
SPAIN: COTS Data-Center Ethernet for Multipathing over
Arbitrary Topologies

Jayaram Mudigonda∗

Jayaram.Mudigonda@hp.com
Praveen Yalagandula∗

Praveen.Yalagandula@hp.com
Mohammad Al-Fares+

malfares@cs.ucsd.edu
Jeffrey C. Mogul∗

Jeff.Mogul@hp.com

∗HP Labs, Palo Alto, CA 94304 +UC San Diego

Abstract
Operators of data centers want a scalable network fab-

ric that supports high bisection bandwidth and host mo-
bility, but which costs very little to purchase and admin-
ister. Ethernet almost solves the problem – it is cheap and
supports high link bandwidths – but traditional Ethernet
does not scale, because its spanning-tree topology forces
traffic onto a single tree. Many researchers have de-
scribed “scalable Ethernet” designs to solve the scaling
problem, by enabling the use of multiple paths through
the network. However, most such designs require spe-
cific wiring topologies, which can create deployment
problems, or changes to the network switches, which
could obviate the commodity pricing of these parts.

In this paper, we describe SPAIN (“Smart Path Assign-
ment In Networks”). SPAIN provides multipath forward-
ing using inexpensive, commodity off-the-shelf (COTS)
Ethernet switches, over arbitrary topologies. SPAIN pre-
computes a set of paths that exploit the redundancy in a
given network topology, then merges these paths into a
set of trees; each tree is mapped as a separate VLAN
onto the physical Ethernet. SPAIN requires only mi-
nor end-host software modifications, including a sim-
ple algorithm that chooses between pre-installed paths
to efficiently spread load over the network. We demon-
strate SPAIN’s ability to improve bisection bandwidth
over both simulated and experimental data-center net-
works.

1 Introduction
Data-center operators often take advantage of scale,

both to amortize fixed costs, such as facilities and staff,
over many servers, and to allow high-bandwidth, low-
latency communications among arbitrarily large sets of
machines. They thus desire scalable data-center net-
works. Data-center operators also must reduce costs for
both equipment and operations; commodity off-the-shelf
(COTS) components often provide the best total cost of
ownership (TCO).

Ethernet is becoming the primary network technology
for data centers, especially as protocols such as Fibre

Channel over Ethernet (FCoE) begin to allow conver-
gence of all data-center networking onto a single fabric.
COTS Ethernet has many nice features, especially ubiq-
uity, self-configuration, and high link bandwidth at low
cost, but traditional Layer-2 (L2) Ethernet cannot scale to
large data centers. Adding IP (Layer-3) routers “solves”
the scaling problem via the use of subnets, but introduces
new problems, especially the difficulty of supporting dy-
namic mobility of virtual machines: the lack of a single
flat address space makes it much harder to move a VM
between subnets. Also, the use of IP routers instead of
Ethernet switches can increase hardware costs and com-
plicate network management.

This is not a new problem; plenty of recent research
papers have proposed scalable data-center network de-
signs based on Ethernet hardware. All such propos-
als address the core scalability problem with traditional
Ethernet, which is that to support self-configuration of
switches, it forces all traffic into a single spanning
tree [28] – even if the physical wired topology provides
multiple paths that could, in principle, avoid unnecessary
sharing of links between flows.

In Sec. 3, we discuss previous proposals in specific
detail. Here, at the risk of overgeneralizing, we assert
that SPAIN improves over previous work by providing
multipath forwarding using inexpensive, COTS Ethernet
switches, over arbitrary topologies, and supporting incre-
mental deployment; we are not aware of previous work
that does all four.

Support for COTS switches probably reduces costs,
and certainly reduces the time before SPAIN could be
deployed, compared to designs that require even small
changes to switches. Support for arbitrary topologies is
especially important because it allows SPAIN to be used
without re-designing the entire physical network, in con-
trast to designs that require hypercubes, fat-trees, etc.,
and because there may be no single topology that best
meets all needs. Together, both properties allow incre-
mental deployment of SPAIN in an existing data-center
network, without reducing its benefits in a purpose-built
network. SPAIN can also function without a real-time

central controller, although it may be useful to exploit
such a controller to guarantee specific QoS properties.

In SPAIN, an offline network controller system first
pre-computes a set of paths that exploit the redundancy
in a given network topology, with the goal of utilizing
the redundancy in the physical wiring both to provide
high bisection bandwidth (low over-subscription), and to
support several failover paths between any given pair of
hosts. The controller then merges these paths into a set
of trees and maps each tree onto a separate VLAN, ex-
ploiting the VLAN support in COTS Ethernet switches.
In most cases, only a small number of VLANs suffice to
cover the physical network.

SPAIN does require modifications to end-host sys-
tems, including a simple algorithm that chooses between
pre-installed paths to efficiently spread load over the net-
work. These modifications are quite limited; in Linux,
they consist of a loadable kernel module and a user-level
controller.

We have evaluated SPAIN both in simulation and in
an experimental deployment on a network testbed. We
show that SPAIN adds virtually no end-host overheads,
that it significantly improves bisection bandwidth on a
variety of topologies, that it can be deployed incremen-
tally with immediate performance benefits, and that it
tolerates faults in the network.

2 Background and goals
Ethernet is known for its ease-of-use. Hosts come

with preset addresses and simply need to be plugged in;
each network switch automatically learns the locations
of other switches and of end hosts. Switches organize
themselves into a spanning tree to form loop-free paths
between all source-destination pairs. Hence, not surpris-
ingly, Ethernet now forms the basis of virtually all en-
terprise and data center networks. This popularity made
many Ethernet switches an inexpensive commodity and
led to continuous improvements. 10Gbps Ethernet is fast
becoming commoditized [18], the 40Gbps standard is ex-
pected this year [21], and the standardization of 100Gbps
is already underway [6].

Network operators would like to be able to scale Eth-
ernet to an entire data center, but it is very difficult to
do so, as we detail in section 2.2. Hence, today most
such networks are designed as several modest-sized Eth-
ernets (IP subnets), connected by one or two layers of IP
routers [2, 3, 10].

2.1 Why we want Ethernet to scale
The use of multiple IP subnets, especially within a data

center, creates significant management complexity. In
particular, it requires a network administrator to simulta-
neously and consistently manage the L2 and L3 layers,

even though these are based on very different forward-
ing, control, and administrative mechanisms.

Consider a typical network composed of Ethernet-
based IP subnets. This not only requires the configura-
tion of IP subnets and routing protocols—which is con-
sidered a hard problem in itself [22]—but also sacrifices
the simplicity of Ethernet’s plug-and-play operation. For
instance, as explained in [2, 3], in such a hybrid network,
to allow the end hosts to efficiently reach the IP-routing
layer, all Ethernet switches must be configured such that
their automatic forwarding table computation is forced to
pick only the shortest paths between the IP-routing layer
and the hosts.

Dividing a data center into a set of IP subnets has
other drawbacks. It imposes the need to configure DHCP
servers for each subnet; to design an IP addressing as-
signment that does not severely fragment the IP address
space (especially with IPv4); and makes it hard to deal
with topology changes [22]. For example, migrating a
live virtual machine from one side of the data center
to another, to deal with a cooling imbalance, requires
changing that VM’s IP address – this can disrupt exist-
ing connections.

For these reasons, it becomes very attractive to scale a
single Ethernet to connect an entire data center or enter-
prise.

2.2 Why Ethernet is hard to scale
Ethernet’s lack of scalability stems from three main

problems:
1. Its use of the Spanning Tree Protocol to automati-

cally ensure a loop-free topology.
2. Packet floods for learning host locations.
3. Host-generated broadcasts, especially for ARP.

We discuss each of these issues.
Spanning tree: Spanning Tree Protocol (STP) [28]

was a critical part of the initial success of Ethernet; it
allows automatic self-configuration of a set of relatively
simple switches. Using STP, all the switches in an L2
domain agree on a subset of links between them, so as
to form a spanning tree over all switches. By forwarding
packets only on those links, the switches ensure connec-
tivity while eliminating packet-forwarding loops. Other-
wise, Ethernet would have had to carry a hop-count or
TTL field, which would have created compatibility and
implementation challenges.

STP, however, creates significant problems for scal-
able data-center networks:
• Limited bisection bandwidth: Since there is (by

definition) only one path through the spanning tree
between any pair of hosts, a source-destination pair
cannot use multiple paths to achieve the best pos-
sible bandwidth. Also, since links on any path are
probably shared by many other host pairs, conges-

tion can arise, especially near the designated (high-
bandwidth) root switch of the tree. The aggregate
throughput of the network can be much lower than
the sum of the NIC throughputs.

• High-cost core switches: Aggregate throughput
can be improved by use of a high-fanout, high-
bandwidth switch at the root of the tree. Scaling
root-switch bandwidth can be prohibitively expen-
sive [10], especially since this switch must be repli-
cated to avoid a single point of failure for the entire
data center. Also, the STP must be properly config-
ured to ensure that the spanning tree actually gets
rooted at this expensive switch.

• Low reliability: Since the spanning tree leads to
lots of sharing at links closer to the root, a failure
can affect an unnecessarily large fraction of paths.

• Reduced flexibility in node placement: Generally,
for a given source-destination pair, the higher the
common ancestor in the spanning tree, the higher
the number of competing source-destination pairs
that share links in the subtree, and thus the lower
the throughput that this given pair can achieve.
Hence, to ensure adequate throughput, frequently-
communicating source-destination pairs must be
connected to the same switch, or to neighboring
switches with the lowest possible common ancestor.
Such restrictions, particularly in case of massive-
scale applications that require high server-to-server
bandwidth, inhibit flexibility in workload placement
or cause substantial performance penalties [10, 18].

SPAIN avoids these problems by employing multiple
spanning trees, which can fully exploit the path redun-
dancy in the physical topology, especially if the wiring
topology is not a simple tree.

Packet floods: Ethernet’s automatic self-
configuration is often a virtue: a host can be plugged
into a port anywhere in the network, and the switches
discover its location by observing the packets it trans-
mits [32]. A switch learns the location of a MAC address
by recording, in its learning table, the switch port on
which it first sees a packet sent from that address. To
support host mobility, switches periodically forget these
bindings and re-learn them.

If a host has not sent packets in the recent past, there-
fore, switches will not know its location. When forward-
ing a packet whose destination address is not in its learn-
ing table, a switch must “flood” the packet on all of its
ports in the spanning tree (except on the port the packet
arrived on). This flooding traffic can be a serious limit to
scalability [1, 22].

In SPAIN, we use a mechanism called chirping (see
Sec. 6) which avoids most timeout-related flooding.

Host broadcasts: Ethernet’s original shared-bus de-
sign made broadcasting easy; not surprisingly, protocols

such as the Address Resolution Protocol (ARP) and the
Dynamic Host Configuration Protocol (DHCP) were de-
signed to exploit broadcasts. Since broadcasts consume
resources throughout a layer-2 domain, broadcasting can
limit the scalability of an Ethernet domain [3, 15, 22, 26].
Greenberg et al. [16] observe that “...the overhead of
broadcast traffic (e.g., ARP) limits the size of an IP sub-
net to a few hundred servers...”

SPAIN does not eliminate broadcasts, but we can ex-
ploit certain aspects of both the data-center environment
and our willingness to modify end-host implementations.
See [25] for more discussion.

3 Related Work
Spanning trees in Ethernet have a long history. The

original algorithm was first proposed in 1985 [28], and
was adapted as the IEEE 802.1D standard in 1990. Since
then it has been improved and adapted along several
dimensions. While the Rapid Spanning Tree Protocol
(802.1s) reduces convergence time, the Per-VLAN Span-
ning Tree (802.1Q) improves link utilization by allowing
each VLAN to have its own spanning tree. Sharma et al.
exploit these multiple spanning trees to achieve improved
fault recovery [33]. In their work, Viking manager, a cen-
tral entity, communicates and pro-actively manages both
switches and end hosts. Based on its global view of the
network, the manager selects (and, if needed, dynami-
cally re-configures) the spanning trees.

Most proposals for improving Ethernet scalability fo-
cus on eliminating the restrictions to a single spanning
tree.

SmartBridge, proposed by Rodeheffer et al. [30], com-
pletely eliminated the use of a spanning tree. Smart-
Bridges learn, based on the principles of diffused compu-
tation, locations of switches as well as hosts to forward
packets along the shortest paths. STAR, a subsequent
architecture by Lui et al. [24] achieves similar benefits
while also facilitating interoperability with the 802.1D
standard. Perlman’s RBridges, based on an IS-IS rout-
ing protocol, allow shortest paths, can inter-operate with
existing bridges, and can also be optimized for IP [29].
Currently, this work is being standardized by the TRILL
working group of IETF [7]. Note that TRILL focuses
only on shortest-path or equal-cost routes, and does not
support multiple paths of different lengths.

Myers et al. [26] proposed eliminating the basic rea-
son for the spanning tree, the reliance on broadcast as
the basic primitive, by combining link-state routing with
a directory for host information.

More recently, Kim et al. [22] proposed the SEAT-
TLE architecture for very large and dynamic Ethernets.
Their switches combine link-state routing with a DHT
to achieve broadcast elimination and shortest-path for-
warding, without suffering the large space requirements

Table 1: Comparing SPAIN against related work

SPAIN SEATTLE [22] TRILL [7] VL2 [17] PortLand [27] MOOSE [31]
Wiring Topology Arbitrary Arbitrary Arbitrary Fat-tree Fat-tree Arbitrary
Usable paths Arb. multiple paths Single Path ECMP ECMP ECMP Single Path
Deploy incrementally? YES NO YES NO NO YES
Uses COTS switches? YES (L2) NO NO YES (L3) NO NO
Needs end-host mods? YES NO NO YES NO NO

Fat-tree = multi-rooted tree; ECMP = Equal Cost Multi-Path.

of some of the prior approaches; otherwise, SEATTLE is
quite similar to TRILL.

Greenberg et al. [18] proposed an architecture that
scales to 100,000 or more servers. They exploit pro-
grammable commodity layer-2 switches, allowing them
to modify the data and control planes to support hot-spot-
free multipath routing. A sender host for each flow con-
sults a central directory and determines a random inter-
mediary switch; it then bounces the flow via this inter-
mediary. When all switches know of efficient paths to
all other switches, going via a random intermediary is
expected to achieve good load spreading.

Several researchers have proposed specific regular
topologies that support scalability. Fat trees, in par-
ticular, have received significant attention. Al-Fares et
al. [10] advocate combining fat trees with a specific IP
addressing assignment, thereby supporting novel switch
algorithms that provide high bisection bandwidth with-
out expensive core switches. Mysore et al. [27] update
this approach in their PortLand design, which uses MAC-
address re-writing instead of IP addressing, thus creating
a flat L2 network. Scott et al. [31] similarly use MAC-
address re-writing in MOOSE, but without imposing a
specific topology; however, MOOSE uses shortest-path
forwarding, rather than multipath.

VL2 [17] provides the illusion of a large L2 net-
work on top of an IP network with a Clos [14] topol-
ogy, using a logically centralized directory service. VL2
achieves Equal-Cost Multipath (ECMP) forwarding in
Clos topologies by assigning a single IP anycast address
to all core switches. It is not obvious how one could
assign such IP anycast addresses to make multipath for-
warding work in non-Clos topologies.

The commercial switch vendor Woven Systems [8]
also used a fat tree for the interconnect inside their switch
chassis, combing their proprietary vScale chips with Eth-
ernet switch chips that include specific support for fat-
trees [4]. The vScale chips use a proprietary algorithm to
spread load across the fat-tree paths.

In contrast to fat-tree topologies, others have proposed
recursive topologies such as hypercubes. These include
DCell [20] and BCube [19].

As summarized in Tab. 1, SPAIN differs from all of

this prior work because it provides multipath forward-
ing, uses unmodified COTS switches, works with arbi-
trary topologies, supports incremental deployment, and
requires no centralized controllers.

4 The design of SPAIN
We start with our specific goals for SPAIN, including

the context in which it operates. Our goals are to:
• Deliver more bandwidth and better reliability than

spanning tree.
• Support arbitrary topologies, not just fat-tree or hy-

percube, and extract the best bisection bandwidth
from any topology.

• Utilize unmodified, off-the-shelf, commodity-
priced (COTS) Ethernet switches.

• Minimize end host software changes, and be incre-
mentally deployable.

In particular, we want to support flat Layer-2 addressing
and routing, so as to:
• Simplify network manageability by retaining the

plug-and-play properties of Ethernet at larger
scales.

• Facilitate non-routable protocols, such as Fibre
Channel over Ethernet (FCoE), that are required for
“fabric convergence” within data centers [23]. Fab-
ric convergence, the replacement of special-purpose
interconnects such as Fibre Channel with standard
Ethernet, can reduce hardware costs, management
costs, and rack space.

• Improve the flexibility of virtual server and stor-
age placement within data centers, by reducing the
chances that arbitrary placement could create band-
width problems, and by avoiding the complexity of
VM migration between IP subnets.

We explicitly limit the focus of SPAIN to data-center net-
works, rather than trying to solve the general problem
of how to scale Ethernet. Also, while we believe that
SPAIN will scale to relatively large networks, our goal is
not to scale to arbitrary sizes, but to support typical-sized
data-centers.

D

VLAN 1

VLAN 2

Both 1&2

TS

S1 S2

A B C

Figure 1: Example of VLANs used for multipathing

4.1 Overview of SPAIN
In SPAIN, we pre-compute a set of paths that utilizes

the redundancy in the physical wiring, both to provide
high bisection bandwidth and to improve fault tolerance.
We then merge these paths into a set of trees, map each
tree to a separate VLAN, and install these VLANs on the
switches. We usually need only a few VLANs to cover
the physical network, since a single VLAN ID can be
re-used for multiple disjoint subtrees.

SPAIN allows a pair of end hosts to use different
VLANs, potentially traversing different links at differ-
ent times, for different flows; hence, SPAIN can achieve
higher throughput and better fault-tolerance than tradi-
tional spanning-tree Ethernet.

SPAIN reserves VLAN 1 to include all nodes. This
default VLAN is thus always available as a fallback path,
or if we need to broadcast or multicast to all nodes. We
believe that we can support multicast more efficiently by
mapping multicast trees onto special VLANs, but this is
future work.

SPAIN requires only a few switch features: MAC-
address learning and VLAN support; these are already
present in most COTS switches. Optionally, SPAIN can
exploit other switch features to improve performance,
scale, and fault tolerance, or to reduce manual configu-
ration: LLDP; SNMP queries to get LLDP information;
and the Per-VLAN Spanning Tree Protocol or the Multi-
ple Spanning Tree Protocol (see Sec. 5.5).

SPAIN requires a switch to store multiple table entries
(one per VLAN tree) for each destination, in the worst
case where flows are active for all possible (VLAN, des-
tination) pairs. (Table overflows lead to packet flooding;
they are not fatal.) This could limit SPAIN’s applicability
to very large networks with densely populated traffic ma-
trices, but even inexpensive merchant-silicon switches
have sufficiently large tables for moderately-large net-
works.

For data centers where MAC addresses are known a
priori, we have designed another approach called FIB-
pinning, but do not describe it here due to space con-
straints. See [25] for more details.

Fig. 1 illustrates SPAIN with a toy example, which
could be a fragment of a larger data-center network.
Although there is a link between switches S1 and S2,
the standard STP does not forward traffic via that link.

SPAIN creates two VLANs, with VLAN1 covering the
normal spanning tree, and VLAN2 covering the alternate
link. Once the VLANs have been configured, end-host
A could (for example) use VLAN1 for flows to C while
end-host B uses VLAN2 for flows to D, thereby dou-
bling the available bandwidth versus traditional Ether-
net. (SPAIN allows more complex end-host algorithms,
to support fault tolerance and load balancing.)

Note that TRILL or SEATTLE, both of are shortest-
path (or equal-cost multi-path) protocols, would only use
the path corresponding to VLAN2.

SPAIN requires answers to three questions:
1. Given an arbitrary topology of links and switches,

with finite switch resources, how should we com-
pute the possible paths to use between host pairs?

2. How can we set up the switches to utilize these
paths?

3. How do pairs of end hosts choose which of several
possible paths to use?

Thus, SPAIN includes three key components, for path
computation, path setup, and path selection. The first
two can run offline (although online reconfiguration
could help improve network-wide QoS and failure re-
silience); the path selection process runs online at the
end hosts for each flow.

5 Offline configuration of the network
In this section, we describe the centralized algorithms

SPAIN uses for offline network configuration: path com-
putation and path setup. (Sec. 6 discusses the online,
end-host-based path selection algorithms.)

These algorithms address several challenges:
• Which set of paths to use?: The goal is to com-

pute smallest set of paths that exploit all of the re-
dundancy in the network.

• How to map paths to VLANs?: We must mini-
mize the number of VLANs used, since Ethernet
only allows 4096 VLANs, and some switches sup-
port fewer. Also, each VLAN consumes switch re-
sources – a switch needs to cache a learning-table
entry for each known MAC on each VLAN.

• How to handle unplanned topology changes?:
Physical topologies (links and switches) change ei-
ther due to failures and repairs of links and switches,
or due to planned upgrades. Our approach is
to recompute and re-install paths only during up-
grades, which should be infrequent, and depend on
dynamic fault-tolerance techniques to handle un-
planned changes.

Because of space constraints, we omit many details of
the path computation algorithms; these may be found in
the Technical Report version of the paper [25].

5.1 Practical issues
SPAIN’s centralized configuration mechanism must

address two practical issues: learning the actual topol-
ogy, and configuring the individual switches with the cor-
rect VLANs.

Switches use the Link-Layer Discovery Protocol
(LLDP) (IEEE Standard 802.1AB) to advertise their
identities and capabilities. They collect the information
they receive from their neighbors and store it in their
SNMP MIB. We can leverage this support to program-
matically determine the topology of the entire L2 net-
work.

Switches maintain a VLAN-map table, to track the
VLANs allowed on each physical interface, along with
information about whether packets will arrive with a
VLAN header or not. Each interface can be set in un-
tagged mode or tagged mode for each VLAN.1 If a port
is in tagged mode for a VLAN v, packets received on that
interface with VLAN tag v in the Ethernet header are
accepted for forwarding. If a port is in untagged mode
for VLAN v, all packets received on that port without
a VLAN tag are assumed to be part of VLAN v. Any
packet with VLAN v received on a port not configured
for VLAN v are simply dropped. For SPAIN, we assume
that this VLAN assignment can be performed program-
matically using SNMP.

For each graph computed by the path layout pro-
gram, SPAIN’s switch configuration module instantiates
a VLAN corresponding to that graph onto the switches
covered by that VLAN. For a graph G(V,E) with VLAN
number v, this module contacts the switch correspond-
ing to each vertex in V and sets all ports of that switch
whose corresponding edges appear in E in tagged mode
for VLAN v. Also, all ports facing end-hosts are set to
tagged mode for VLAN v, so that tagged packets from
end-hosts are accepted.

5.2 Path-set computation
Our first goal is to compute a path set: a set of link-

by-link loop-free paths connecting pairs of end hosts
through the topology.

A good path set achieves two simultaneous objectives.
First, it exploits the available topological redundancy.
That is, the path set includes enough paths to ensure
that any source-destination pair, at any given time, can
find at least one usable path between them. By “usable
path”, we mean a path that does not go through bottle-
necked or failed links. Hence a path set that includes
all possible paths is trivially the best, in terms of ex-
ploiting the redundancy. However, such a path set might
be impractical, because switch resources (especially on
COTS switches) might be insufficient to instantiate so

1This is the terminology used by HP ProCurve. Cisco uses the terms
access mode and trunk mode.

Algorithm 1 Algorithm for Path Computation
1: Given:
2: Gfull = (Vfull, Efull): The full topology,
3: w: Edge weights,
4: s: Source, d: Destination
5: k: Desired number of paths per s, d pair
6:
7: Initialize: ∀e ∈ E : w(e) = 1
8: /* shortest computes weighted shortest path */
9: Path p = shortest(G, s, d, w) ;

10: for e ∈ p do
11: w(e)+ = |E|
12:
13: while (|P | < k) do
14: p = shortest(G, s, d, w)
15: if p ∈ P then
16: /* no more useful paths */
17: break ;
18: P = P

S
{p}

19: for e ∈ p do
20: w(e)+ = |E|
21:
22: return P

many paths. Thus, the second objective for a good path
set is that it has a limited number of paths.

We accomplish this in steps shown in Algorithm 1.
(This algorithm has been simplified to assume unit
edge capacities; the extension to non-uniform weights is
straightforward.)

First, (lines 7–11), we initialize the set of paths for
each source-destination pair to include the shortest path.
Shortest paths are attractive because in general, they min-
imize the network resources needed for each packet, and
have a higher probability of staying usable after failures.
That is, under the simplifying assumption that each link
independently fails (either bottlenecks or goes down)
with a constant probability f , then a path p of length |p|
will be usable with probability Pu(p) = (1− (1−f)|p|).
(We informally refer to this probability, that a path will
be usable, as its “usability,” and similarly for the proba-
bility of a set of paths between a source-destination pair.)
Clearly, since the shortest path has the smallest length, it
will have the highest Pu.

Then (lines 13–20), we grow the path set to meet the
desired degree (k) of path diversity between any pair of
hosts. Note that a path set is usable if at least one of the
paths is usable. We denote the usability of a path set ps
as PSu(ps). This probability depends not only on the
lengths of the paths in the set, but also on the degree of
shared links between the paths. A best path set of size k
has the maximum PSu(·) of all possible path sets of size
k. However, it is computationally infeasible to find the
best path set of size k. Hence, we use a greedy algorithm
that adds one path at a time, and that prefers the path that

has the minimum number of links in common with paths
that are already in the path set.

We prefer adding a link-disjoint path, because a sin-
gle link failure can not simultaneously take down both
the new path and the existing paths. As shown in [25],
in most networks with realistic topologies and operating
conditions, a link-disjoint path improves the usability of
a path set by the largest amount.

As shown in lines 10–11 and 19–20, we implement
our preference for link-disjoint paths by incrementing the
edge weights of the path we have added to the path set by
a large number (number of edges). This ensures that the
subsequent shortest-path computation picks a link that is
already part of the path set only if it absolutely has to.

5.3 Mapping path sets to VLANs
Given a set of paths with the desired diversity, SPAIN

must then map them onto a minimal set of VLANs. (Re-
member that Ethernet switches support 4096 VLANs,
sometimes fewer.)

We need to ensure that the subgraphs formed by the
paths of each VLAN are loop-free, so that the switches
work correctly in the face of forwarding-table lookup
misses. On such a lookup miss for a packet on a VLAN
v, a switch will flood the packet to all outgoing inter-
faces of VLAN v – if the VLAN has a loop, the packet
will circulate forever. (We could run the spanning-tree
protocol on each VLAN to ensure there are no loops,
but then there would be no point in adding links to the
SPAIN VLANs that the STP would simply remove from
service.)

Problem 1. VLAN Minimization: Given a set of paths
P = {p1, p2, ..., pn} in a graph G = (V,E), find an
assignment of paths to VLANs, with minimal number of
VLANs, such that the subgraph formed by the paths of
each VLAN is loop-free.

We prove in [25] that Problem 1 is NP-hard. There-
fore, we employ a greedy VLAN-packing heuristic, Al-
gorithm 2. Given the set of all paths P computed in Al-
gorithm 1, Algorithm 2 processes the paths serially, con-
structing a set of subgraphs SG that include those paths.
For each path p, if p is not covered by any subgraph in
the current set SG, the algorithm tries to greedily pack
that path p into any one of the subgraphs in the current
set (lines 6–12). If the greedy packing step fails for a
path, a new graph is created with this path, and is added
to SG (lines 13–15).

Running this algorithm just once might not yield a so-
lution near the optimum. Therefore, we use the best solu-
tion from N runs, randomizing the order in which paths
are chosen for packing, and the order in which the cur-
rent set of subgraphs SG are examined.

The serial nature of Algorithm 2 does not scale well;
its complexity is O(mkn3), where m is the VLANs, k

Algorithm 2 Greedy VLAN Packing Heuristic
1: Given: G = (V, E), k
2: SG = ∅ /* set of loop-free subgraphs*/
3: for v ∈ V do
4: for u ∈ V do
5: P =ComputePaths(G, v, u, k) ;
6: for p ∈ P /* in a random order */ do
7: if p not covered by any graph in SG then
8: Success = FALSE;
9: for S ∈ SG /* in a random order */ do

10: if p does not create loop in S then
11: Add p to S
12: Success = TRUE ;
13: if Success == FALSE then
14: S′ = new graph with p
15: SG = SG

S
{S′}

16: return SG

Figure 2: 7-switch topology; original tree in bold

is the number of paths, and n is the number of switches.
We have designed a parallel algorithm, described in [25],
based on graph-coloring heuristics, which yields speedup
linear in the number of edge switches.

5.3.1 An example
Fig. 2 shows a relatively simple wiring topology with

seven switches. One can think of this as a 1-level tree
(with switch #1 as the root), augmented by adding three
cross-connect links to each non-root switch.

Fig. 3 shows how the heuristic greedy algorithm
(Alg. 2) chooses seven VLANs to cover this topology.
VLAN #1 is the original tree (and is used as the default
spanning tree).

5.4 Algorithm performance
Since our algorithm is an approximate solution to an

NP-hard problem, we applied it to a variety of differ-
ent topologies that have been suggested for data-center
networks, to see how many VLANs it requires. Where
possible, we also present the optimal number of VLANs.
(See [25] for more details about this analysis.)

These topologies include FatTree (p) [10], a 2-ary 3-
tree, where p is the number of ports per switch; BCube
(p, l) [19], where p is the number of ports per switch, and
l is the number of levels in the recursive construction of

1

2

7

6

5

4

3

2

7

6

5

4

3

2

7

6

5

4

3

2

7

6

5

4

3

2

7

6

5

4

3

2

7

6

5

4

3

2

7

6

5

4

3

VLAN 1

VLAN 6

VLAN 7

VLAN 5

VLAN 4

VLAN 3

VLAN 2

Figure 3: VLANs covering 7-switch topology of Fig. 2

the topology; 2-D HyperX (k) [9], where k is the number
of switches in each dimension of a 2-D mesh; and Cis-
coDC, Cisco’s recommended data center network [12],
a three-layer tree with two core switches, and with pa-
rameters (m, a) where m is the number of aggregation
modules, and a the number of access switch pairs asso-
ciated with each aggregation module.

Table 2: Performance of VLAN mapping heuristic

Topology Minimal SPAIN’s Trials (N)
of VLANs heuristic for best

FatTree (p) (p/2)2 (p/2)2 1 for all p

BCube (p, l) pl−1l pl−1l 290 for (2,3)
6 for (3,2)

2-D HyperX Unknown 12 for k=3 475
(k) O(k3) 38 for k=4 304

CiscoDC Unknown 9 for (2,2) 1549
(m, a) 12 for (3,2) 52

18 for (4,3) 39
our testbed 4 4 4

Table 2 shows the performance of SPAIN’s VLAN
mapping heuristic on different topologies. The heuris-
tic matches the optimal mapping on FatTree and BCube.
We don’t yet know the optimal value for CiscoDC or 2-D
HyperX, although for 2-D HyperX, k3 is a loose upper
bound. The table also shows that, for the Open Cirrus
subset used in our experiments (Sec. 10), the heuristic
uses the optimal number (4) of VLANs.

The last column in the table shows the number of tri-
als (N) it took for SPAIN’s VLAN packing algorithm to
generate its best result; we show the worst case over five

runs, and the averages are much smaller. In some cases,
luck seems to play a role in how many trials are required.
Each row took less than 60 sec., using a single CPU (for
these computations, we used the serial algorithm, not the
parallel algorithm).

5.5 Fault tolerance in SPAIN
A SPAIN-based network must disable the normal STP

behavior on all switches; otherwise, they will block the
use of their non-spanning-tree ports, preventing SPAIN
from using those links in its VLANs. (SPAIN configures
its VLANs to avoid loops, of course.) Disabling STP
means that we lose its automatic fault tolerance.

Instead, SPAIN’s fault tolerance is based on the pre-
provisioning of multiple paths between pairs of hosts,
and on end-host detection and recovery from link and
switch failures; see Sec. 6.6 for details.

However, SPAIN could use features like Cisco’s pro-
prietary Per-VLAN Spanning Tree (PVST) or the IEEE
802.1s standard Multiple Spanning Tree (MST) to im-
prove fault tolerance. SPAIN could configure switches
so that, for each VLAN, PVST or MST would prefer the
ports in that VLAN over other ports (using per-port span-
ning tree priorities or weights). This allows a switch to
fail over to the secondary ports if PVST or MST detects a
failure. SPAIN would still use its end-host failure mech-
anisms for rapid repair of flows as the spanning tree pro-
tocols have higher convergence time, and in case some
switches do not support PVST/MST.

6 End-host algorithms
Once the off-line algorithms have computed the

paths and configured the switches with the appropriate
VLANs, all of the online intelligence in SPAIN lies in the
end hosts.2 SPAIN’s end-host algorithms are designed
to meet five goals: (1) effectively spread load across
the pre-computed paths, (2) minimize the overheads of
broadcasting and flooding, (3) efficiently detect and re-
act to failures in the network, (4) facilitate end-point mo-
bility (e.g., VM migration), and (5) enable incremental
deployment. We generically refer to the end-host imple-
mentation as the “SPAIN driver,” although (as described
in Sec. 9), some functions run in a user-mode daemon
rather than in the kernel-mode driver.

The SPAIN driver has four major functions: boot-time
initialization, sending a packet, receiving a packet, and
re-initializing a host after it moves to a new edge switch.

An end host uses the following data structures and pa-
rameters:
• ES(m): the ID of the edge switch to which MAC address

m is currently connected.

2SPAIN could support the use of a centralized service to help end-
hosts optimize their load balancing, but we have not yet implemented
this service, nor is it a necessary feature.

• Vreach(es): the set of VLANs that reach the edge switch
es.

• R: the reachability VLAN map, a bit map encoding the
union of Vreach(•) over all es, computed by the algo-
rithms in Section 5.

• Vusable(es): the set of VLANs that have recently tested
as usable to reach es.

• Trepin is the length of time after which non-TCP flows
go through the VLAN re-pinning process.

• Tsent is the minimum amount of time since last send on
a VLAN that triggers a chirp (see below).

• Vsent(es): the set of VLANs that we sent a packet via es
within the last Tsent seconds.

SPAIN uses a protocol we call chirping for several func-
tions: to avoid most timeout-related flooding, to test
VLANs for usability, and to support virtual-machine mi-
gration. For VM migration, chirping works analogously
to the Gratuitous ARP (GARP) mechanism, in which a
host broadcasts an ARP request for its own IP → MAC
binding.

An end-host A sends a unicast chirp packet to another
host B if B has just started sending a flow to A, and if
A has not sent any packets (including chirps) in the re-
cent past (Tsent) to any host connected to the same edge
switch as B. An end-host (possibly a virtual machine)
broadcasts a chirp packet when it reboots and when it
moves to a different switch. A chirp packet carries the
triple <IP Address, MAC address, Edge-switch ID>.
Chirp packets also carry a want reply flag to trigger a
unicast chirp in response; broadcast chirps never set this
flag. All hosts that receive a chirp update their ARP ta-
bles with this IP → MAC address binding; they also
update the ES(m) table. SPAIN sends unicast chirps of-
ten enough to preempt most of the flooding that would
arise from entries timing out of switch learning tables.

6.1 Host initialization
After a host boots and initializes its NIC drivers,

SPAIN must do some initialization. The first step is to
download the VLAN reachability map R from a repos-
itory. (The repository could be found via a new DHCP
option.) While this map could be moderately large (about
5MB for a huge network with 500K hosts and 10K edge
switches using all 4K possible VLANs), it is compress-
ible and cachable, and since it changes rarely, a re-
download could exploit differential update codings.

Next, the driver determines the ID of the edge switch
to which it is connected, by listening for Link Layer Dis-
covery Protocol (LLDP) messages, which switches peri-
odically send on each port. The LLDP rate (typically,
once per 30 sec.) is low enough to avoid significant
end-host loads, but fast enough that a SPAIN driver that
listens for LLDP messages in parallel with other host-
booting steps should not suffer much delay.

Finally, the host broadcasts a chirp packet, on the de-

Algorithm 3 Selecting a VLAN
1: /* determine the edge switch of the destination */
2: m = get dest mac(flow)
3: es = get es(m)
4: /* candidate VLANs: those that reach es */
5: if candidate vlans is empty then
6: /* No candidate VLANs; */
7: /* Either es is on a different SPAIN cloud or m is a non-

SPAIN host */
8: return the default VLAN (VLAN 1)
9: /* see if any of the candidates are usable */

10: usable vlans = candidate vlans
T

Vusable(es)
11: if usable vlans is empty then
12: return the default VLAN (VLAN 1)
13: init probe(candidate vlans− usable vlans)
14: return a random v ∈ usable vlans.

fault VLAN (VLAN 1). Although broadcasts are unre-
liable, a host Y that fails to receive the broadcast chirp
from host X will later recover by sending a unicast chirp
(with the wants response flag set) when it needs to se-
lect a VLAN for communicating with host X .

6.2 Sending a Packet
SPAIN achieves high bisection bandwidth by spread-

ing traffic across multiple VLANs. The SPAIN driver
must choose which VLAN to use for each flow (we nor-
mally avoid changing VLANs during a flow, to limit
packet reordering). Therefore, the driver must decide
which VLAN to use when a flow starts, and must also de-
cide whether to change VLANs (for reasons such as rout-
ing around a fault, or improving load-balance for long
flows, or to support VM mobility). We divide these into
two algorithms: for VLAN selection, and for triggering
re-selection of the VLAN for a flow (which we call re-
pinning).

Algorithm 3 shows the procedure for VLAN selection
for a flow to a destination MAC m. The driver uses
the ES(m) to find the edge switch es and then uses the
reachability map R to find the set of VLANs that reach
es. If m does not appear in the ES table, then the driver
uses the default VLAN for this flow, and sends a unicast
chirp to m to determine if it is a SPAIN host. The driver
then computes the candidate set by removing VLANs
that are not in Vusable(es) (which is updated during pro-
cessing of incoming packets; see Algorithm 5).

If the candidate set is non-empty, the driver selects a
member at random and uses this VLAN for the flow.3 If
the set is empty (there are no known-usable VLANs), the
flow is instead assigned to VLAN 1. The driver initiates
probing of a subset of all the VLANs that reach the es
but are currently not usable.

SPAIN probes a VLAN v to determine whether it can
be used to reach a given destination MAC m (or its ES)

3SPAIN with a dynamic centralized controller could bias this choice
to improve global load balance; see Sec. 9.

by sending a unicast chirp message to m on v. If the
path through VLAN v is usable and if the chirp reaches
m, the receiving SPAIN driver responds with its own uni-
cast chirp message on v, which in turn results in v being
marked as usable in the probing host (the bit Vusable(es)
is set to 1).

When to re-pin?: Occasionally, SPAIN must change
the VLAN assigned to a flow, or re-pin the flow. Re-
pinning helps to solve several problems:

1. Fault tolerance: when a VLAN fails (that is, a link
or switch on the VLAN fails), SPAIN must rapidly
move the flow to a usable VLAN, if one is available.

2. VM migration: if a VM migrates to a new edge
switch, SPAIN may have to re-assign the flow to a
VLAN that reaches that switch.

3. Improving load balance: in the absence of an on-
line global controller to optimize the assignment of
flows to VLANs, it might be useful to shift a long-
lived flow between VLANs at intervals, so as to
avoid pathological congestion accidents for the en-
tire lifetime of a flow.

4. Better VLAN probing: the re-pinning process
causes VLAN probing, which can detect that a
“down” VLAN has come back up, allowing SPAIN
to exploit the revived VLAN for better load balance
and resilience.

When the SPAIN driver detects either of the first two
conditions, it immediately initiates re-pinning for the af-
fected flows.

However, re-pinning for the last two reasons should
not be done too frequently, since this causes problems of
its own, especially for TCP flows: packet reordering, and
(if re-pinning changes the available bandwidth for a flow)
TCP slow-start effects. Hence, the SPAIN driver distin-
guishes between TCP and non-TCP flows. For non-TCP
flows, SPAIN attempts re-pinning at regular intervals.

For TCP flows, re-pinning is done only to address fail-
ure or serious performance problems. The SPAIN driver
initiates re-pinning for these flows only when the con-
gestion window has become quite small, and the cur-
rent (outgoing) packet is a retransmission. Together,
these two conditions ensure that we do not interfere with
TCP’s own probing for available bandwidth, and also
eliminate the possibility of packet reordering.

Algorithm 4 illustrates the decision process for re-
pinning a flow; it is invoked whenever the flow attempts
to send a packet.

One risk of re-pinning based on decreases in the con-
gestion window is that it could lead to instability if many
flows are sharing a link that suddenly becomes over-
loaded. SPAIN tries to prevent oscillations by spreading
out the re-pinning operations. Also, pinning a flow to
a new VLAN does not cause the original VLAN to be
marked as unusable, so new flow arrivals could still be

Algorithm 4 Determine if a flow needs VLAN selection
1: if last move time >= last pin time then
2: /* we moved since last VLAN selection - re-pin flow */
3: return true;
4: current es = get es(dst mac)
5: if saved es (from the flow state) ! = current es then
6: /* destination moved – update flow state & re-pin */
7: saved es = current es;
8: return true
9: if current vlan(flow) ≤ 0 then

10: return true /* new flows need VLAN selection */
11: if proto of(flow) 6= TCP then
12: if (now − last pin time) ≥ Trepin then
13: return true /* periodic re-pin */
14: else
15: if cwnd(flow) ≤ Wrepin thresh && is rxmt(flow)

then
16: return true /* TCP flow might prefer another path */
17: return false /* no need to repin */

Algorithm 5 Receiving a Packet
1: vlan = get vlan(packet)
2: m = get src mac(packet)
3: if is chirp(packet) then
4: update ARP table(packet)
5: update ES table(packet, vlan)
6: if wants chirp response(packet) then
7: send unicast chirp(m, vlan)
8: es = get es(m) /* determine sender’s edge switch */
9: /* mark packet-arrival VLAN as usable for es */

10: Vusable(es) = Vusable(es)
S

vlan
11: /* chirp if we haven’t sent to es via vlan recently */
12: if the vlan bit in Vsent(es) is not set then
13: send unicast chirp(m, vlan)
14: /* Vsent(es) is cleared every Tsent sec. */
15: deliver packet to protocol stack

assigned to that VLAN, which should damp oscillations.
However, we lack solid evidence that these techniques
guarantee stability; resolving this issue is future work.

6.3 Receiving a Packet
Algorithm 5 shows pseudo-code for SPAIN’s packet

reception processing. All chirp packets are processed to
update the host’s ARP table and ES table (which maps
MAC addresses to edge switches); if the chirp packet re-
quests a response, SPAIN replies with its own unicast
chirp on the same VLAN.

The driver treats any incoming packet (including
chirps) as proof of the health of the path to its source edge
switch es via the arrival VLAN.4 It records this observa-
tion in the Vusable(es) bitmap, for use by Algorithm 3.

Finally, before delivering the received packet to the
protocol stack, the SPAIN driver sends a unicast chirp

4In the case of an asymmetrical failure in which our host’s packets
are lost, SPAIN will ultimately declare the path dead after our peer
gives up on the path and stops using it to send chirps to us.

to the source host if one has not been sent recently.
(The pseudo-code omits a few details, including the case
where the mapping ES(m) is unknown. The code also
omits details of deciding which chirps should request a
chirp in response.)

6.4 Table housekeeping
The SPAIN driver must do some housekeeping func-

tions to maintain some of its tables. First, every time a
packet is sent, SPAIN sets the corresponding VLAN’s bit
in Vsent(es).

Periodically, the Vsent(es) and Vusable(es) tables
must be cleared, at intervals of Tsent seconds. To avoid
chirp storms, our driver performs these table-clearing
steps in evenly-spaced chunks, rather than clearing the
entire table at once.

6.5 Support for end-host mobility
SPAIN makes a host that moves (e.g., for VM migra-

tion) responsible for informing all other hosts about its
new location. In SPAIN, a VLAN is used to represent
a collection of paths. Most failures only affect a subset
of those paths. Hence, the usability of a VLAN to reach
a given destination is a function of the location of the
sender. When the sender moves, it has to re-learn this
usability, so it flushes its usability map Vusable(es).

Also, peer end-hosts and Ethernet switches must learn
where the host is now connected. Therefore, after a host
has finished its migration, it broadcasts a chirp, which
causes the recipient hosts to update their ARP and ES ta-
bles, and which causes Ethernet switches to update their
learning tables.

6.6 Handling failures
Failure detection, for a SPAIN end host, consists of

detecting a VLAN failure and selecting a new VLAN for
the affected flows; we have already described VLAN se-
lection (Algorithm 3).

While we do not have a formal proof, we believe that
SPAIN can almost always detect that a VLAN has failed
with respect to an edge switch es, because most failures
result in observable symptoms, such as a lack of incom-
ing packets (including chirp responses) from es, or from
severe losses on TCP flows to hosts on es.

SPAIN’s design improves the chances for rapid failure
detection because it treats all received packets as probes
(to update Vusable), and because it aggregates path-health
information per edge switch, rather than per destination
host. However, because switch or link failures usually do
not fully break an entire VLAN, SPAIN does not discard
an entire VLAN upon failure detection; it just stops using
that VLAN for the affected edge switch(es).

SPAIN also responds rapidly to fault repairs; the re-
ceipt of any packet from a host connected to an edge
switch will re-establish the relevant VLAN as a valid

choice. The SPAIN driver also initiates re-probing of a
failed VLAN if a flow that could have used the VLAN
is either starting or being re-pinned. At other times, the
SPAIN driver re-probes less aggressively, to avoid un-
necessary network overhead.

7 How SPAIN meets its goals
We can now summarize how the design of SPAIN ad-

dresses the major goals we described in Sec. 4.
Efficiently exploit multiple paths in arbitrary

topologies: SPAIN’s use of multiple VLANs allows it
to spread load over all physical links in the network, not
just those on a single spanning tree. SPAIN’s use of end-
host techniques to spread load over the available VLANs
also contributes to this efficiency.

Support COTS Ethernet switches: SPAIN requires
only standard features from Ethernet switches. Also, be-
cause SPAIN does not require routing all non-local traffic
through a single core switch, it avoids the need for ex-
pensive switches with high port counts or high aggregate
bandwidths.

Tolerate faults: SPAIN pre-computes multiple paths
through the network, so that when a path fails, it can im-
mediately switch flows to alternate paths. Also, by avoid-
ing the need for expensive core switches, it decreases the
need to replicate expensive components, or to rely on a
single component for a large subset of paths.

SPAIN constantly checks path quality (through ac-
tive probing, monitoring incoming packets, and monitor-
ing the TCP congestion window), thereby allowing it to
rapidly detect path failures.

Support incremental deployment: The correctness
of SPAIN’s end-host processing does not depend on an
assumption that all end hosts implement SPAIN. (Our
experiments in Sec. 10.4, showing the performance of
SPAIN in incremental deployments, did not require any
changes to either the SPAIN code or the non-SPAIN
hosts.) Traffic to and from non-SPAIN hosts automat-
ically follows the default VLAN, because these hosts
never send chirp messages and so the SPAIN hosts never
update their ES(m) maps for these hosts.

8 Simulation results
We first evaluate SPAIN using simulations of a vari-

ety of network topologies. Later, in Sec. 10, we will
show experimental measurements using a specific topol-
ogy, but simulations are the only feasible way to explore
a broader set of network topologies and scales.

We use simulations to (i) show how SPAIN increases
link coverage and potential reliability; (ii) quantify the
switch-resource requirements for SPAIN’s VLAN-based
approach; and (iii) show how SPAIN increases the poten-
tial aggregate throughput for a network.

We simulated a variety of regular topologies, as de-

Table 3: Summary of simulation results

Coverage NCP Throughput gain
Topology #Switches #Links #Hosts STP SPAIN STP SPAIN #VLANs PS = 1 PS = α

FatTree(4) 20 32 16 37.50 100.00 35.00 0.00 4 1.00 2.00
FatTree(8) 80 256 128 15.62 100.00 17.00 0.00 16 1.00 4.00
FatTree(16) 320 2048 1024 7.03 100.00 21.00 0.00 64 1.00 8.00
FatTree(48) 2880 55296 27648 2.17 100.00 17.00 0.00 576 1.00 24.00
HyperX(3) 9 18 216 44.44 100.00 10.83 0.00 12 3.02 1.81
HyperX(4) 16 48 384 31.25 100.00 21.41 0.00 38 4.38 2.49
HyperX(8) 64 448 1536 14.06 100.00 16.31 0.00 290 9.46 5.18
HyperX(16) 256 3840 6144 6.64 100.00 17.86 0.00 971 19.37 10.49
CiscoDC(2,2) 14 31 192 32.26 90.32 12.14 0.71 9 2.20 2.00
CiscoDC(3,2) 20 46 288 34.15 92.68 12.88 0.00 12 2.22 2.00
CiscoDC(4,3) 34 81 576 35.53 94.74 14.64 0.30 18 2.23 2.00
CiscoDC(8,8) 146 361 3072 37.67 97.51 17.91 0.23 38 2.24 2.00
BCube(8,2) 16 128 64 56.25 100.00 23.81 0.14 16 1.44 1.17
BCube(48,2) 96 4608 2304 51.04 100.00 22.50 0.36 96 1.04 1.04
BCube(8,4) 2048 16384 4096 31.82 100.00 43.19 0.00 2048 1.68 1.59

Key: Coverage= % of links covered by STP; NCP= % of node pairs with no connectivity, for link-failure probability = 0.04; VLANs= # VLANs
required; Throughput gain= aggregate throughput, normalized to STP, for sufficient flows to saturate the network. PS= Path-set size; α = Maximum
number of edge-disjoint paths between any two switches; (p/2)2 for FatTree(p) topologies, 2k − 2 for HyperX, 3 for CiscoDC, and l for BCube.

fined in Section 5.4: FatTree (p), BCube (p, l), 2-D Hy-
perX (k), and CiscoDC (m, a).

Table 3 summarizes some of our simulation results
for these topologies. We show results where SPAIN’s
path-set size PS (the number of available paths per
source-destination pair) is set to the maximum num-
ber α of edge-disjoint paths possible in each topology.
α = (p/2)2 for the FatTree topologies, α = 2k − 2 for
HyperX, α = 3 for CiscoDC, and α = l for BCube
(l is the number of levels in a BCube(p, l) topology).
For throughput experiments, we also present results for
PS = 1.

The Coverage column shows the fraction of links cov-
ered by a spanning tree and SPAIN. Except for the Cis-
coDC topologies, SPAIN always covers 100% of the
links. In case of the CiscoDC topologies, our computed
edge-disjoint paths do not utilize links between the pairs
of aggregation switches, nor the link between the two
core switches. Hence, SPAIN’s VLANs do not cover
these links.

The NCP (no-connectivity pairs) column is indicative
of the fault tolerance of a SPAIN network; it shows the
expected fraction of source-destination pairs that lack
connectivity, with a simulated link-failure probability of
0.04, averaged over 10 randomized trials. (These are for
PS set to the maximum edge-disjoint paths; even for
PS = 1, SPAIN would be somewhat more fault-tolerant
than STP.)

The VLANs column shows the number of VLANs re-
quired for each topology. For all topologies considered,
the number is below Ethernet’s 4K limit.

The Throughput gain columns show the aggregate
throughput achieved through the network, normalized so

that STP = 1. We assume unit per-link capacity and fair
sharing of links between flows. We also assume that
SPAIN chooses at random from the α available paths (for
the PS = α column), and we report the mean of 10 ran-
domized trials.

Our throughput simulation is very simple: it starts by
queueing all N flows (e.g., 1 million) spread across H
hosts, and then measures the time until all have com-
pleted. This models a pessimistic case where all host-to-
host paths are fully loaded. Real-world data-center net-
works never operate like this; the experiments in Sec. 10
reflect a case in which a only subset of host-to-host paths
are fully loaded. For example, SPAIN’s throughput gain
over STP for our BCube(48,2) simulations peaks at about
10x when the number of flows is approximately the num-
ber of hosts (this case is not shown in the table). Also, the
simulations for SPAIN sometimes favor the PS = 1 con-
figuration, which avoids the congestion that is caused by
loading too many paths at once (as with PS = α case).

In summary, SPAIN’s paths cover more than twice
the links, and with significantly more reliability, than
spanning-tree’s paths, and, for many topologies and
workloads, SPAIN significantly improves throughput
over spanning tree.

9 Linux end-host implementation
Our end-host implementation for Linux involves two

components: a dynamically-loadable kernel-module
(“driver”) that implements all data-plane functionality,
and a user-level controller, mostly composed of shell and
Perl scripts.

On boot-up (or whenever SPAIN functionality needs
to be initialized) the user-level controller first determines

the MAC address of the network interface. It also de-
termines the ID of the edge-switch to which the NIC is
connected, by listening to the LLDP messages sent by
the switch. It then contacts a central repository, via a
pre-configured IP address; currently, we hard-code the
IP address of the repository, but it could be supplied to
each host via DHCP options. The controller then down-
loads the reachability map Vreach, and optionally a table
that provides bias weights for choosing between VLANs
(to support traffic engineering).

The controller then loads the SPAIN kernel driver, cre-
ating a spain virtual Ethernet device. Next, the con-
troller configures the spain virtual device, using the
following three major steps.

First, the controller attaches the spain device, as a
master, to the underlying real eth device (as a slave).
This master-slave relationship causes all packets that ar-
rive over the eth device to be diverted to the spain
device. That allows SPAIN’s chirping protocol to see all
incoming packets before they are processed by higher-
layer handlers.

Second, the controller configures the spain device
with the same IP and MAC addresses as the underly-
ing eth device. The controller adjusts the routing table
so that all the entries that were pointing to the eth de-
vice are now pointing to spain. This re-routing allows
SPAIN’s chirping protocol to see all outgoing packets.

Third, the controller supplies the driver with the maps
it downloaded from the central repository, via a set of
special /proc files exposed by the driver.

The spain driver straightforwardly implements the
algorithms described in Section 6, while accounting for
certain idiosyncrasies of the underlying NIC hardware.
For instance, with NICs that do not support hardware
acceleration for VLAN tagging on transmitted packets,
the driver must assemble the VLAN header, insert it be-
tween the existing Ethernet header fields according to the
802.1Q specification, and then appropriately update the
packet meta-data to allow the NIC to correctly compute
the CRC field. Similarly, NICs with hardware acceler-
ation for VLAN reception may sometimes deliver a re-
ceived packet directly to the layer-3 protocol handlers,
bypassing the normal driver processing. For these NICs,
the spain driver must install an explicit packet handler
to intercept incoming packets. (Much of this code is bor-
rowed directly from the existing 802.1q module.)

Data structures: The SPAIN driver maintains sev-
eral tables to support VLAN selection and chirping. To
save space, we only discuss a few details. First, we
maintain multiple bitmaps (for Vusable and Vsent) rep-
resenting several time windows, rather than one bitmap;
this spreads out events, such as chirping, to avoid large
bursts of activity. Our current implementation ages out
the stored history after about 20 seconds, which is fast

enough to avoid FIB timeouts in the switches, without
adding too much chirping overhead.

We avoid the use of explicit timers (by letting packet
events drive the timing, as in “soft timers” [11]), and the
use of multiprocessor locks, since inconsistent updates to
these bitmaps do not create incorrect behavior.

Overall, the driver maintains about 4KB of state for
each known edge switch, which is reasonable even for
fairly large networks.

Limitations: Our current implementation can only
handle one NIC per server. Data-center servers typically
support between two and four NICs, mostly to provide
fault tolerance. We should be able to borrow techniques
from the existing bonding driver to support simultane-
ous use of multiple NICs. Also, the current implemen-
tation does not correctly handle NICs that support TCP
offload, since this feature is specifically intended to hide
layer-2 packets from the host software.

10 Experimental evaluation
In our experiments, we evaluate four aspects of

SPAIN: overheads added by the end-host software; how
SPAIN improves over a traditional spanning tree and
shortest-path routing; support for incremental deploy-
ment; and tolerance of network faults.

We do not compare SPAIN’s performance against
other proposed data-center network designs, such as
PortLand [27] or VL2 [17], because these require spe-
cific network topologies. SPAIN’s support for arbitrary
topology is an advantage: one can evaluate or use it
on the topology one has access to. (We plan to rebuild
our testbed network to support fat-tree topologies, but
this is hard to do at scale.) However, in Section 10.5,
we compare SPAIN’s performance against shortest-path
routing, as is done in SEATTLE [22], TRILL [7], and
IEEE 802.1aq [5].

10.1 Configuration and workloads
We conducted our evaluation on three racks that are

part of the (larger) Open Cirrus testbed [13]. All our ex-
periments are run on 80 servers spread across these three
racks (rack 1 has 23 servers, rack 2 has 28, and rack 3
has 29). These servers have quad-core 2GHz Intel Xeon
CPUs, 8GB RAM and run Ubuntu 9.04.

Each server is connected to a 3500-series HP
ProCurve switch using a 1-GigE link, and these rack
switches are connected to a central 5406-series ProCurve
switch via 10-GigE links.

The Open Cirrus cluster was originally wired using
a traditional two-tiered tree, with the core 5406 switch
(TS) connected to the 3500 switches (S1, S2, and S3)
in each logical rack. To demonstrate SPAIN’s bene-
fits, we added 10-GigE cross-connects between the 3500
switches, so that each such switch is connected to another

TS

S1 S2 S3

10G

~28 blades per

switch

1G

Dashed lines represent the non-spanning-tree links that we added.

Figure 4: Wiring topology used in our experiments

TS

S1 S2 S3

S1 S2 S3

S1 S2 S3

S1 S2 S3

VLAN: V1

VLAN: V3

VLAN: V2

VLAN: V4

Figure 5: VLANs used by SPAIN for our topology

switch in each physical rack. Fig. 4 shows the resulting
wired topology, and Fig. 5 shows the four VLANs com-
puted by the SPAIN offline configuration algorithms.

In our tests, we used a “shuffle” workload (similar
to that used in [17]), an all-to-all memory-to-memory
bulk transfer among N participating hosts. This com-
munication pattern occurs in several important applica-
tions, such as the shuffle phase between Map and Reduce
phases of MapReduce, and in join operations in large
distributed databases. In our workload, each host trans-
fers 500MB to every other host using 10 simultaneous
threads; the order in which hosts choose destinations is
randomized to avoid deterministic hot spots. With each
machine sending 500MB to all other machines, this ex-
periment transfers about 3.16TB.

10.2 End-host overheads
We measured end-host overheads of several con-

figurations, using ping (100 trials) to measure la-
tency, and NetPerf (10 seconds, 50 trials) to measure
both uni-directional and simultaneous bi-directional TCP
throughput between a pair of hosts.

We found that we could not get optimal bi-directional
TCP throughput, even for unmodified Linux in a two-
host configuration, without using “Jumbo” (9000-byte)
Ethernet packets. (We were able to get optimal one-way
throughput using 1500-byte packets.) We are not entirely
sure of the reason for this problem. The TCP experi-
ments described in this paper all use Jumbo packets.

Table 4: End-host overheads

Configuration
ping TCP throughput
RTT (Mbit/sec)

(usec) 1-way 2-way, [min,max]
Unmodified Linux 98 990 1866 [1858,1872]

1st pkt, cold start 4.03 ms
SPAIN, no chirping 98 988 1860 [1852,1871]

1st pkt, cold start 3.94 ms
SPAIN w/chirping 99 988 1866 [1857,1876]

1st pkt, cold start 4.84 ms
ping results: mean of 100 warm-start trials;

throughput: mean, min, max of 50 trials

Table 4 shows the overhead measurements. The
SPAIN driver does not appear to measurably affect TCP
throughput or “ping” latency. Note that the chirping
protocol does not measurably change either throughput
or warm-start latency, even though it adds some data-
structure updates on every packet transmission and re-
ception. However, it appears to increase cold-start la-
tency slightly, probably because of the CPU costs of al-
locating and initializing some data structures.

Table 4 shows throughputs for a single TCP flow
in each direction. The shuffle workload, described in
Sec. 10.1, sometimes leads to an imbalance in the num-
ber of TCP flows entering and leaving a node. We dis-
covered that (even in unmodified Linux) this imbalance
can lead to a significant throughput drop for the direction
with fewer flows. For example, with 9 flows in one direc-
tion and 1 flow in the other, the 1-flow direction only gets
274 Mbps, while the 9-flow direction gets 984 Mbps. We
are not sure what causes this.

10.3 SPAIN vs. spanning tree
Table 5 shows how SPAIN compares to spanning tree

when running the shuffle workload on the Open Cirrus
testbed.

Table 5: Spanning-tree vs. SPAIN

Spanning Tree SPAIN
Mean goodput/host (Mb/s) 449.25 834.51
Aggregate goodput (Gb/s) 35.60 66.68
Mean completion time/host 744.57 s 397.50 s
Total shuffle time 831.95 s 431.12 s

Results are means of 10 trials, 500 MBytes/trial, 80 hosts

Our SPAIN trials yielded an aggregate goodput of
66.68 Gbps, which is 83.35% of the ideal 80-node good-
put of 80 Gbps. This is an improvement of 87.30% over
the spanning tree topology for the same experiment.

Based on the two-node bidirectional TCP transfer
measurement shown in Table 4, the SPAIN goodput
should have been (80*1860/2) Mbps or 74.4 Gbps. Thus
the observed goodput is about 10% less than this ex-
pected goodput. We suspect that the discrepancy is

the result of the decreased throughput, described in
Sec. 10.2, caused by occasional flow-count imbalances
during these experiments. Note that we monitored the
utilization of all links during the SPAIN experiments, and
did not see any saturated links.

10.4 Incremental deployability
One of the key features of SPAIN is incremental de-

ployability. To demonstrate this, we randomly assigned
a fraction f of hosts as SPAIN nodes, and disabled
SPAIN on the remaining hosts. We measured the good-
put achieved with the shuffle experiment. To account for
variations in node placement, we ran 10 trials for each
fraction f , doing different random node assignments for
each trial.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 M
ea

ns

Fraction of SPAIN hosts

Mean goodput/host (+)

Aggregate goodput (x)

Mean completion time

Total shuffle time

Results are means over 10 trials

Figure 6: Incremental deployability

In Fig. 6, we show how several metrics (per-host good-
put, aggregate goodput, mean per-host completion time,
and total shuffle run-time) vary as we change the fraction
f of nodes on which SPAIN is deployed. The y-values
for each curve are normalized to the 0%-SPAIN results.
We saw very little trial-to-trial variation (less than 2.5%)
in these experiments, with the exception of total shuffle
time, which varies up to 13% between trials. This varia-
tion does not seem to depend on the use of SPAIN.

As expected, the aggregate goodput increases and
the mean completion times decreases as the fraction of
SPAIN nodes increases. The curve for the aggregate
goodput increases until and flattens at about f = 0.9
at which point none of the links in our network are bot-
tlenecked. Hence, at f = 0.9, even flows from or to
non-SPAIN nodes do not experience any congestion.

10.5 SPAIN vs. Shortest-Path Routing
Protocols such as SEATTLE [22], TRILL [7], and

IEEE 802.1aq [5] improve over the spanning-tree pro-
tocol by using Shortest-Path Routing (SPR). Although
we did not test SPAIN directly against those three pro-
tocols, we can compare SPAIN’s performance to SPR-
based paths by emulation: we restrict the paths employed

 0
 200
 400
 600
 800

 1000
 1200

 24 26 28 30 32 34T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in seconds)

Failure event

Throughput

Figure 7: Fault-tolerance experiment

by SPAIN to only those that use the shortest paths be-
tween the switches in our test network. In this network,
as shown in Fig. 4, the shortest paths between switches
S1, S2, and S3 do not go through the core switch (TS);
i.e., they do not include the links shown as “VLAN V1”
in Fig. 5. (TRILL supports equal-cost multipath, but this
would be hard to apply to the topology of Fig. 4.)

We then re-ran the shuffle experiment using the SPR
topology, and achieved an aggregate goodput of 62.28
Gbps, vs. SPAIN’s 66.61 Gbps goodput. The total shuf-
fle time for SPR is 512.73 s, vs. SPAIN’s 430 s. As
mentioned in Sec. 10.3, SPAIN’s throughput is limited
by CPU overheads, so the relatively minor improvement
of SPAIN over SPR may be a result of these overheads.

We note that, regardless of the relative performance
of SPAIN and SPR, SPAIN retains the advantage of be-
ing deployable without any changes to switches. TRILL,
SEATTLE, and IEEE 802.1aq Shortest Path Bridging
will all require switch upgrades.

10.6 Fault tolerance
We implemented a simple fault detection and repair

module that runs at user-level, periodically (100 msec)
monitoring the performance of flows. It detects that a
VLAN has failed for a destination if the throughput drops
by more than 87.5% (equivalent to three halvings of the
congestion window), in which case it re-pins the flow to
an alternate VLAN.

To demonstrate fault-tolerance in SPAIN, we ran a
simple experiment. We used NetPerf to generate a 50-
second TCP flow, and measured its throughput every 100
msec. Fig. 7 shows a partial time-line. At 29.3 sec., we
removed a link that was in use by this connection. SPAIN
detects the failure and repairs the end-to-end path; the
TCP throughput returns to normal within 200–300 msec.

11 Summary and conclusions
Our goal for SPAIN was to provide multipath forward-

ing using inexpensive, COTS Ethernet switches, over ar-
bitrary topologies, and support incremental deployment.
We have demonstrated, both in simulations and in ex-
periments, that SPAIN meets those goals. In particular,
SPAIN improves aggregate goodput over spanning-tree
by 87% on a testbed that would not support most other
scalable-Ethernet designs.

We recognize that significant additional work could
be required to put SPAIN into practice in a large-scale
network. This work includes the design and implemen-
tation of a real-time central controller, to support dy-
namic global re-balancing of link utilizations, and also
improvements to SPAIN’s end-host mechanisms for as-
signing flows to VLANs. We also do not fully understand
how SPAIN will affect broadcast loads in very large net-
works.

Acknowledgements
We would like to thank our HP colleagues Peter Haddad, Jean Tour-

rilhes, Yoshio Turner, Sujata Banerjee, Paul Congdon, Dwight Barron,
and Bob Tarjan; the reviewers, and our shepherd, Jennifer Rexford.

References
[1] ARP Flooding Attack. http://www.trendmicro.

com/vinfo/secadvisories/default6.asp?
VNAME=ARP+Fl%ooding+Attack.

[2] Campus network for high availability: Design guide.
Cisco Systems, http://tinyurl.com/d3e6dj.

[3] Enterprise campus 3.0 architecture: Overview and frame-
work. Cisco Systems, http://tinyurl.com/
4bwr33.

[4] FocalPoint in Large-Scale Clos Switches.
White Paper, Fulcrum Microsystems. http:
//www.fulcrummicro.com/documents/
applications/clos.pdf.

[5] IEEE 802.1aq - Shortest Path Bridging. http://www.
ieee802.org/1/pages/802.1aq.html.

[6] IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task
Force. http://www.ieee802.org/3/ba/
public/index.html.

[7] IETF TRILL Working Group. http://www.ietf.
org/html.charters/trill-charter.html.

[8] Woven Systems unveils 10G Ethernet switch. Network
World, http://tinyurl.com/ajtr4b.

[9] J. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S.
Schreiber. HyperX: Topology, Routing, and Packaging
of Efficient Large-Scale Networks. In Proc. Supercom-
puting, Nov. 2009.

[10] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,
commodity data center network architecture. In Proc.
SIGCOMM, pages 63–74, 2008.

[11] M. Aron and P. Druschel. Soft timers: efficient microsec-
ond software timer support for network processing. In
Proc. SOSP, 1999.

[12] M. Arregoces and M. Portolani. Data Center Fundamen-
tals. Cisco Press, 2003.

[13] R. Campbell et al. Open Cirrus Cloud Computing
Testbed: Federated Data Centers for Open Source Sys-
tems and Services Research. In Proc. HotCloud, 2009.

[14] C. Clos. A Study of Non-Blocking Switching Networks.
Bell System Technical Journal, 32(2):406–424, 1953.

[15] K. Elmeleegy and A. L. Cox. EtherProxy: Scaling Eth-
ernet By Suppressing Broadcast Traffic. In Proc. INFO-
COM, 2009.

[16] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The

Cost of a Cloud: Research Problems in Data Center Net-
works. SIGCOMM CCR, 2009.

[17] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. VL2: A Scalable
and Flexible Data Center Network. In Proc. SIGCOMM,
Barcelona, 2009.

[18] A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sen-
gupta. Towards a Next Generation Data Center Ar-
chitecture: Scalability and Commoditization. In Proc.
PRESTO, pages 57–62, 2008.

[19] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu. BCube: A High Performance,
Server-centric Network Architecture for Modular Data
Centers. In Proc. SIGCOMM, Barcelona, 2009.

[20] C. Guo, H. Wu, K. Tan, L. Shiy, Y. Zhang, and S. Luz.
DCell: A Scalable and Fault-Tolerant Network Structure
for Data Centers. In Proc. SIGCOMM, Aug. 2008.

[21] John D’Ambrosia. IEEE P802.3ba Task Force Time-
line. General Information Session at Interim Meet-
ing http://www.ieee802.org/3/ba/public/
jan10/agenda_01_0110.pdf, January 2010.

[22] C. Kim, M. Caesar, and J. Rexford. Floodless in SEAT-
TLE: A Scalable Ethernet Architecture for Large Enter-
prises. In Proc. SIGCOMM, pages 3–14, 2008.

[23] M. Ko, D. Eisenhauer, and R. Recio. A Case for Con-
vergence Enhanced Ethernet: Requirements and Applica-
tions. In Proc. IEEE ICC, 2008.

[24] K.-S. Lui, W. C. Lee, and K. Nahrstedt. STAR: a transpar-
ent spanning tree bridge protocol with alternate routing.
SIGCOMM CCR, 32(3), 2002.

[25] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C.
Mogul. SPAIN: Design and Algorithms for Constructing
Large Data-Center Ethernets from Commodity Switches.
Tech. Rep. HPL-2009-241, HP Labs, 2009.

[26] A. Myers, T. S. E. Ng, and H. Zhang. Rethinking the
Service Model: Scaling Ethernet to a Million Nodes. In
Proc. HOTNETS-III, 2004.

[27] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vah-
dat. PortLand: A Scalable Fault-Tolerant Layer 2 Data
Center Network Fabric. In Proc. SIGCOMM, 2009.

[28] R. Perlman. An Algorithm for Distributed Computation
of a Spanning Tree in an Extended LAN. SIGCOMM
CCR, 15(4), 1985.

[29] R. J. Perlman. Rbridges: Transparent Routing. In Proc.
INFOCOM, 2004.

[30] T. L. Rodeheffer, C. A. Thekkath, and D. C. Anderson.
SmartBridge: A Scalable Bridge Architecture. In Proc.
SIGCOMM, 2000.

[31] M. Scott, A. Moore, and J. Crowcroft. Addressing the
Scalability of Ethernet with MOOSE. In Proc. DC CAVES
Workshop, Sept. 2009.

[32] R. Seifert and J. Edwards. The All-New Switch Book: The
Complete Guide to LAN Switching Technology. Wiley,
2008.

[33] S. Sharma, K. Gopalan, S. Nanda, and T. Chiueh.
Viking: a Multi-spanning-tree Ethernet Architecture for
Metropolitan Area and Cluster Networks. In Proc. IN-
FOCOM, 2004.

