volley: automated data placement
for geo-distributed cloud services

sharad agarwal, john dunagan, navendu jain, stefan saroiu, alec wolman, harbinder bhogan

very rapid pace of datacenter rollout

April 2007
= Microsoft opens DC in Quincy, WA

September 2008

= Microsoft opens DC in San Antonio, TX

July 2009

= Microsoft opens DC in Dublin, Ireland

July 2009
= Microsoft opens DC in Chicago, IL

PAGE 2 4/29/2010

geo-distribution is here

= major cloud providers have tens of DCs today that are geographically dispersed
= cloud service operators want to leverage multiple DCs to serve each user from best DC

= user wants lower latency

= cloud service operator wants to limit cost
= two major sources of cost: inter-DC traffic and provisioned capacity in each DC

= if your service hosts dynamic data (e.g. frequently updated wall in social networking),
and cost is a major concern

= partitioning data across DCs is attractive because you don't consume inter-DC WAN traffic for replication

sharad.agarwal@microsoft.com PAGE 3 4/29/2010

research contrioution

= major unmet challenge: automatically placing user data or other dynamic application state
= considering both user latency and service operator cost, at cloud scale

= we show: can do a good job of reducing both user latency and operator cost

= our research contribution

= define this problem
= devise algorithm and implement system that outperforms heuristics we consider in our evaluation

exciting challenge
= scale: O(100million) data items
= need practical solution that also addresses costs that operators face
= important for multiple cloud services today; trends indicate many more services with dynamic data sharing
= all the major cloud providers are building out geo-distributed infrastructure

sharad.agarwal@microsoft.com PAGE 4 4/29/2010

overview

how do users share data?
volley

evaluation

data sharing is common in cloud services

= many can be modeled as pub-sub

= social networking

= Facebook, LinkedIn, Twitter, Live Messenger

= business productivity mf —
= MS Office Online, MS Sharepoint, Google Docs e

= Live Messenger sharad's) [john's
= instant messaging application Poroonsril

= O(100 million) users N
= (O(10 billion) conversations / month O o * x ¢
= |jve Mesh sharad’s john’s
ews feed ews feed

= cloud storage, file synchronization, file sharing, remote access

sharad.agarwal@microsoft.com PAGE 6 4/29/2010

users scattered geographically (Live Messenger)

PLACING ALL DATA ITEMS IN ONE PLACE IS REALLY BAD FOR LATENCY

90 I [_#
- et ' — : - @ . = =] = e
= 3 A el | - - u s 1 -‘J}“’J}q{ﬁ[R i £ o S G
. LT [e =T - . el BB I I B { el
60 4 ..-"th— . .' . ';.r : . L ".'?—1_ q‘_: y . 3 - r. '.'.‘ ;‘. "‘.‘;‘.&h'.“ :; ‘o .-- .‘-'{: e 'L'M .;. o & ;“.‘.‘
e 5 3 o' - . pig 1l % &0 -.#'1:-.- . R B .ﬂ.A-‘. . 4 & - :..\ o m ‘}’ —_—
. = o g-ﬁ Cr- ‘~2:~.s‘. . .-. .:ﬁ: é A -

3

30 - 4 . ey 1Y i oot o - 44 ‘?,." ' .‘":E

- s X
»
e
d""."\i .
#;
]
e
]
oI
¥
Y

0 K .. Py " '. i'; 7/. :ﬂ‘}]’ . -‘“';- > s
.'Lr :" = ” .'c. 51' 5t)) : ‘XT_p:: 5
- g e R S I
-30 JL ; S 1 LL'_ i 3 | . -
1

~— - B e D— —
-~ r‘,"/c i - il L W, i 1 = s .
e ___‘,‘,_-«r_’/‘ ... el Wy —'_J_L__] _’_’_,-—u_‘-\. e
- -
— (—'__‘ L

-180
-150
-120
-90
-60
120
150
180

sharad.agarwal@microsoft.com PAGE 7 4/29/2010

users travel

ALGORITHM NEEDS TO HANDLE USER LOCATIONS THAT CAN VARY

100
§ 80
> =% of Mesh devices
O
§ 60 —% of Messenger users
= 40
10
©
0 20

O I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9

max distance from centroid (x1000 miles)

10

PAGE 8 4/29/2010

users share data across geograpnic distances

ALGORITHM NEEDS TO HANDLE DATA ITEMS THAT ARE ACCESSED AT SAME TIME BY USERS IN DIFFERENT LOCATIONS

100

30

—% of Messenger conversations

60

=% of Mesh notification sessions
40

% of instances

20

O I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10
distance from device to sharing centroid (x1000 miles)

sharad.agarwal@microsoft.com PAGE 9 4/29/2010

sharing of data makes partitioning difficult

= data placement is challenging because

= complex graph of data inter-dependencies
= users scattered geographically
= data sharing across large geographic distances
= user behavior changes, travels or migrates & J
= application evolves over time
sharad’s john’s

sharad’s john’s
ews feed ews feed

sharad.agarwal@microsoft.com PAGE 10 4/29/2010

overview

how do users share data?
volley

evaluation

S|mp‘e examp‘e frequency of operations

can be weighted by importance

= transactiony:

user updates wall A with two subscribers C,D . .
Y

= A>C
= A-=>D

= transaction,;) IDC X,

user updates wall A with one subscriber C] -
- P, >A I)
= ADC I 1-
= transaction: :’ ' b s sl
user updates wall B with one subscriber D i . I
'IPZ,QB | —— I i I
I DC ZI

sharad.agarwal@microsoft.com

proven algorithms do not apply to this problem

= how to partition this graph among DCs while considering
= |atency of transactions (impacted by distance between users and dependent data)
= WAN bandwidth (edges cut between dependent data)
= DC capacity (size of subgraphs)

= gsparse cut algorithms
= models data-data edges
= but not clear how to incorporate users, location / distance

facility location
= better fit than sparse cut and models users-data edges
= but not clear how to incorporate edges and edge costs between data items

= standard commercial optimization packages
= can formulate as an optimization
= but don't know how to scale to O(100 million) objects

sharad.agarwal@microsoft.com PAGE 13 4/29/2010

iNstead, we design a heuristic

= want heuristic that allows a highly parallelizable implementation
= to handle huge scales of modern cloud services
= many cloud services centralize logs into large compute clusters, e.g. Hadoop, Map-Reduce, Cosmos

= use logs to build a fully populated graph
= fixed nodes are IP addresses from which client transactions originated
= data items are nodes that can move anywhere on the planet (Earth)

pull together or mutually attract nodes that frequently interact
= reduces latency, and if co-located, will also reduce inter-DC traffic
= fixed nodes prevent all nodes from collapsing onto one point

= not knowing optimal algorithm, we rely on iterative improvement
= but iterative algorithms can take a long time to converge
= starting at a reasonable location can reduce search space, number of iterations, job completion time
= constants in update at each iteration will determine convergence

sharad.agarwal@microsoft.com PAGE 14 4/29/2010

volley algorithm

Recursive Step:

= phasel: calculate geographic centroid for each data

. \ R AN Yy
= considering client locations, ignoring data inter-dependencies wsm ({w;, F;}i2,) =

= highly parallel in.terp(N 1-.:T:'NJL-'sm({wh:ft-}‘i_ll)
> w; !
= phase2: refine centroid for each data iteratively 1
= considering client locations, and data inter-dependencies Y Ik d AB
= using weighted spring model that attracts data items TEY = interp(w, T, Fourent) |
= but on a spherical coordinate system
d = cos™![cos(oa)cos(dp)+
= phase3: confine centroids to individual DCs sin(04) sin(0p) cos(Az — Aa)
= jteratively roll over least-used data in over-subscribed DCs v = tan™! 5111(.;:;?; S;H('I"q) ?;;()‘B (;5)3‘“"}}
. : . . . COB — CO5 COs
= (as many iterations as number of DCs is enough in practice) in .‘4) 0 (wd) sin(_}B
3 = fap=1 sin(op) sin ui sin ?.
| cos(wd) — cos(oa) cos(on)

oc = cos™! [cos(wd)cos(op)+
sin(wd) sin(¢pg) cos(7)]
A = Ap-—p

sharad.agarwal@microsoft.com

volley system overview

= consumes network cost model, DC capacity and locations, and request logs
= most apps store this, but require custom translations
= request log record
= timestamp, source entity, destination entity, request size (B), transaction ID
= entity can be client IP address or another data item’s GUID

= runs on large compute cluster with distributed file system

app servers Volley
* hands placement to _ in DC 1 analysis job

app-specific migration mechanism

= allows Volley to be used by many apps app Servers
In DC 2

= computing placement on 1 week

= 16 waII—cIoc!< hOLer app servers Cosmos store] __y migration
= 10 phase-2 iterations in DC N in DC y mechanism

= 400 machine-hours of work

sharad.agarwal@microsoft.com PAGE 16 4/29/2010

app-specific

overview

how do users share data?
volley

evaluation

methodology

= Inputs
= Live Mesh traces from June 2009
= compute placement on week 1, evaluate placement on weeks 2,3,4
= 12 geographically diverse DC locations (where we had servers)

= evaluation
= analytic evaluation using latency model (Agarwal SIGCOMM'09)
= based on 49.9 million measurements across 3.5 million end-hosts
= live experiments using Planetlab clients

= metrics
= |atency of user transactions
= inter-DC traffic. how many messages between data in different DCs
= DC utilization: e.g. no more than 10% of data in each of 12 DCs
= staleness: how long is the placement good for?
= frequency of migration: how much data migrated and how often?

sharad.agarwal@microsoft.com PAGE 18 4/29/2010

other heuristics for comparison

= hash

= static, random mapping of data to DCs
= optimizes for meeting any capacity constraint for each DC

= oneDC

= place all data in one DC
= optimizes for minimizing (zero) traffic between DCs

= commonlP
= pick DC closest to IP that most frequently uses data
= optimizes for latency by keeping data items close to user

PAGE19 4/29/2010

user transaction latency (analytic evaluation)

INCLUDES SERVER-SERVER (SAME DC OR CROSS-DC) AND SERVER-USER

D
Ul
-

M hash © oneDC B commonlP H volley

AN
-
o

user transaction latency (ms)

50th 75th 95th
percentile of total user transactions

sharad.agarwal@microsoft.com PAGE 20 4/29/2010

inter-DC traffic (analytic evaluation)

WAN TRAFFIC IS A MAJOR SOURCE OF COST FOR OPERATORS

volley
% commonlIP
&
)
O
= hash
oneDC

sharad.agarwal@microsoft.co

0.000C

St

B real money
—

02059

0.7929

0.1

02 03 04 05 06 0.7 08 059

fraction of messages that are inter-DC

PAGE 21 4/29/2010

how many opjects are migrated every week

COMPARED TO FIRST WEEK

100% -
£ 80% - N o!d objects with
f_;, different placement
O
5 6U% - B old objects with
o same placement
8 40% -
§ ¥ new objects
¢ 20% -

0% -

week?2 week3 week4

sharad.agarwal@microsoft.com PAGE 22 4/29/2010

summary

Volley’'s data partitioning
= simultaneously reduces user latency and operator cost
= reduces datacenter capacity skew by over 2X
= reduces inter-DC traffic by over 1.8X
= reduces user latency by 30% at 75t percentile
= runs in under 16 clock-hours for 400 machine-hours computation across 1 week of traces

Volley solves a real, increasingly important need
= partitioning user data or other application state across DCs
= simultaneously reducing operator cost and user latency

= more cloud services built around sharing data between users (both friends & employees)

= cloud providers continue to deploy more DCs

sharad.agarwal@microsoft.com PAGE 23 4/29/2010

