
volley: automated data placement

for geo-distributed cloud services

sharad agarwal, john dunagan, navendu jain, stefan saroiu, alec wolman, harbinder bhogan

sharad.agarwal@microsoft.com PAGE 2 4/29/2010

very rapid pace of datacenter rollout

 April 2007
 Microsoft opens DC in Quincy, WA

 September 2008
 Microsoft opens DC in San Antonio, TX

 July 2009
 Microsoft opens DC in Dublin, Ireland

 July 2009
 Microsoft opens DC in Chicago, IL

sharad.agarwal@microsoft.com PAGE 3 4/29/2010

geo-distribution is here

 major cloud providers have tens of DCs today that are geographically dispersed
 cloud service operators want to leverage multiple DCs to serve each user from best DC

 user wants lower latency

 cloud service operator wants to limit cost
 two major sources of cost: inter-DC traffic and provisioned capacity in each DC

 if your service hosts dynamic data (e.g. frequently updated wall in social networking),
and cost is a major concern
 partitioning data across DCs is attractive because you don’t consume inter-DC WAN traffic for replication

sharad.agarwal@microsoft.com PAGE 4 4/29/2010

research contribution

 major unmet challenge: automatically placing user data or other dynamic application state
 considering both user latency and service operator cost, at cloud scale

 we show: can do a good job of reducing both user latency and operator cost

 our research contribution
 define this problem

 devise algorithm and implement system that outperforms heuristics we consider in our evaluation

 exciting challenge
 scale: O(100million) data items

 need practical solution that also addresses costs that operators face

 important for multiple cloud services today; trends indicate many more services with dynamic data sharing

 all the major cloud providers are building out geo-distributed infrastructure

overview
how do users share data?
volley
evaluation

sharad.agarwal@microsoft.com PAGE 6 4/29/2010

data sharing is common in cloud services

 many can be modeled as pub-sub
 social networking

 Facebook, LinkedIn, Twitter, Live Messenger

 business productivity

 MS Office Online, MS Sharepoint, Google Docs

 Live Messenger
 instant messaging application

 O(100 million) users

 O(10 billion) conversations / month

 Live Mesh
 cloud storage, file synchronization, file sharing, remote access

john

john’s

wall

john’s

news feed

sharad

sharad’s

wall

sharad’s

news feed

sharad.agarwal@microsoft.com PAGE 7 4/29/2010

PLACING ALL DATA ITEMS IN ONE PLACE IS REALLY BAD FOR LATENCY

users scattered geographically (Live Messenger)

sharad.agarwal@microsoft.com PAGE 8 4/29/2010

ALGORITHM NEEDS TO HANDLE USER LOCATIONS THAT CAN VARY

users travel

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

%
 o

f
d

e
v
ic

e
s

o
r

u
se

rs

max distance from centroid (x1000 miles)

% of Mesh devices

% of Messenger users

sharad.agarwal@microsoft.com PAGE 9 4/29/2010

ALGORITHM NEEDS TO HANDLE DATA ITEMS THAT ARE ACCESSED AT SAME TIME BY USERS IN DIFFERENT LOCATIONS

users share data across geographic distances

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

%
 o

f
in

st
a
n

ce
s

distance from device to sharing centroid (x1000 miles)

% of Messenger conversations

% of Mesh notification sessions

sharad.agarwal@microsoft.com PAGE 10 4/29/2010

sharing of data makes partitioning difficult

 data placement is challenging because
 complex graph of data inter-dependencies

 users scattered geographically

 data sharing across large geographic distances

 user behavior changes, travels or migrates

 application evolves over time

john

john’s

wall

john’s

news feed

sharad

sharad’s

wall

sharad’s

news feed

overview
how do users share data?
volley
evaluation

sharad.agarwal@microsoft.com PAGE 12 4/29/2010

DC Z

DC Y
DC X

simple example

 transaction1:
user updates wall A with two subscribers C,D

 IP1  A

 A  C

 A  D

 transaction2:
user updates wall A with one subscriber C

 IP1  A

 A  C

 transaction3:
user updates wall B with one subscriber D

 IP2,  B

 B  D

IP 2

data B

data C

IP 1

data A

2 1

2 1

data D

1

frequency of operations

can be weighted by importance

sharad.agarwal@microsoft.com PAGE 13 4/29/2010

proven algorithms do not apply to this problem

 how to partition this graph among DCs while considering
 latency of transactions (impacted by distance between users and dependent data)

 WAN bandwidth (edges cut between dependent data)

 DC capacity (size of subgraphs)

 sparse cut algorithms
 models data-data edges

 but not clear how to incorporate users, location / distance

 facility location
 better fit than sparse cut and models users-data edges

 but not clear how to incorporate edges and edge costs between data items

 standard commercial optimization packages
 can formulate as an optimization

 but don’t know how to scale to O(100 million) objects

sharad.agarwal@microsoft.com PAGE 14 4/29/2010

instead, we design a heuristic

 want heuristic that allows a highly parallelizable implementation
 to handle huge scales of modern cloud services

 many cloud services centralize logs into large compute clusters, e.g. Hadoop, Map-Reduce, Cosmos

 use logs to build a fully populated graph
 fixed nodes are IP addresses from which client transactions originated

 data items are nodes that can move anywhere on the planet (Earth)

 pull together or mutually attract nodes that frequently interact
 reduces latency, and if co-located, will also reduce inter-DC traffic

 fixed nodes prevent all nodes from collapsing onto one point

 not knowing optimal algorithm, we rely on iterative improvement
 but iterative algorithms can take a long time to converge

 starting at a reasonable location can reduce search space, number of iterations, job completion time

 constants in update at each iteration will determine convergence

sharad.agarwal@microsoft.com PAGE 15 4/29/2010

volley algorithm

 phase1: calculate geographic centroid for each data
 considering client locations, ignoring data inter-dependencies

 highly parallel

 phase2: refine centroid for each data iteratively
 considering client locations, and data inter-dependencies

 using weighted spring model that attracts data items

 but on a spherical coordinate system

 phase3: confine centroids to individual DCs
 iteratively roll over least-used data in over-subscribed DCs

 (as many iterations as number of DCs is enough in practice)

sharad.agarwal@microsoft.com PAGE 16 4/29/2010

volley system overview

 consumes network cost model, DC capacity and locations, and request logs
 most apps store this, but require custom translations

 request log record

 timestamp, source entity, destination entity, request size (B), transaction ID

 entity can be client IP address or another data item’s GUID

 runs on large compute cluster with distributed file system

 hands placement to
app-specific migration mechanism
 allows Volley to be used by many apps

 computing placement on 1 week
 16 wall-clock hours

 10 phase-2 iterations

 400 machine-hours of work

…
app servers

in DC n

Cosmos store

in DC y

Volley

analysis job

app-specific

migration

mechanism

app servers

in DC 2

app servers

in DC 1

overview
how do users share data?
volley
evaluation

sharad.agarwal@microsoft.com PAGE 18 4/29/2010

methodology

 inputs
 Live Mesh traces from June 2009

 compute placement on week 1, evaluate placement on weeks 2,3,4

 12 geographically diverse DC locations (where we had servers)

 evaluation
 analytic evaluation using latency model (Agarwal SIGCOMM’09)

 based on 49.9 million measurements across 3.5 million end-hosts

 live experiments using Planetlab clients

 metrics
 latency of user transactions

 inter-DC traffic: how many messages between data in different DCs

 DC utilization: e.g. no more than 10% of data in each of 12 DCs

 staleness: how long is the placement good for?

 frequency of migration: how much data migrated and how often?

sharad.agarwal@microsoft.com PAGE 19 4/29/2010

other heuristics for comparison

 hash
 static, random mapping of data to DCs

 optimizes for meeting any capacity constraint for each DC

 oneDC
 place all data in one DC

 optimizes for minimizing (zero) traffic between DCs

 commonIP
 pick DC closest to IP that most frequently uses data

 optimizes for latency by keeping data items close to user

 firstIP
 (didn’t work as well as commonIP)

sharad.agarwal@microsoft.com PAGE 20 4/29/2010

INCLUDES SERVER-SERVER (SAME DC OR CROSS-DC) AND SERVER-USER

user transaction latency (analytic evaluation)

0

50

100

150

200

250

300

350

400

450

50th 75th 95th

u
se

r
tr

a
n

sa
ct

io
n

 l
a
te

n
cy

 (
m

s)

percentile of total user transactions

hash oneDC commonIP volley

sharad.agarwal@microsoft.com PAGE 21 4/29/2010

WAN TRAFFIC IS A MAJOR SOURCE OF COST FOR OPERATORS

inter-DC traffic (analytic evaluation)

0.0000

0.7929

0.2059

0.1109

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

oneDC

hash

commonIP

volley

fraction of messages that are inter-DC

p
la

ce
m

e
n

t

real money

sharad.agarwal@microsoft.com PAGE 22 4/29/2010

COMPARED TO FIRST WEEK

how many objects are migrated every week

0%

20%

40%

60%

80%

100%

week2 week3 week4

p
e
rc

e
n

ta
g

e
 o

f
o

b
je

ct
s old objects with

different placement

old objects with

same placement

new objects

sharad.agarwal@microsoft.com PAGE 23 4/29/2010

summary

 Volley’s data partitioning
 simultaneously reduces user latency and operator cost

 reduces datacenter capacity skew by over 2X

 reduces inter-DC traffic by over 1.8X

 reduces user latency by 30% at 75th percentile

 runs in under 16 clock-hours for 400 machine-hours computation across 1 week of traces

 Volley solves a real, increasingly important need
 partitioning user data or other application state across DCs

 simultaneously reducing operator cost and user latency

 more cloud services built around sharing data between users (both friends & employees)

 cloud providers continue to deploy more DCs

thanks!

sharad agarwal john dunagan navendu jain stefan saroiu alec wolman harbinder bhogan

