy uAh	Energy % savings		Bandwidth % savings		Energy %savings	Bandwidth %savings
Trace		Packet	32KB	Packet	32KB	Packet	Packet
А	2038	-11	42	26	44	25	29
В	1496	-11	68	41	75	70	76

ZLIB works well for large chunk sizes but on a packet-by-packet basis may result in increased energy consumption

	None	ZLIB (LZ)			EndRE		
	Energy uAh	Energy % savings		Bandwidth % savings		Energy %savings	Bandwidth %savings
Trace		Packet	32KB	Packet	32KB	Packet	Packet
А	2038	-11	42	26	44	25	29
В	1496	-11	68	41	75	70	76

EndRE's bandwidth savings translate into equivalent savings in energy with no additional latency

Related work

- Static content (e.g., large files)
 - Host: Disk De-Duplication
 - *Client and Server:* LBFS (SOSP'01), RSYNC/RDC
 - Peer-to-Peer: DOT(NSDI'06), SET (NSDI'07), BranchCache in Win7
- Dynamic content
 - Middlebox
 - Spring & Wetherall (SIGCOMM'00)
 - Products from Riverbed, Cisco, Juniper, etc.
- New architectures
 - Packet Caches: RE in routers (SIGCOMM'08)
 - Ditto: RE in wireless mesh networks (MobiCom'08)

Summary

1. EndRE

- SAMPLEBYTE fingerprinting algorithm supports processing speeds of 1.5-4Gbps/core
- Data structure optimizations reduce server memory requirement by 33-75%
- 2. Costs
 - Client processing negligible; Server processing is load adaptive;
 - Median client requires only 60MB of memory; Server up to 2GB
- 3. Benefits
 - Avg. bandwidth savings of 26-34%
 - Bandwidth savings \rightarrow equivalent energy savings on smartphones

EndRE is a promising alternative to WAN optimizers

Questions?

