volley: automated data placement for geo-distributed cloud services

sharad agarwal, john dunagan, navendu jain, stefan saroiu, alec wolman, harbinder bhogan

very rapid pace of datacenter rollout

- April 2007
 - Microsoft opens DC in Quincy, WA
- September 2008
 - Microsoft opens DC in San Antonio, TX
- July 2009
 - Microsoft opens DC in Dublin, Ireland
- July 2009
 - Microsoft opens DC in Chicago, IL

sh

geo-distribution is here

- major cloud providers have tens of DCs today that are geographically dispersed
 - cloud service operators want to leverage multiple DCs to serve each user from best DC
- user wants lower latency
- cloud service operator wants to limit cost
 - two major sources of cost: inter-DC traffic and provisioned capacity in each DC
- if your service hosts dynamic data (e.g. frequently updated wall in social networking), and cost is a major concern
 - partitioning data across DCs is attractive because you don't consume inter-DC WAN traffic for replication

research contribution

- major unmet challenge: automatically placing user data or other dynamic application state
 - considering both user latency and service operator cost, at cloud scale
- we show: can do a good job of reducing both user latency and operator cost
- our research contribution
 - define this problem
 - devise algorithm and implement system that outperforms heuristics we consider in our evaluation
- exciting challenge
 - scale: O(100million) data items
 - need practical solution that also addresses costs that operators face
 - important for multiple cloud services today; trends indicate many more services with dynamic data sharing
 - all the major cloud providers are building out geo-distributed infrastructure

overview how do users share data? volley evaluation

data sharing is common in cloud services

- many can be modeled as pub-sub
 - social networking
 - Facebook, LinkedIn, Twitter, Live Messenger
 - business productivity
 - MS Office Online, MS Sharepoint, Google Docs
- Live Messenger
 - instant messaging application
 - O(100 million) users
 - O(10 billion) conversations / month
- Live Mesh
 - cloud storage, file synchronization, file sharing, remote access

users scattered geographically (Live Messenger)

PLACING ALL DATA ITEMS IN ONE PLACE IS REALLY BAD FOR LATENCY

sharad.agarwal@microsoft.com PAGE 7 4/29/2010

users travel

ALGORITHM NEEDS TO HANDLE USER LOCATIONS THAT CAN VARY

sharad.agarwal@microsoft.com PAGE 8 4/29/2010

users share data across geographic distances

ALGORITHM NEEDS TO HANDLE DATA ITEMS THAT ARE ACCESSED AT SAME TIME BY USERS IN DIFFERENT LOCATIONS

sharad.agarwal@microsoft.com PAGE 9 4/29/2010

sharing of data makes partitioning difficult

- data placement is challenging because
 - complex graph of data inter-dependencies
 - users scattered geographically
 - data sharing across large geographic distances
 - user behavior changes, travels or migrates
 - application evolves over time

overview how do users share data? volley evaluation

simple example

- frequency of operations can be weighted by importance
- transaction₁:
 user updates wall A with two subscribers C,D
 - $IP_1 \rightarrow A$
 - $A \rightarrow C$
 - $A \rightarrow D$
- transaction₂:
 user updates wall A with one subscriber C
 - $IP_1 \rightarrow A$
 - $A \rightarrow C$
- transaction₃:
 user updates wall B with one subscriber D
 - $IP_{2} \rightarrow B$
 - $B \rightarrow D$

proven algorithms do not apply to this problem

- how to partition this graph among DCs while considering
 - latency of transactions (impacted by distance between users and dependent data)
 - WAN bandwidth (edges cut between dependent data)
 - DC capacity (size of subgraphs)
- sparse cut algorithms
 - models data-data edges
 - but not clear how to incorporate users, location / distance
- facility location
 - better fit than sparse cut and models users-data edges
 - but not clear how to incorporate edges and edge costs between data items
- standard commercial optimization packages
 - can formulate as an optimization
 - but don't know how to scale to O(100 million) objects

sharad.agarwal@microsoft.com PAGE 13 4/29/201

instead, we design a heuristic

- want heuristic that allows a highly parallelizable implementation
 - to handle huge scales of modern cloud services
 - many cloud services centralize logs into large compute clusters, e.g. Hadoop, Map-Reduce, Cosmos
- use logs to build a fully populated graph
 - fixed nodes are IP addresses from which client transactions originated
 - data items are nodes that can move anywhere on the planet (Earth)
- pull together or mutually attract nodes that frequently interact
 - reduces latency, and if co-located, will also reduce inter-DC traffic
 - fixed nodes prevent all nodes from collapsing onto one point
- not knowing optimal algorithm, we rely on iterative improvement
 - but iterative algorithms can take a long time to converge
 - starting at a reasonable location can reduce search space, number of iterations, job completion time

constants in update at each iteration will determine convergence

sharad.agarwal@microsoft.com PAGE 14 4/29/2010

volley algorithm

- phase1: calculate geographic centroid for each data
 - considering client locations, ignoring data inter-dependencies
 - highly parallel
- phase2: refine centroid for each data iteratively
 - considering client locations, and data inter-dependencies
 - using weighted spring model that attracts data items
 - but on a spherical coordinate system
- phase3: confine centroids to individual DCs
 - iteratively roll over least-used data in over-subscribed DCs
 - (as many iterations as number of DCs is enough in practice)

Recursive Step:

$$wsm \left(\{w_i, \vec{x}_i\}_{i=1}^N \right) =$$

$$interp \left(\frac{w_N}{\sum w_i}, \vec{x}_N, wsm(\{w_i, \vec{x}_i\}_{i=1}^{N-1}) \right)$$

$$w = \frac{1}{1 + \kappa \cdot d \cdot l_{AB}}$$

$$\vec{x}_A^{new} = interp(w, \vec{x}_A^{current}, \vec{x}_B^{current})$$

$$d = \cos^{-1} \left[\cos(\phi_A) \cos(\phi_B) + \sin(\phi_A) \sin(\phi_B) \cos(\lambda_B - \lambda_A) \right]$$

$$\gamma = \tan^{-1} \left[\frac{\sin(\phi_B) \sin(\phi_A) \sin(\lambda_B - \lambda_A)}{\cos(\phi_A) - \cos(d) \cos(\phi_B)} \right]$$

$$\beta = \tan^{-1} \left[\frac{\sin(\phi_B) \sin(wd) \sin(\gamma)}{\cos(wd) - \cos(\phi_A) \cos(\phi_B)} \right]$$

$$\phi_C = \cos^{-1} \left[\cos(wd) \cos(\phi_B) + \sin(wd) \sin(\phi_B) \cos(\gamma) \right]$$

$$\lambda_C = \lambda_B - \beta$$

volley system overview

- consumes network cost model, DC capacity and locations, and request logs
 - most apps store this, but require custom translations
 - request log record
 - timestamp, source entity, destination entity, request size (B), transaction ID
 - entity can be client IP address or another data item's GUID

runs on large compute cluster with distributed file system

- hands placement to app-specific migration mechanism
 - allows Volley to be used by many apps
- computing placement on 1 week
 - 16 wall-clock hours
 - 10 phase-2 iterations
 - 400 machine-hours of work

sharad.agarwal@microsoft.com PAGE 16 4/29/2010

overview how do users share data? volley evaluation

methodology

inputs

- Live Mesh traces from June 2009
 - compute placement on week 1, evaluate placement on weeks 2,3,4
- 12 geographically diverse DC locations (where we had servers)

evaluation

- analytic evaluation using latency model (Agarwal SIGCOMM'09)
 - based on 49.9 million measurements across 3.5 million end-hosts
- live experiments using Planetlab clients

metrics

- latency of user transactions
- inter-DC traffic: how many messages between data in different DCs
- DC utilization: e.g. no more than 10% of data in each of 12 DCs
- staleness: how long is the placement good for?
- frequency of migration: how much data migrated and how often?

rad.agarwal@microsoft.com PAGE 18 4/29/20

other heuristics for comparison

- hash
 - static, random mapping of data to DCs
 - optimizes for meeting any capacity constraint for each DC
- oneDC
 - place all data in one DC
 - optimizes for minimizing (zero) traffic between DCs
- commonIP
 - pick DC closest to IP that most frequently uses data
 - optimizes for latency by keeping data items close to user
- firstIP

(didn't work as well as commonIP)

user transaction latency (analytic evaluation)

INCLUDES SERVER-SERVER (SAME DC OR CROSS-DC) AND SERVER-USER

sharad.agarwal@microsoft.com PAGE 20 4/29/2010

inter-DC traffic (analytic evaluation)

WAN TRAFFIC IS A MAJOR SOURCE OF COST FOR OPERATORS

sharad.agarwal@microsoft.com PAGE 21 4/29/2010

how many objects are migrated every week

COMPARED TO FIRST WEEK

sharad.agarwal@microsoft.com PAGE 22 4/29/2010

summary

- Volley's data partitioning
 - simultaneously reduces user latency and operator cost
 - reduces datacenter capacity skew by over 2X
 - reduces inter-DC traffic by over 1.8X
 - reduces user latency by 30% at 75th percentile
 - runs in under 16 clock-hours for 400 machine-hours computation across 1 week of traces
- Volley solves a real, increasingly important need
 - partitioning user data or other application state across DCs
 - simultaneously reducing operator cost and user latency
- more cloud services built around sharing data between users (both friends & employees)
- cloud providers continue to deploy more DCs

thanks!

sharad agarwal

john dunagan

navendu jain

stefan saroiu

alec wolman

harbinder bhogan