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very rapid pace of datacenter rollout 

 

 April 2007 
 Microsoft opens DC in Quincy, WA 

 September 2008 
 Microsoft opens DC in San Antonio, TX 

 July 2009 
 Microsoft opens DC in Dublin, Ireland 

 July 2009 
 Microsoft opens DC in Chicago, IL 
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geo-distribution is here 

 major cloud providers have tens of DCs today that are geographically dispersed 
 cloud service operators want to leverage multiple DCs to serve each user from best DC 

 user wants lower latency 

 cloud service operator wants to limit cost 
 two major sources of cost: inter-DC traffic and provisioned capacity in each DC 

 if your service hosts dynamic data (e.g. frequently updated wall in social networking),     
and cost is a major concern 
 partitioning data across DCs is attractive because you don’t consume inter-DC WAN traffic for replication 
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research contribution 

 major unmet challenge: automatically placing user data or other dynamic application state 
 considering both user latency and service operator cost, at cloud scale 

 we show: can do a good job of reducing both user latency and operator cost 

 our research contribution 
 define this problem 

 devise algorithm and implement system that outperforms heuristics we consider in our evaluation 

 exciting challenge 
 scale: O(100million) data items 

 need practical solution that also addresses costs that operators face 

 important for multiple cloud services today; trends indicate many more services with dynamic data sharing 

 all the major cloud providers are building out geo-distributed infrastructure 



overview 
how do users share data? 
volley 
evaluation 
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data sharing is common in cloud services 

 many can be modeled as pub-sub 
 social networking 

 Facebook, LinkedIn, Twitter, Live Messenger 

 business productivity 

 MS Office Online, MS Sharepoint, Google Docs 

 Live Messenger 
 instant messaging application 

 O(100 million) users 

 O(10 billion) conversations / month 

 Live Mesh 
 cloud storage, file synchronization, file sharing, remote access 
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PLACING ALL DATA ITEMS IN ONE PLACE IS REALLY BAD FOR LATENCY 

users scattered geographically (Live Messenger) 
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ALGORITHM NEEDS TO HANDLE USER LOCATIONS THAT CAN VARY 

users travel 
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ALGORITHM NEEDS TO HANDLE DATA ITEMS THAT ARE ACCESSED AT SAME TIME BY USERS IN DIFFERENT LOCATIONS 

users share data across geographic distances 
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sharing of data makes partitioning difficult 

 data placement is challenging because 
 complex graph of data inter-dependencies 

 users scattered geographically 

 data sharing across large geographic distances 

 user behavior changes, travels or migrates 

 application evolves over time 
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DC Z 

DC Y 
DC X 

simple example 

 transaction1:               
user updates wall A with two subscribers C,D 

 IP1  A 

 A  C 

 A  D 

 transaction2:               
user updates wall A with one subscriber C 

 IP1  A 

 A  C 

 transaction3:               
user updates wall B with one subscriber D 

 IP2,  B 

 B  D 

IP 2 
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proven algorithms do not apply to this problem 

 how to partition this graph among DCs while considering 
 latency of transactions (impacted by distance between users and dependent data) 

 WAN bandwidth (edges cut between dependent data) 

 DC capacity (size of subgraphs) 

 sparse cut algorithms 
 models data-data edges 

 but not clear how to incorporate users, location / distance 

 facility location 
 better fit than sparse cut and models users-data edges 

 but not clear how to incorporate edges and edge costs between data items 

 standard commercial optimization packages 
 can formulate as an optimization 

 but don’t know how to scale to O(100 million) objects 
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instead, we design a heuristic 

 want heuristic that allows a highly parallelizable implementation 
 to handle huge scales of modern cloud services 

 many cloud services centralize logs into large compute clusters, e.g. Hadoop, Map-Reduce, Cosmos 

 use logs to build a fully populated graph 
 fixed nodes are IP addresses from which client transactions originated 

 data items are nodes that can move anywhere on the planet (Earth) 

 pull together or mutually attract nodes that frequently interact 
 reduces latency, and if co-located, will also reduce inter-DC traffic 

 fixed nodes prevent all nodes from collapsing onto one point 

 not knowing optimal algorithm, we rely on iterative improvement 
 but iterative algorithms can take a long time to converge 

 starting at a reasonable location can reduce search space, number of iterations, job completion time 

 constants in update at each iteration will determine convergence 
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volley algorithm 

 phase1: calculate geographic centroid for each data 
 considering client locations, ignoring data inter-dependencies 

 highly parallel 

 phase2: refine centroid for each data iteratively 
 considering client locations, and data inter-dependencies 

 using weighted spring model that attracts data items 

 but on a spherical coordinate system 

 phase3: confine centroids to individual DCs 
 iteratively roll over least-used data in over-subscribed DCs 

 (as many iterations as number of DCs is enough in practice) 
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volley system overview 

 consumes network cost model, DC capacity and locations, and request logs 
 most apps store this, but require custom translations 

 request log record 

 timestamp, source entity, destination entity, request size (B), transaction ID 

 entity can be client IP address or another data item’s GUID 

 runs on large compute cluster with distributed file system 

 hands placement to              
app-specific migration mechanism 
 allows Volley to be used by many apps 

 computing placement on 1 week 
 16 wall-clock hours 

 10 phase-2 iterations 

 400 machine-hours of work 
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methodology 

 inputs 
 Live Mesh traces from June 2009 

 compute placement on week 1, evaluate placement on weeks 2,3,4 

 12 geographically diverse DC locations (where we had servers) 

 evaluation 
 analytic evaluation using latency model (Agarwal SIGCOMM’09) 

 based on 49.9 million measurements across 3.5 million end-hosts 

 live experiments using Planetlab clients 

 metrics 
 latency of user transactions 

 inter-DC traffic: how many messages between data in different DCs 

 DC utilization: e.g. no more than 10% of data in each of 12 DCs 

 staleness: how long is the placement good for? 

 frequency of migration: how much data migrated and how often? 
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other heuristics for comparison 

 hash 
 static, random mapping of data to DCs 

 optimizes for meeting any capacity constraint for each DC 

 oneDC 
 place all data in one DC 

 optimizes for minimizing (zero) traffic between DCs 

 commonIP 
 pick DC closest to IP that most frequently uses data 

 optimizes for latency by keeping data items close to user 

 firstIP 
 (didn’t work as well as commonIP) 
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INCLUDES SERVER-SERVER (SAME DC OR CROSS-DC) AND SERVER-USER 

user transaction latency (analytic evaluation) 
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WAN TRAFFIC IS A MAJOR SOURCE OF COST FOR OPERATORS 

inter-DC traffic (analytic evaluation) 
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COMPARED TO FIRST WEEK 

how many objects are migrated every week 
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summary 

 Volley’s data partitioning 
 simultaneously reduces user latency and operator cost 

 reduces datacenter capacity skew by over 2X 

 reduces inter-DC traffic by over 1.8X 

 reduces user latency by 30% at 75th percentile 

 runs in under 16 clock-hours for 400 machine-hours computation across 1 week of traces 

 Volley solves a real, increasingly important need 
 partitioning user data or other application state across DCs 

 simultaneously reducing operator cost and user latency 

 more cloud services built around sharing data between users (both friends & employees) 

 cloud providers continue to deploy more DCs 
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