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Abstract

Whānau is a novel routing protocol for distributed

hash tables (DHTs) that is efficient and strongly resis-

tant to the Sybil attack. Whānau uses the social connec-

tions between users to build routing tables that enable

Sybil-resistant lookups. The number of Sybils in the so-

cial network does not affect the protocol’s performance,

but links between honest users and Sybils do.When there

are n well-connected honest nodes, Whānau can tolerate

up to O(n/ log n) such “attack edges”. This means that

an adversary must convince a large fraction of the honest

users to make a social connection with the adversary’s

Sybils before any lookups will fail.

Whānau uses ideas from structured DHTs to build

routing tables that contain O(
√

n log n) entries per node.
It introduces the idea of layered identifiers to counter

clustering attacks, a class of Sybil attacks challenging for

previous DHTs to handle. Using the constructed tables,

lookups provably take constant time. Simulation results,

using social network graphs from LiveJournal, Flickr,

YouTube, and DBLP, confirm the analytic results. Ex-

perimental results on PlanetLab confirm that the protocol

can handle modest churn.

1 Introduction

Decentralized systems on the Internet are vulnerable to

the “Sybil attack”, in which an adversary creates numer-

ous false identities to influence the system’s behavior [9].

This problem is particularly pernicious when the system

is responsible for routing messages amongst nodes, as in

the Distributed Hash Tables (DHT) [24] which underlie

many peer-to-peer systems, because an attacker can pre-

vent honest nodes from communicating altogether [23].

If a central authority certifies identities as genuine,

then standard replication techniques can be used to for-

tify these protocols [4,20]. However, the cost of universal

strong identities may be prohibitive or impractical. In-

stead, recent work [27,26,8,19,17,5] proposes using the

weak identity information inherent in a social network

to produce a completely decentralized system. This pa-

per resolves an open problem by demonstrating an effi-

cient, structured DHT that enables honest nodes to reli-

ably communicate despite a concerted Sybil attack.

To solve this problem, we build on a social network

composed of individual trust relations between honest

people (nodes). This network might come from personal

or business connections, or it might correspond to some-

thing more abstract, such as ISP peering relationships.

We presume that each participant keeps track of its im-

mediate neighbors, but that there is no central trusted

node storing a map of the network.

An adversary can infiltrate the network by creating

many Sybil nodes (phoney identities) and gaining the

trust of honest people. Nodes cannot directly distin-

guish Sybil identities from genuine ones (if they could,

it would be simple to reject Sybils). As in previous

work [27], we assume that most honest nodes have more

social connections to other honest nodes than to Sybils;

in other words, the network has a sparse cut between the

honest nodes and the Sybil nodes.

In the context of a DHT, the adversary cannot pre-

vent immediate neighbors from communicating, but can

try to disrupt the DHT by creating many Sybil identities

which spread misinformation. Suppose an honest node u
wants to find a key y and will recognize the correspond-

ing value (e.g., a signed data block). In a typical struc-

tured DHT, u queries another node which u believes to

be “closer” to y, which forwards to another even-closer

node, and so on until y is found. The Sybil nodes can

disrupt this process by spreading false information (e.g.,

that they are close to a particular key), then intercept-

ing honest nodes’ routing queries, and responding with

“no such key” or delaying queries endlessly. Unstruc-

tured protocols that work by flooding or gossip are more

robust against these attacks, but pay a performance price,

requiring linear time to find a key.

This paper’s main contribution is Whānau 1, a novel

protocol that is the first solution to Sybil-proof routing

that has sublinear run time and space usage. Whānau

achieves this performance by combining the idea of ran-

dom walks from recent work [26] with a new way of

constructing IDs, which we call layered identifiers. To

store up to k keys per node, Whānau builds routing ta-

bles with O(
√

kn log n) entries per node. Using these

routing tables, lookups provably take O(1) time. Thus,

Whānau’s security comes at low cost: it scales similarly

to one-hop DHTs that provide no security [11, 10]. We

have implemented Whānau in simulation and in a simple

1Whānau , pronounced “far-no”, is a Māori word. It is cognate with

the Hawai’ian word ’ohana, and means “extended family” or “kin”.



instant-messaging application running on PlanetLab [2].

Experiments with real-world social graphs and these im-

plementations confirm Whānau’s theoretical properties.

Whānau provides one-hop lookups, but our implemen-

tation is not aware of network locality.Whānau also must

rebuild its routing tables periodically to handle churn in

the social network and in the set of keys stored in the

DHT. However, its routing tables are sufficiently redun-

dant that nodes simply going up and down doesn’t impact

lookups, as long as enough honest nodes remain online.

The rest of the paper is organized as follows. Section 2

summarizes the related work. Section 3 informally states

our goals. Section 4 states our assumptions about the so-

cial network, and provides a precise definition of “Sybil-

proof”. Section 5 gives an overview of Whānau’s routing

table structure and introduces layered IDs. Section 6 de-

scribes Whānau’s setup and lookup procedures in detail.

Section 7 states lemmas proving Whānau’s good perfor-

mance. Section 8 describesWhānau’s implementation on

PlanetLab [2] and in a simulator. Using these implemen-

tations Section 9 confirms its theoretical properties by

simulations on social network graphs from popular In-

ternet services, and investigates its reaction to churn on

PlanetLab. Section 10 discusses engineering details and

ideas for future work, and Section 11 summarizes.

2 Related work

Shortly after the introduction of scalable peer-to-peer

systems based on DHTs, the Sybil attack was recognized

as a challenging security problem [9, 16, 23, 22]. A num-

ber of techniques [4,20,22] have been proposed to make

DHTs resistant to a small fraction of Sybil nodes, but all

such systems ultimately rely on a certifying authority to

perform admission control and limit the number of Sybil

identities [9, 21, 3].

Several researchers [17, 19, 8, 5] proposed using so-

cial network information to fortify peer-to-peer systems

against the Sybil attack. The bootstrap graph model [8]

introduced a correctness criterion for secure routing us-

ing a social network and presented preliminary progress

towards that goal, but left a robust and efficient protocol

as an open problem.

Recently, SybilGuard and SybilLimit [27, 26] have

shown how to use a “fast mixing” social network and

random walks on these networks (see Section 4.1) to de-

fend against the Sybil attack in general decentralized sys-

tems. Using SybilLimit, an honest node can certify other

nodes as “probably honest”, accepting at most O(log n)
Sybil identities per attack edge. (Each certification uses

O(
√

n) bandwidth.) For example, SybilLimit’s vetting

procedure can be used to check that at least one of a set

of storage replicas is likely to be honest.

A few papers have adapted the idea of random walks

for purposes other than SybilLimit. Nguyen et al. used it
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Figure 1: Overview of Whānau. SETUP builds structured rout-

ing tables which LOOKUP uses to route queries to keys.

for Sybil-resilient content rating [25], Yu et al. applied it

to recommendations [28], and Danezis and Mittal used

it for Bayesian inference of Sybils [7]. This paper is the

first to use random walks to build a Sybil-proof DHT. 2

3 Goals

As illustrated in Figure 1, the Whānau protocol is a pair

of procedures SETUP and LOOKUP. SETUP(·) is used

both to build routing tables and to insert keys. It cooper-

atively transforms the nodes’ local parameters (e.g. key-

value records, social neighbors) into a set of routing table

structures stored at each node. After all nodes complete

the SETUP phase, any node u can call LOOKUP(u, key)
to use these routing tables to find the target value .

3.1 Scenario

We illustrate Whānau with a simple instant messaging

(IM) application which we have implemented on Planet-

Lab. Whānau provides a rendezvous service for the IM

clients. Each user is identified by a public key, and pub-

lishes a single self-signed tuple (public key, current IP

address) into the DHT. 3 To send an IM to a buddy iden-

tified by the public key PK , a client looks up PK in the

DHT, verifies the returned tuple’s signature using PK ,

and then sends a packet to that IP address.

In our implementation, each user runs a Whānau node

which stores that user’s record, maintains contact with

the user’s social neighbors, and contributes to the DHT.

(In this example, each node stores a single key-value

record, but in general, there may be an arbitrary number

k of keys stored per node.) When the user changes loca-

tion, the client updates the user’s record with the new IP

address. The user’s DHT node need not be continuously

available when the user is offline, as long as a substantial

fraction of honest nodes are available at any given time.

3.2 Security goal

Whānau handles adversaries who deviate from the proto-

col in Byzantine ways: the adversaries may make up ar-

bitrary responses to queries from honest nodes and may

create any number of pseudonyms (Sybils) which are in-

distinguishable from honest nodes. When we say that

2Our workshop paper [14] noted the opportunity and sketched an

early precursor to Whānau.
3Of course, a realistic application would require a PKI for human-

readable names, protection against replays, privacy controls, and so on.



Whānau is “Sybil-proof”, we mean that LOOKUP has a

high probability of returning the correct value, despite

arbitrary attacks during both the SETUP and LOOKUP

phases. (Section 4 makes this definition more precise.)

The adversary can always join the DHT normally

and insert arbitrary key-value pairs, including a differ-

ent value for a key already in the DHT. Thus, Whānau

provides availability, but not integrity: LOOKUP should

find all values inserted by honest nodes for the speci-

fied key, but may also return some values inserted by

the adversary. Integrity is an orthogonal concern of the

application: for example, the IM application filters out

any bad values by verifying the signature on the returned

key-value records, and ignoring records with invalid sig-

natures. (As an optimization, DHT nodes may opt to dis-

card bad records proactively, since they are of no use to

any client and consume resources to store and transmit.)

3.3 Performance goals

Simply flooding LOOKUP queries over all links of the

social network is Sybil-resistant, but not efficient [8].

The adversary’s nodes might refuse to forward queries,

or they might reply with bogus values. However, if there

exists any path of honest nodes between the source node

and the target key’s node through the social network, then

the adversary cannot prevent each of these nodes from

forwarding the query to the next. In this way, the query

will always reach the target node, which will reply with

the correct value. Unfortunately, a large fraction of the

participating nodes are contacted for every lookup, do-

ing O(n) work each time.

On the other hand, known one-hop DHTs are very

efficient — requiring O(1) messages for lookups and

O(
√

n) table sizes4— but not secure against the Sybil

attack. Our goal is to combine this optimal efficiency

with provable security. As a matter of policy and fair-

ness, we believe that a node’s table size and bandwidth

consumption should be proportional to the node’s degree

(i.e., highly connected nodes should do more work than

casual participants). While it is possible to adapt Whā-

nau to different policies, this paper assumes that the goal

is a proportional policy.

4 Defining “Sybil-proof”

Like previous work [27, 26], Whānau relies on certain

features of social networks. This section describes our

assumptions, outlines why they are useful, and defines

what it means for a DHT to be “Sybil-proof” under these

assumptions.

4If n = 5 × 10
8 , the approximate number of Internet hosts in

2010, then a table of
√

n may be acceptable for bandwidth and storage

constrained devices, as opposed to a table that scales linearly with the

number of hosts.

Figure 2: The social network. A sparse cut (the dashed attack

edges) separates the honest nodes from the Sybil nodes. The

Sybil region’s size is not well-defined, since the adversary can

create new pseudonyms at will.

4.1 Fast-mixing social networks

The social network is an undirected graph whose nodes

know their immediate neighbors. Figure 2 conceptually

divides the social network into two parts, an honest re-

gion containing all honest nodes and a Sybil region con-

taining all Sybil identities. An attack edge is a connec-

tion between a Sybil node and an honest node. An honest

edge is a connection between two honest nodes [27]. An

“honest” node whose software’s integrity has been com-

promised by the adversary is considered a Sybil node.

The key assumption is that the number of attack edges,

g, is small relative to the number of honest nodes, n. As

pointed out by earlier work, one can justify this sparse

cut assumption by observing that, unlike creating a Sybil

identity, creating an attack edge requires the adversary

to expend social-engineering effort: the adversary must

convince an honest person to create a social link to one

of his Sybil identities.

Whānau’s correctness will depend on the sparse cut

assumption, but its performance will not depend at all

on the number of Sybils. In fact, the protocol is totally

oblivious to the structure of the Sybil region. Therefore,

the classic Sybil attack, of creating many fake identities

to swamp the honest identities, is ineffective.

Since we rely on the existence of a sparse cut to dis-

tinguish the honest region from the Sybil region, we also

assume that there is no sparse cut dividing the honest

region in two. Given this assumption, the honest region

forms an expander graph. Expander graphs are fast mix-

ing, which means that a short random walk starting from

any node will quickly approach the stationary distribu-

tion [6]. Roughly speaking, the ending node of a random

walk is a random node in the network, with a probability

distribution proportional to the node’s degree. The mix-

ing time, w, is the number of steps a random walk must

take to reach this smooth distribution. For a fast mixing

network, w = O(log n). Section 9.1 shows that graphs

extracted from some real social networks are fast mixing.



Typical magnitude Description

n arbitrary n ≥ 1 number of honest nodes

m O(n) number of honest edges

w O(log n) mixing time of honest region

k arbitrary k ≥ 1/m keys stored per (virtual) node

g O(n/w) number of attack edges

ǫ O(gw/n) fraction of loser nodes

Table 1: Social network parameters used in our analysis.

4.2 Sampling by random walk

The random walk is Whānau’s main building block, and

is the only way the protocol uses the social network. An

honest node can send out a w-step walk to sample a ran-

dom node from the social network. If it sends out a large

number of such walks, and the social network is fast mix-

ing and has a sparse cut separating the honest nodes and

Sybil nodes, then the resulting set will contain a large

fraction of random honest nodes and a small number of

Sybil nodes [26]. Because the initiating node cannot tell

which individual samples are good and which are bad,

Whānau treats all sampled nodes equally, relying only

on the fact that a large fraction will be good nodes.

Some honest nodes may be near a concentration of at-

tack edges. Such loser nodes have been lax about ensur-

ing that their social connections are real people, and their

view of the social graph does not contain much informa-

tion. Random walks starting from loser nodes are more

likely to escape into the Sybil region. As a consequence,

loser nodes must do more work per lookup than winner

nodes, since the adversary can force them to waste re-

sources. Luckily, only a small fraction of honest nodes

are losers, because a higher concentration of attack edges

in one part of the network means a lower concentration

elsewhere. Most honest nodes will be winner nodes.

In the stationary distribution, proportionally more ran-

dom walks will land on high-degree nodes than low-

degree nodes. To handle high-degree nodes well, each

Whānau participant creates one virtual node [24] per

social network edge. Thus, good random samples are

distributed uniformly over the virtual nodes. All virtual

nodes contribute equal resources to the DHT and obtain

equal levels of service (i.e., keys stored/queried). This

use of virtual nodes fulfils the policy goal (Section 3.3)

of allocating both workload and trust according to each

person’s level of participation in the social network.

4.3 Main security definition

Table 1 summarizes the social network parameters intro-

duced thus far. We can now succinctly define our main

security property:

Definition. A DHT protocol is (g, ǫ, p)-Sybil-proof if,
against an active adversary with up to g attack edges, the

protocol’s LOOKUP procedure succeeds with probability

≥ p on any honest key, for at least (1−ǫ)n honest nodes.

Given a (g, ǫ, 1/2)-Sybil-proof protocol, it is always
possible to amplify the probability of success p exponen-

tially close to 1 by, for example, running multiple inde-

pendent instances of the protocol in parallel. 5 For exam-

ple, running 3 log2 n instances would reduce the failure

probability to less than 1/n3, essentially guaranteeing

that all lookups will succeed with high probability (since

there are only n2 possible source-target node pairs).

The parameter ǫ represents the fraction of loser nodes,
which is a function of the distribution of attack edges

in the network. If attack edges are distributed uniformly,

then ǫ may be zero; if attack edges are clustered, then a

small fraction of nodes may be losers.

We use the parameters in Table 1 to analyze our proto-

col, but do not assume that all of them are known by the

honest participants. Whānau needs order-of-magnitude

estimates ofm,w, and k to choose appropriate table sizes

and walk lengths. It does not need to know g or ǫ.
Proving that a protocol is Sybil-proof doesn’t imply

that it cannot be broken. For example, Whānau is Sybil-

proof but can be broken by social engineering attacks

that invalidate the assumption that there is a sparse cut

between the honest and Sybil regions. Similarly, a pro-

tocol may be broken by using cryptographic attacks or

attacks on the underlying network infrastructure. These

are serious concerns, but these are not the Sybil attack as

described by Douceur [9]. Whānau’s novel contribution

is that it is the first DHT protocol totally insensitive to

the number of Sybil identities.

5 Overview of Whānau

This section outlines Whānau’s main characteristics.

5.1 Challenge

The Sybil attack poses three main challenges for a struc-

tured DHT. First, structured DHTs forward queries us-

ing small routing tables at each node. Simply by creating

many cheap pseudonyms, an attacker will occupy many

of these table entries and can disrupt queries [23].

Second, a new DHT node builds and maintains its

routing tables by querying its neighbors’ tables. An at-

tacker can reply to these queries with only its own nodes.

Over time, this increases the fraction of table entries the

attacker occupies [22].

Third, DHTs assign random IDs to nodes and apply

hash functions to keys in order to spread load evenly. By

applying repeated guess-and-check, a Sybil attacker can

choose its own IDs and bypass these mechanisms. This

enables clustering attacks targeted at a specific key. For

example, if the adversary inserts many keys near the tar-

geted key, then it might overflow the tables of honest

nodes responsible for storing that part of the key space.

5ForWhānau, it turns out to be more efficient to increase the routing

table size instead of running multiple parallel instances.



Alternatively, the adversary might choose all its IDs to

fall near the targeted key. Then, honest nodes might have

to send many useless query messages to Sybil nodes be-

fore eventually querying an honest node.

5.2 Strawman protocol

To illustrate how random walks apply to the problem of

Sybil-proof DHT routing, consider the following straw-

man protocol. In the setup phase, each node initiates

r = O(
√

km) independent length-w random walks on

the social network. It collects a random key-value record

from the final node of each walk, and stores these nodes

and records in a local table.

To perform a lookup, a node u consults its local record

table. If the key is not in this table (which is likely), u
broadcasts the key to the O(

√
km) nodes v1, . . . , vr in

its table. If those nodes’ tables are sufficiently large, with

high probability, at least one node vi will have the needed

key-value record in its local table.

The strawman protocol shows how random walks ad-

dress the first and second challenges above. If the number

of attack edges is small, most random walks stay within

the honest region. Thus, the local tables contain mostly

honest nodes and records. Furthermore, nodes use only

random walks to build their tables: they never look at

each other’s tables during the setup process. As a result,

the adversary’s influence does not increase over time.

The strawman sidesteps the third challenge by es-

chewing node IDs entirely, but this limits its efficiency.

Lookups are “one-hop” in the sense that the ideal lookup

latency is a single network round-trip. However, since

each lookup sends a large number of messages, perfor-

mance will become limited by network bandwidth and

CPU load as the network size scales up. By adding struc-

ture, we can improve performance. The main challenge

is to craft the structure in such a way that it cannot be

exploited by a clustering attack.

5.3 Whānau’s global structure

Whānau’s structure resembles other DHTs such as

Chord [24], SkipNet [12], and Kelips [11]. Like Skip-

Net and Chord, Whānau assumes a given, global, circu-

lar ordering ≺ on keys (e.g., lexical ordering). The no-

tation x1 ≺ x2 ≺ · · · ≺ xz means that for any indexes

i < j < k, the key xj is on the arc (xi, xk).

No metric space. Like SkipNet, but unlike Chord and

many other DHTs, Whānau does not embed the keys

into a metric space using a hash function. If Whānau

were to use a hash function to map keys into a metric

space, an adversary could use guess-and-check to con-

struct many keys that fall between any two neighboring

honest keys. This would warp the distribution of keys in

the system and defeat the purpose of the hash function.

Therefore, Whānau has no a priori notion of “distance”

between two keys; it can determine only if one key falls

between two other keys. This simple ordering provides

some structure (e.g., a node can have a successor table),

but still requires defenses to clustering attacks.

Fingers and successors. Most structured DHTs have

routing tables with both “far pointers”, sometimes called

fingers, and “near pointers”, called leaves or successors.

Whānau follows this pattern. All nodes have layered IDs

(described below) which are of the same data type as the

keys. Each node’s finger table contains O(
√

km) point-
ers to other nodes with IDs spaced evenly over the key

space. Likewise, each node’s successor table contains

the O(
√

km) honest key-value records immediately fol-

lowing its ID. Finger tables are constructed simply by

sending out O(
√

km) random walks, collecting a ran-

dom sample of (honest and Sybil) nodes along with their

layered IDs. Successor tables are built using a more com-

plex sampling procedure (described in Section 6.1).

Together, an honest node’s finger nodes’ successor ta-

bles cover the entire set of honest keys, with high proba-

bility. This structure enables fast one-hop lookups: sim-

ply send a query message to a finger node preceding

the target key. The chosen finger is likely to have the

needed record in its successor table. (If not, a few retries

with different fingers should suffice.) In contrast with the

strawman protocol above, this approach uses a constant

number of messages on average, and O(log n) messages

(which may be sent in parallel) in the worst case.

Layered IDs. Whānau defends against clustering at-

tacks using layers, illustrated in Figure 3. Each node

uses a randomwalk to choose a random key as its layer-0

ID. This ensures that honest nodes’ layer-0 IDs are dis-

tributed evenly over the keys stored by the system.

To pick a layer-1 ID, each node picks a random entry

from its own layer-0 finger table and uses that node’s ID.

To pick a layer-2 ID, each node takes a random layer-1

finger’s ID, and so on for each of the ℓ = O(log km) lay-

Layer 0

Layer 1

Sybil ID cluster
mirrored by
layer-1 honest IDs

Layer 1 is
balanced

Cluster attack on layer 1:
layer 1 unbalanced,
but layer 0 balanced

Figure 3: Honest IDs (black dots) in layer 0 are uniformly dis-

tributed over the set of keys (X axis), while Sybil IDs (red dots)

may cluster arbitrarily. Honest nodes choose their layer i + 1
IDs from the set of all layer i IDs (honest and Sybil). Thus,

most layers are balanced. Even if there is a clustering attack on

a key, it will always be easy to find an honest finger near the

key using a random sampling procedure.



ers. In the end, each node is present at, and must collect

successor tables for, ℓ positions in the key space.

Layers defend against key clustering and ID cluster-

ing attacks. If the attacker inserts many keys near a target

key, this will simply cause more honest nodes to choose

layer-0 IDs in that range. The number of keys the at-

tacker can insert is limited by the number of attack edges.

Thus, a key clustering attack only shifts around the hon-

est nodes’ IDs without creating any hot or cold spots.

Nodes choose their own IDs; thus, if the attacker

chooses all its layer-0 IDs to fall immediately before a

target key, it might later be difficult to find an honest

finger near the key. However, if the adversary manages

to supply an honest node u with many clustered layer-0

IDs, then this increases the probability that u will pick

one of these clustered IDs as its own layer-1 ID. As a re-

sult, the distribution of honest layer-1 IDs tends to mimic

any clusters in the Sybil layer-0 IDs. This increases the

honest nodes’ presence in the adversary-chosen range,

and increases the likelihood that layer 1 finger tables are

balanced between honest and Sybil nodes.

The same pattern of balance holds for layers 2 through

ℓ−1. As long as most layers have a good ratio of honest to

Sybil IDs in every range, random sampling (as described

in Section 6.2) can find honest fingers near any target key.

5.4 Churn

There are three sources of churn that Whānau must han-

dle. First, computers may become temporarily unavail-

able due to network failures, mobility, overload, crashes,

or being turned off daily. We call this node churn. Whā-

nau builds substantial redundancy into its routing tables

to handle Sybil attacks, and this same redundancy is suf-

ficient to handle temporary node failures. Section 9.5

shows that increasing node churn results in a modest ad-

ditional overhead.

The second source of churn is changes to the social

relationships between participants. This social churn re-

sults in adding or deleting social connections. A single

deleted link doesn’t impact Whānau’s performance, as

long as the graph remains fast mixing and neither end-

point became malicious. (If one did become malicious, it

would be treated as an attack edge.) However, Whānau

doesn’t immediately react to social churn, and can only

incorporate added links by rebuilding its routing tables.

Nodes which leave the DHT entirely are not immediately

replaced. Therefore, until SETUP is invoked, the routing

tables, load distribution, and so on will slowly become

less reflective of the current social network, and perfor-

mance will slowly degrade.

Social network churn occurs on a longer time scale

than node churn. For example, data from Mislove et al.

indicates that the Flickr social network’s half-life is ap-

proximately 6 weeks [18]. Running SETUP every day, or

every few minutes, would keep Whānau closely in sync

with the current social graph.

The final and most challenging source of churn is

changes to the set of keys stored in the DHT. This key

churn causes the distribution of keys to drift out of sync

with the distribution of finger IDs. Reacting immediately

to key additions and deletions can create “hot spots” in

successor tables; this can only be repaired by re-running

SETUP. Thus, in the worst case, newly stored keys will

not become available until the tables are rebuilt. For

some applications— like the IM example, in which each

node only ever stores one key — this is not a problem as

long as tables are refreshed daily. Other applications may

have application-specific solutions.

Unlike key churn, turnover of values does not present

a challenge for Whānau: updates to the value associated

with a keymay always be immediately visible. For exam-

ple, in the IM application, a public key’s current IP ad-

dress can be changed at any time by the record’s owner.

Value updates are not a problem because Whānau does

not use the value fields when building its routing tables.

Key churn presents a trade-off between the bandwidth

consumed by rebuilding tables periodically and the delay

from a key being inserted to the key becoming visible.

This bandwidth usage is similar to stabilization in other

DHTs; however, insecure DHTs can make inserted keys

visible immediately, since they do not worry about clus-

tering attacks. We hope to improve Whānau’s respon-

siveness to key churn; we outline one idea in Section 10.

6 The Whānau protocol

This section defines SETUP and LOOKUP in detail.

6.1 Setup

The SETUP procedure takes each node’s social con-

nections and the local key-value records to store as in-

puts, and constructs four routing tables:

• ids(u, i): u’s layer-i ID, a random key x.
• fingers(u, i): u’s layer-i fingers as (id , address) pairs.
• succ(u, i): u’s layer-i successor (key , value) records.
• db(u): a sample of records used to construct succ.

The global parameters rf , rs, rd, and ℓ determine the

sizes of these tables; SETUP also takes an estimate of the

mixing time w as a parameter. Typically, nodes will have

a fixed bandwidth and storage budget to allocate amongst

the tables. Section 7 and Section 9 will show how varying

these parameters impacts Whānau’s performance.

The SETUP pseudocode (Figure 4) constructs the rout-

ing tables in ℓ+1 phases. The first phase sends out rd ran-

dom walks to collect a sample of the records in the social

network and stores them in the db table. These samples

are used to build the other tables. The db table has the

good property that each honest node’s stored records are

frequently represented in other honest nodes’ db tables.



SETUP (stored-records(·), neighbors(·); w, rd, rf , rs, ℓ)

1 for each node u
2 do db(u)← SAMPLE-RECORDS(u, rd)
3 for i← 0 to ℓ− 1
4 do for each node u
5 do ids(u, i) ← CHOOSE-ID(u, i)
6 fingers(u, i) ← FINGERS(u, i, rf )
7 succ(u, i) ← SUCCESSORS(u, i, rs)
8 return fingers , succ

SAMPLE-RECORDS(u, rd)

1 for j ← 1 to rd

2 do vj ← RANDOM-WALK(u)
3 (key j , valuej)← SAMPLE-RECORD(vj)
4 return {(key

1
, value1), . . . , (keyrd

, valuerd
)}

SAMPLE-RECORD(u)

1 (key , value)← RANDOM-CHOICE(stored-records(u))
2 return (key , value)

RANDOM-WALK(u0)

1 for j ← 1 tow
2 do uj ← RANDOM-CHOICE(neighbors(uj−1))
3 return uw

CHOOSE-ID(u, i)

1 if i = 0
2 then (key , value)← RANDOM-CHOICE(db(u))
3 return key

4 else (x, f)← RANDOM-CHOICE(fingers(u, i− 1))
5 return x

FINGERS(u, i, rf )

1 for j ← 1 to rf

2 do vj ← RANDOM-WALK(u)
3 xj ← ids(vj , i)
4 return {(x1, v1), . . . , (xrf

, vrf
)}

SUCCESSORS(u, i, rs)

1 for j ← 1 to rs

2 do vj ← RANDOM-WALK(u)
3 Rj ← SUCCESSORS-SAMPLE(vj , ids(u, i))
4 return R1 ∪ · · · ∪Rrs

SUCCESSORS-SAMPLE(u, x0)

1 {(key
1
, value1), . . . , (keyrd

, valuerd
)} ← db(u)

(sorted so that x0 � key
1
� · · · � keyrd

≺ x0)

2 return {(key
1
, value1), . . . , (keyt, valuet)} (for small t)

Figure 4: SETUP procedure to build structured routing tables. Each function’s first parameter is the node it executes on.

The remaining phases are used to construct the ℓ lay-

ers. For each layer i, SETUP chooses each node’s IDs and

constructs its successor and finger tables. The layer-0 ID

is chosen by picking a random key from db. Higher-layer

IDs and finger tables are defined mutually recursively.

FINGERS(u, i, rf) sends out rf random walks and col-

lects the resulting nodes and ith layered IDs into u’s ith

layer finger table. For i > 0, CHOOSE-ID(u, i) chooses
u’s ith layered ID by picking a random finger ID stored

in u’s (i − 1)th finger table. As explained in Section 5.3,

this causes honest IDs to cluster wherever Sybil IDs have

clustered, ensuring a rough balance between good fingers

and bad fingers in any given range of keys.

Once a node has its ID for a layer, it must collect the

successor list for that ID. It might seem that we could

solve this the same way Chord does, by bootstrapping off

LOOKUP to find the ID’s first successor node, then ask-

ing it for its own successor list, and so on. However, as

pointed out in Section 5.1, this recursive approach would

enable the adversary to fill up the successor tables with

bogus records over time. To avoid this, Whānau fills each

node’s succ table without using any other node’s succ ta-

ble; instead, it uses only the db tables.

The information about any layered ID’s successors is

spread around the db tables of many other nodes, so

the SUCCESSORS subroutine must contact many nodes

and collect little bits of the successor list together. The

straightforward way to do this is to ask each node v for

the closest record in db(v) following the ID.

The SUCCESSORS subroutine repeatedly calls

SUCCESSORS-SAMPLE rs times, each time accumu-

lating a few more potential-successors. SUCCESSORS-

SAMPLE works by contacting a random node and

sending it a query containing the ID. The queried node

v, if it is honest, sorts all of the records in its local db(v)
by key, and then returns the closest few records to the

requestor’s ID. The precise number t of records sampled

does not matter for correctness, so long as t is small

compared to rd. Section 7’s analysis simply lets t = 1.

This successor sampling technique ensures that for ap-

propriate values of rd and rs, the union of the repeated

queries will contain all the desired successor records.

Section 7.1 will state this quantitatively, but the intuition

is as follows. Each SUCCESSORS-SAMPLE query is an

independent and random sample of the set of keys in the

system which are near the ID. There may be substantial

overlap in the result sets, but for sufficiently large rs, we

will eventually receive all immediate successors. Some

of the records returned will be far away from the ID and

thus not really successors, but they will show up only

a few times. Likewise, bogus results returned by Sybil

nodes consume some storage space, but do not affect cor-

rectness, since they do not prevent the true successors

from being found.



LOOKUP(u, key)

1 v ← u
2 repeat value ← TRY(v, key)
3 v ← RANDOM-WALK(u)
4 until TRY found valid value , or hit retry limit

5 return value

TRY(u, key)

1 {(x1, f1), . . . , (xrf
, frf

)} ← fingers(u, 0)
(sorted so key � x1 � · · · � xrf

≺ key)

2 j ← rf

3 repeat (f, i)← CHOOSE-FINGER(u, xj , key)
4 value ← QUERY(f, i, key)
5 j ← j − 1
6 until QUERY found valid value , or hit retry limit

7 return value

CHOOSE-FINGER(u, x0, key)

1 for i← 0 to ℓ− 1
2 do Fi ← { (x, f) ∈ fingers(u, i) | x0 � x � key }
3 i← RANDOM-CHOICE({i∈{0, . . . , ℓ−1} | Fi non-empty})
4 (x, f)← RANDOM-CHOICE(Fi)
5 return (f, i)

QUERY(u, i, key)

1 if (key , value) ∈ succ(u, i) for some value

2 then return value

3 else error “not found”

Figure 5: LOOKUP procedure to retrieve a record by key.

In order to process requests quickly, each node should

sort its finger tables by ID and its successor tables by key.

6.2 Lookup

The basic goal of the LOOKUP procedure is to find

a finger node which is honest and which has the target

record in its successor table. The SETUP procedure en-

sures that any honest finger f which is “close enough” to

the target key y will have y ∈ succ(f). Since every fin-

ger table contains many random honest nodes, each node

is likely to have an honest finger which is “close enough”

(if rf is big enough). However, if the adversary clus-

ters IDs near the target key, then LOOKUP might have

to waste many queries to Sybil fingers before finding this

honest finger. LOOKUP’s pseudocode (Figure 5) chooses

fingers carefully to foil this category of attack.

To prevent the adversary from focusing its attack on

a single node’s finger table, LOOKUP tries first using its

own finger table, and, if that fails, repeatedly chooses a

random delegate and retries the search from there.

The TRY subroutine searches the finger table for the

closest layer-zero ID x0 to the target key key . It then

chooses a random layer i to try, and a random finger f
whose ID in that layer lies between x0 and the target key.

TRY then queries f for the target key.

If there is no clustering attack, then the layer-zero ID

x0 is likely to be an honest ID; if there is a clustering

attack, that can only make x0 become closer to the target

key. Therefore, in either case, any honest finger found

between x0 and key will be close enough to have the

target record in its successor table.

Only one question remains: how likely is CHOOSE-

FINGER to pick an honest finger versus a Sybil finger?

Recall from Section 5.3 that, during SETUP, if the adver-

sary clustered his IDs in the range [x0, key ] in layer i,
then the honest nodes tended to cluster in the same range

in layer i + 1. Thus, the adversary’s fingers cannot dom-

inate the range in the majority of layers. Now, the layer

chosen by CHOOSE-FINGER is random — so, probably

not dominated by the adversary— and therefore, a finger

chosen from that layer is likely to be honest.

In conclusion, for most honest nodes’ finger tables,

CHOOSE-FINGER has a good probability of returning an

honest finger which is close enough to have the target key

in its successor table. Therefore, LOOKUP should almost

always succeed after only a few calls to TRY.

7 Analysis of Whānau’s performance

For the same reason as a flooding protocol, Whānau’s

LOOKUP will always eventually succeed if it runs for

long enough: some random walk (LOOKUP, line 3) will

find the target node. However, the point of Whānau’s

added complexity is to improve lookup performance be-

yond a flooding algorithm. This section sketches the rea-

soning why LOOKUP usesO(1) messages to find any tar-

get key, leaving out most proofs; more detailed proofs

can be found in an accompanying technical report [15].

To the definitions in Section 4, we will add a few more

in order to set up our analysis.

Definition (good sample probability). Let p be the prob-

ability that a random walk starting from a winner node

returns a good sample (a random honest node). p de-

creases with the number of attack edges g. Specifically,
we have previously shown that p ≥ 1

2

(

1 − gw
ǫn

)

for any

ǫ [15]. We are interested in the case where g < ǫn
2w =

O
(

n
w

)

. In this case, we have that p > 1/4, so a substan-

tial fraction of random walks return good samples.

Definition (“the database”). Let D be the disjoint union

of all the honest nodes’ db tables:

D def

=
⊎

honest u

db(u)

Intuitively, we expect honest nodes’ records to be heavily

represented inD.D has exactly rdm elements; we expect

at least (1 − ǫ)prdm of those to be from honest nodes.



Definition (distance metric dxy). Recall from Sec-

tion 5.3 that Whānau has no a priori notion of distance

between two keys. However, with the definition ofD, we

can construct an a posteriori distance metric.

Let Dxy
def
= {z ∈ D | x � z ≺ y} be all the records

(honest and Sybil) in D on the arc [ x, y). Then define

dxy
def
=

|Dxy|
|D| =

|Dxy|
rdm

∈ [ 0, 1)

Note that dxy is not used (or indeed, observable) by the

protocol; we use it only in the analysis.

7.1 Winner successor tables are correct

Recall that SETUP (Figure 4) uses the SUCCESSORS sub-

routine, which calls SUCCESSORS-SAMPLE rs times, to

find all the honest records in D immediately following

an ID x. Consider an arbitrary successor key y ∈ D. If

the rd and rs are sufficiently large, and dxy is sufficiently

small, then y will almost certainly be returned by some

call to SUCCESSORS-SAMPLE. Thus, any winner node

u’s table succ(u, i) will ultimately contain all records y
close enough to the ID x = ids(u, i).

Lemma. Call SUCCESSORS-SAMPLE(x) rs times. We

then have (for rd, d
−1
xy ≫ 1 and rs ≪ n) a Prob[fail] of:

Prob[y /∈succ(u, i)] >

[

1 − (1 − ǫ)p

1 + km
prd

e−rddxy

]rs

Under the simplifying assumption rd < d−1
xy ≪ km:

Prob[y /∈succ(u, i)] > e−e(1−ǫ)p2 rsrd
km (1)

We can intuitively interpret this result as follows: to

get a complete successor table with high probability,

we need rsrd = Ω(km log km). This is related to the

Coupon Collector’s Problem: the SUCCESSORS subrou-

tine examines rsrd random elements fromD, and it must

examine the entire set of km honest records.

7.2 Layer zero IDs are evenly distributed

Consider an arbitrary winner u’s layer-zero finger table

F0 = fingers(u, 0): approximately prf of the nodes in

F0 will be random honest nodes. Picking a random hon-

est node f ∈ F0 and then picking a random key from

db(f) is the same as picking a random key fromD. Thus,

prf of the IDs in F0 are random keys from D. For any

keys x, y ∈ D, the probability that a random honest fin-

ger’s layer-zero ID falls in the range [ x, y) is simply dxy .

Lemma. With rf fingers, we have a Prob[fail] of:

Prob[ no layer-0 finger in [ x, y) ] > (1 − dxy)prf (2)

We expect to find approximately prfdxy of these honest

fingers with IDs in the range [ x, y).

We can intuitively interpret this result as follows: to

see Ω(1) fingers in [ x, y) with high probability, we need
rf = Ω(log m/dxy). In other words, large finger tables

enable nodes to find a layer-0 finger in any small range of

keys. Thus layer-0 finger tables tend to coverD evenly.

7.3 Layers are immune to clustering

The adversary may attack the finger tables by clustering

its IDs. CHOOSE-ID line 4 causes honest nodes to re-

spond by clustering their IDs on the same keys.

Pick any keys x, y ∈ D sufficiently far apart that we

expect at least one layer-zero finger ID in [ x, y) with

high probability (as explained above). Let βi (“bad fin-

gers”) be the average (over winners nodes’ finger tables)

of the number of Sybil fingers with layer-i IDs in [ x, y).
Likewise, let γi (“good fingers”) be the average number

of winner fingers in [ x, y). Define µ
def
= (1 − ǫ)p.

Lemma. The number of good fingers in [x, y) is propor-
tional to the total number of fingers in the previous layer:

γi+1 ? µ(γi + βi)

Corollary. Let the density ρi of winner fingers in layer i

be ρi
def

= γi/(γi + βi). Then
∏ℓ−1

i=0 ρi ? µℓ−1/(1− µ)rf .

Because the density of winner fingers ρi is bounded

below, this result means that the adversary’s scope to af-

fect ρi is limited. The adversary may strategically choose

any values of βi between zero and (1 − µ)rf . However,

the adversary’s strategy is limited by the fact that if it

halves the density of good nodes in one layer, the density

of good nodes in another layer will necessarily double.

Theorem. The average layer’s density of winner fingers

is at least ρ̄
def

= 1
ℓ

∑ℓ−1
i=0 ρi ?

µ
e [(1 − µ)µrf ]−

1

ℓ .

Observe that as ℓ → 1, the average layer’s density of

good fingers shrinks exponentially to O(1/rf ), and that

as ℓ → ∞, the density of good fingers asymptotically

approaches the limit µ/e. We can get ρ̄ within a factor of

e of this ideal bound by setting the number of layers ℓ to

ℓ = log [(1 − µ)µrf ] (3)

For most values of µ ∈ [0, 1], ℓ ≈ log rf . However, when

µ approaches 1 (no attack) or 0 (strong attack), ℓ → 1.

7.4 Main result: lookup is fast

The preceding sections’ tools enable us to prove that

Whānau uses a constant number of messages per lookup.

Theorem (Main theorem). Define κ = kme/(1 − ǫ)p3.

Suppose that we pick rs, rf , rd, and ℓ so that (3) and (4)

are satisfied, and run SETUP to build routing tables.

rsrf >
rsrd

p
> κ (4)

Now run LOOKUP on any valid key y. Then, a single

iteration of TRY succeeds with probability better than

Prob[ success ] > 1
20 (1 − ǫ)p = Ω(1).



The value κ is the aggregate storage capacity km of

the DHT times an overhead factor e/(1−ǫ)p3 which rep-

resents the extra work required to protect against Sybil

attacks. When g < ǫn
2w , this overhead factor is O(1).

The formula (4) may be interpreted to mean that

both rsrd and rsrf must be Ω(κ): the first so that

SUCCESSORS-SAMPLE is called enough times to collect

every successor, and the second so that successor lists are

longer than the distance between fingers. These would

both need to be true even with no adversary.

Proof sketch. Let x ∈ D be a key whose distance to the

target key y is dxy = 1/prf , the average distance be-

tween honest fingers.

First, substitute the chosen dxy into (2). By the lemma,

the probability that there is an honest finger xh ∈ [ x, y)
is at least 1 − 1/e. TRY line 1 finds xrf

, the closest

layer-zero finger to the target key, and TRY passes it to

CHOOSE-FINGER as x0. x0 may be an honest finger or a

Sybil finger, but in either case, it must be at least as close

to the target key as xh. Thus, x0 ∈ [ x, y) with probabil-

ity at least 1 − 1/e.
Second, recall that CHOOSE-FINGER first chooses a

random layer, and then a random finger f from that layer

with ID xf ∈ [ x0, y ]. The probability of choosing any

given layer i is ℓ−1, and the probability of getting an hon-

est finger from the range is ρi from Section 7.3. Thus, the

total probability that CHOOSE-FINGER returns an hon-

est finger is simply the average layer’s density of good

nodes 1
ℓ

∑

ρi = ρ̄. Since we assumed (3) was satisfied,

Section 7.3 showed that the probability of success is at

least ρ̄ ? (1 − ǫ)p/e2.

Finally, if the chosen finger f is honest, the only ques-

tion remaining is whether the target key is in f ’s suc-

cessor table. Substituting dxf y < dxy and (4) into (1)

yields Prob[ y ∈ succ(f) ] ? 1 − 1/e. Therefore, when
QUERY(f, y) checks f ’s successor table, it succeeds

with probability at least 1 − 1/e.
A TRY iteration will succeed if three conditions hold:

(1) xf ∈ [ x, y); (2) CHOOSE-FINGER returns a winning

finger f ; (3) y ∈ succ(f). Combining the probabilities

calculated above for each of these events yields the total

success probability
(

1−1
e

) (1−ǫ)p
e2

(

1−1
e

)

> 1
20 (1−ǫ)p.

Corollary. The expected number of queries sent by

LOOKUP is bounded by 20
(1−ǫ)p = O(1). With high prob-

ability, the maximum number of queries is O(log n).

7.5 Routing tables are small

Each (virtual) node has S = rd + ℓ(rf + rs) table entries
in total. To minimize S subject to (4), set rs = rf =

√
κ

and rd = p
√

κ. Therefore, the optimal total table size is

S ≈ √
κ log κ, so S = O(

√
km log km), as expected.

As the number of attack edges g increases, the required
table size grows as (1−ǫ)−1/2p−3/2. A good approxima-

tion for this security overhead factor is 1+2
√

gw
n +6 gw

n
when g < n

6w . Thus, overhead grows linearly with g.
As one might expect for a one-hop DHT, the optimum

finger tables and the successor tables are the same size.

The logarithmic factor in the total table size comes from

the need to maintain O(log km) layers to protect against
clustering attacks. If the number of attack edges is small,

(3) indicates that multiple layers are unnecessary. This is

consistent with the experimental data in Section 9.3.

8 Implementation

We have implemented Whānau in a simulator and on

PlanetLab. To simulate very large networks — some of

the social graphs we use have millions of nodes — we

wrote our own simulator. Existing peer-to-peer simula-

tors don’t scale to such a large number of nodes, and our

simulator uses many Whānau-specific optimizations to

reduce memory consumption and running time. The sim-

ulator directly implements the protocol as described in

Figures 4 and 5, takes a static social network as input,

and provides knobs to experiment with Whānau’s dif-

ferent parameters. The simulator does not simulate real-

world network latencies and bandwidths, but only counts

the number of messages that Whānau sends. The primary

purpose of the simulator is to validate the correctness and

scaling properties of Whānau with large social networks.

We also implemented Whānau and the IM applica-

tion in Python on PlanetLab. This implementation runs

a message-passing protocol to compute SETUP and uses

RPC to implement LOOKUP. When a user starts a node,

the user provides the keys and current IP addresses that

identify their social neighbor nodes. The IM client stores

its current IP address into the DHT. When a user wants

to send an IM to another user, the IM client looks up the

target user’s contact information in the DHT and authen-

ticates the returned record using the key. If the record

is authentic, the IM application sends the IM to the IP

address in the record. Whānau periodically rebuilds its

tables to incorporate nodes which join and leave.

The average latency for a lookup is usually one round-

trip on PlanetLab. Using locality-aware routing, Whānau

could achieve lower than one network round-trip on av-

erage, but we haven’t implemented this feature yet.

Our PlanetLab experiments were limited by the num-

ber of PlanetLab nodes available and their resources: we

were able to run up to 4000 Whānau nodes simultane-

ously. Unfortunately, at scales smaller than this, Whānau

nearly reduces to simple broadcast. Given this practical

limitation, it was difficult to produce insightful scaling

results on PlanetLab. Furthermore, although results were

broadly consistent at small scales, we could not cross-

validate the simulator at larger scales. The PlanetLab ex-

periments primarily demonstrated that Whānau works on

a real network with churn, varying delays, and so on.



n=#nodes m=#edges avg. degree

Flickr 1,624,992 15,476,835 9.52

LiveJournal 5,189,809 48,688,097 9.38

YouTube 1,134,890 2,987,624 2.63

DBLP 511,163 1,871,070 3.66

Table 2: Properties of the input data sets.

9 Results

This section experimentally verifies several hypotheses:

(1) real-world social networks exhibit the properties that

Whānau relies upon; (2) Whānau can handle clustering

attacks (tested by measuring its performance versus ta-

ble size and the number of attack edges); (3) layered IDs

are essential for handling clustering attacks; (4) Whānau

achieves the same scalability as insecure one-hop DHTs;

and (5) Whānau can handle node churn in Planetlab.

Our Sybil attack model permits the adversary to cre-

ate an unlimited number of pseudonyms. Since previous

DHTs cannot tolerate this attack at all, this section does

not compare Whānau’s Sybil-resistance against previous

DHTs. However, in the non-adversarial case, the exper-

iments do show that Whānau scales like any other inse-

cure one-hop DHT, so (ignoring constant factors such as

cryptographic overhead) adding security is “free”. Also,

similarly to other (non-locality-aware) one-hop DHTs,

the lookup latency is one network round-trip.

9.1 Real-world social nets fit assumptions

Nodes in the Whānau protocol bootstrap from a social

network to build their routing tables. It is important

for Whānau that the social network is fast mixing: that

is, a short random walk starting from any node should

quickly approach the stationary distribution, so that there

is roughly an equal probability of ending up at any edge

(virtual node). We test if this fast-mixing property holds

for social network graphs, extracted from Flickr, Live-

Journal, YouTube, and DBLP, which have also been used

in other studies [18, 26]. These networks correspond to

real-world users and their social connections. The Live-

Journal graph was estimated to cover 95.4% of the users

in Dec 2006, and the Flickr graph 26.9% in Jan 2007.

We preprocessed the input graphs by discarding un-

connected nodes and transforming directed edges into

undirected edges. (The majority of links were already

symmetric.) The resulting graphs’ basic properties are

shown in Table 2. The node degrees follow power law

distributions, with coefficients between 1.6 and 2 [18].

To test the fast-mixing property, we sample the distri-

bution of random walks as follows. We pick a random

starting edge i, and for each ending edge j, compute the

probability pij that a walk of length w ends at j. Com-

puting pij for all m possible starting edges i is too time-

intensive, so we sampled 100 random starting edges i and
computed pij for all m end edges j. For a fast-mixing
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Figure 6: Mixing properties of social graphs. Each line shows

a CDF of the probability that a w-step random walk ends on a

particular edge. The X axis is normalized so that the mean is 1.

network, we expect the probability of ending up at a par-

ticular edge to approach 1/m as w increases to O(log n).

Figure 6 plots the CDF of pij for increasing values of

w. To compare the different social graphs we normalize

the CDFs so that they have the same mean. Thus, for all

graphs, pij = 1/m corresponds to the ideal line at 1. As

expected, as the number of steps increases to 80, each

CDF approaches the ideal uniform distribution.

The CDFs at w = 10 are far from the ideal distribu-

tion, but there are two reasons to prefer smaller values

of w. First, the amount of bandwidth consumed scales as

w. Second, larger values of w increase the chance that

a random walk will return a Sybil node. Section 9.2 will

show that Whānau works well even when the distribution

of random walks is not perfect.

Recall from Section 4.2 that when a fast-mixing social

network has a sparse cut between the honest nodes and

Sybil nodes, random walks are a powerful tool to pro-

tect against Sybil attacks. To confirm that this approach

works with real-world social networks, we measured the

probability that a random walk escapes the honest region

of the Flickr network with different numbers of attack

edges. To generate an instance with g attack edges, we

marked random nodes as Sybils until there were at least

g edges between marked nodes and non-marked nodes,

and then removed any honest nodes which were con-

nected only to Sybil nodes. For example, for the Flickr

graph, in the instance with g = 1, 940, 689, there are

n = 1, 442, 120 honest nodes (with m = 13, 385, 439
honest edges) and 182,872 Sybil nodes. Since increasing
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Figure 7: Escape probability on the Flickr network.

the number of attack edges this way actually consumes

honest nodes, it is not possible to test the protocol against

g/n ratios substantially greater than 1.

Figure 7 plots the probability that a randomwalk start-

ing from a random honest node will cross an attack edge.

As expected, this escape probability increases with the

number of steps and with the number of attack edges.

When the number of attack edges is greater than the num-

ber of honest nodes, the adversary has convinced essen-

tially all of the system’s users to form links to its Sybil

identities. In this case, long walks almost surely escape

from the honest region; however, short walks still have

substantial probability of reaching an honest node. For

example, if the adversary controls 2 million attack edges

on the Flickr network, then each user has an average of

1.35 links to the adversary, and random walks of length

40 are 90% Sybils. On the other hand, random walks of

length 10 will return 60% honest nodes, although those

honest nodes will be less uniformly distributed than a

longer random walk.

9.2 Performance under clustering attack

To evaluateWhānau’s resistance against the Sybil attack,

we ran instances of the protocol using a range of ta-

ble sizes, number of layers, and adversary strengths. For

each instance, we chose random honest starting nodes

and measured the number of messages used by LOOKUP

to find randomly chosen target keys. Our analysis pre-

dicted that the number of messages would be O(1) as

long as g ≪ n/w. Since we used a fixed w = 10, the
number of messages should be small when the number

of attack edges is less than 10% of the number of hon-

est nodes. We also expected that increasing the table size

would reduce the number of messages.

Our simulated adversary employs a clustering attack

on the honest nodes’ finger tables, choosing all of its IDs

to immediately precede the target key. In a real-world de-

ployment of Whānau, it is only possible for an adversary

to target a small fraction of honest keys in this way: to in-

crease the number of Sybil IDs near a particular key, the

adversary must move some Sybil IDs away from other

keys. However, in our simulator, we allowed the adver-

sary to change its IDs between every LOOKUP operation:

that is, it can start over from scratch and adapt its attack

to the chosen target key. Our results therefore showWhā-
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Figure 8: Number of messages used by LOOKUP decreases as

table size increases (Flickr social network).

nau’s worst case performance, and not the average case

performance for random target keys.

Figure 8 plots the number of messages required by

LOOKUP versus table size. Since our policy is that re-

sources scale with node degree (Section 3.3), we mea-

sure table size in number of entries per social link. Each

table entry contains a key and a node’s address (finger

tables) or a key-value pair (successor and db tables).

As expected, the number of messages decreases with

table size and increases with the adversary’s power. For

example, on the Flickr network and with a table size of

10,000 entries per link, the median LOOKUP required 2

messages when the number of attack edges is 20,000, but

required 20 messages when there are 2,000,000 attack

edges. The minimum resource budget for fast lookups is

1, 000 ≈ √
n: below this table size, LOOKUP messages

increased rapidly even without any attack. Under a mas-

sive attack (g > n) LOOKUP could still route quickly,

but it required a larger resource budget of ? 10, 000.
Figure 9 shows the full data set of which Figure 8 is a

slice. Figure 9(a) shows the number of messages required

for 100% of our test lookups to succeed. Of course, most

lookups succeeded with far fewer messages than this up-

per bound. Figure 9(b) shows the number of messages re-

quired for 50% of lookups to succeed. The contour lines

for maximum messages are necessarily noisier than for

median messages, because the lines can easily be shifted

by the random outcome of a single trial. The median is a

better guideline to Whānau’s expected performance: for

a table size of 5,000 on the Flickr graph, most lookups

will succeed within 1 or 2 messages, but a few outliers

may require 50 to 100 messages.

We normalized the X-axis of each plot by the number

of honest nodes in each network so that the results from

different datasets could be compared directly. Our the-

oretical analysis predicted that Whānau’s performance

would drop sharply (LOOKUP messages would grow ex-

ponentially) when g > n/10. However, we observed

that, for all datasets, this transition occurs in the higher

range m/10 < g < m. In other words, the analytic pre-

diction was a bit too pessimistic: Whānau functions well

until a substantial fraction of all edges are attack edges.

When the number of attack edges g was below n/10,
we observed that performance was more a function of ta-
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(b) Median messages required for lookups to succeed.

Figure 9: Heat map and contours of the number of messages used by LOOKUP, versus attacker strength and table size. In the light

regions at upper left, where there are few attack edges and a large resource budget, LOOKUP succeeded using only one message. In

the dark regions at lower right, where there are many attack edges and a small resource budget, LOOKUP needed more than the retry

limit of 120 messages. Wedges indicate where g = m/w and g = m; when g ≫ m/w, LOOKUP performance degrades rapidly.

The plots’ right edges do not line up because it was not always possible to create an adversary instance with g = 10n.

ble size, which must always be at least Ω(
√

m) for Whā-

nau to function, than of g. Thus, Whānau’s performance

is insensitive to relatively small numbers of attack edges.

9.3 Layers vs. clustering attacks

Section 9.2 showed that Whānau handles clustering at-

tacks. For the plots in Figure 9, we simulated sev-

eral different numbers of layers and chose the best-

performing value for a given table size. This section eval-

uates whether layers are important for Whānau’s attack

resistance, and investigates how the number of layers

should be chosen.

Are layers important? We ran the same experiment as

in Section 9.2, but we held the total table size at a con-

stant 100,000 entries per link.We varied whether the pro-

tocol spent those resources on more layers, or on bigger

per-layer routing tables, and measured the median num-

ber of messages required by LOOKUP.

We would expect that for small-scale attacks, one layer

is best, because layers come at the cost of smaller per-

layer tables. For more large-scale attacks, more layers is

better, because layers protect against clustering attacks.

Even for large-scale attacks, adding more layers yields

quickly diminishing returns, and so we only simulated

numbers of layers between 1 and 10.

The solid lines in Figure 10 shows the results for

the clustering attack described in Section 9.2. When the

number of attack edges is small, the best performance

would be achieved by spending all resources on bigger

routing tables, mostly avoiding layers. For Flickr, layers

become important when the number of attack edges ex-

ceeds 5,000 (0.3% of n); for g > 20, 000, a constant
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Figure 10: Optimal layers versus attacker power. The resource

budget was fixed at 100K table entries per link.

number of layers (around 8) would yield the best perfor-

mance. At high attack ratios (around g/n ? 1), the data
becomes noisy because performance degrades regardless

of the choice of layers.

The dashed lines in Figure 10 show the same simu-

lation, but pitted against a naı̈ve attack: the adversary

swallows all random walks and returns bogus replies to

all requests, but does not cluster its IDs. This control

data clearly shows that multiple layers are only help-

ful against a clustering attack. The trends are clearer for

the larger graphs (Flickr and LiveJournal) than for the

smaller graphs (YouTube and DBLP). 100,000 table en-

tries is very large in comparison to the smaller graphs’

sizes, and therefore the differences in performance be-

tween small numbers of layers are not as substantial.

How many layers should nodes use? The above data

showed that layers improve Whānau’s resistance against

powerful attacks but are not helpful when the DHT is

not under attack. However, we cannot presume that nodes

know the number of attack edges g, so the number of lay-

ers must be chosen in some other way. Since layers cost

resources, we would expect the optimal number of layers

to depend on the node’s resource budget. If the number

of table entries is large compared to
√

m, then increas-

ing the number of layers is the best way to protect against

powerful adversaries. On the other hand, if the number of

table entries is relatively small, then no number of layers

will protect against a powerful attack; thus, nodes should

use a smaller number of layers to reduce overhead.

We tested this hypothesis by re-analyzing the data col-

lected for Section 9.2. For a given table size, we com-

puted the number of layers that yielded optimal perfor-

mance over a range of attack strengths. The results are

shown in Figure 11. The overall trend is clear: at small

table sizes, fewer layers is preferred, and at large table

sizes, more layers is better.
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Figure 11: Optimal layers versus resource budget. Each point

is a table size / attacker power instance. Larger points corre-

spond to multiple instances. The trend line passes through the

median point for each table size.

The optimal number of layers is thus a function of

the social network size and the resource budget, and we

presume that honest nodes know both of these values at

least approximately. Since Whānau’s performance is not

very sensitive to small changes in the number of layers, a

rough estimate is sufficient to get good performance over

a wide range of situations.

9.4 Whānau’s scalability

Whānau is designed as a one-hop DHT. We collected

simulated data to confirm that Whānau’s performance

scales asymptotically the same as an insecure one-hop

DHT such as Kelips [11]. Since we don’t have access

to a wide range of social network datasets of different

sizes, we generated synthetic social networks with vary-

ing numbers of nodes using the standard technique of

preferential attachment [1], yielding power-law degree

distributions with exponents close to 2. For each net-

work, we simulated Whānau’s performance for various

table sizes and layers, as in the preceding sections. Since

our goal was to demonstrate that Whānau reduces to a

standard one-hop DHT in the non-adversarial case, we

did not simulate any adversary.

Figure 12 plots the median number of LOOKUP mes-

sages versus table size and social network size. For a one-

hop DHT, we expect that, holding the number of mes-

sages to a constant O(1), the required table size scales

as O(
√

m): the blue line shows this predicted trend.

The heat map and its contours (black lines) show sim-

ulated results for our synthetic networks. For example,

for m = 10, 000, 000, the majority of lookups succeeded

using 1 or 2 messages for a table size of ≈ 2, 000 entries

per link. The square and triangle markers plot our four

real-world datasets alongside the synthetic networks for

comparison. While each real network has idiosyncratic
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Figure 12: Number of messages used by LOOKUP, versus sys-

tem size and table size. The heat map and contour lines show

data from synthetic networks, while the markers show that real-

world social networks fall roughly onto the same contours.

Whānau scales like a one-hop DHT.

features of its own, it is clear that the table sizes follow

the O(
√

m) scaling trend we expect of a one-hop DHT.

9.5 PlanetLab and node churn

Whānau’s example IM application runs on PlanetLab.

We performed an experiment in which we started 4000

virtual nodes, running on 400 PlanetLab nodes. This

number of virtual nodes is large enough that, with a rout-

ing table size of 200 entries per social link, most requests

cannot be served from local tables. Each node continu-

ously performed lookups on randomly-chosen keys.

We simulated node churn by inducing node failure and

recovery events according to a Poisson process. These

events occurred at an average rate of two per second, but

we varied the average node downtime. At any given time,

approximately 10% or 20% of the virtual nodes were of-

fline. (In addition to simulating 10% and 20% failures,

we simulated an instance without churn as a control.)We

expected lookup latency to increase over time as some

finger nodes became unavailable and some lookups re-

quired multiple retries. We also expected latency to go

down whenever SETUP was re-run, building new routing

tables to reflect the current state of the network.

Figure 13 plots the lookup latency and retries for these

experiments, and shows that Whānau is largely insensi-

tive to modest node churn. The median latency is approx-

imately a single network roundtrip within PlanetLab, and

increases gradually as churn increases. As expected, the

fraction of requests needing to be retried increased with

time when node churn was present, but running SETUP

restored it to the baseline.

While this experiment’s scale is too small to test Whā-

nau’s asymptotic behavior, it demonstrates two points:

(1) Whānau functions on PlanetLab, and (2) Whānau’s

simple approach for maintaining routing tables is suffi-

cient to handle reasonable levels of churn.
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Figure 13: Lookup latency and fraction of lookups which re-

quired retries on PlanetLab under various levels of node churn.

Vertical lines indicate when SETUP installed new routing ta-

bles. Under churn, the retry frequency slowly increases until

SETUP runs again, at which point it reverts to the baseline.

10 Discussion

This section discusses some engineering details and sug-

gests some improvements that we plan to explore in fu-

ture work.

Systolic mixing process. Most of Whānau’s band-

width is used to explore random walks. Therefore, it

makes sense to optimize this part of the protocol. Using

a recursive or iterative RPC to compute a random walk,

as suggested by Figure 4, is not very efficient: it uses w
messages per random node returned.

A better approach, implemented in our PlanetLab ex-

periment, is to batch-compute r walks at once. Suppose

that every node maintains a pool of r addresses of other

nodes; the pools start out containing r copies of the

node’s own address. At each time step, each node ran-

domly shuffles its pool and divides it equally amongst its

social neighbors. For the next time step, the node com-

bines the messages it received from each of its neighbors

to create a new pool, and repeats. After w such mixing

steps, each node’s pool is a randomly shuffled assortment

of addresses. If r is sufficiently large, this process ap-

proximates sending out r random walks from each node.

Very many or very few keys per node. The protocol

described in this paper handles 1 . k . m well, where

k is the number of keys per honest node. The extreme

cases outside this range will require tweaks to Whānau

to handle them. Consider the case k > m. Any DHT

requires at least k = Ω(m) resources per node just to

transmit and store the keys. This makes the task easier,

since we could use O(m) bandwidth to collect a nearly-

complete list of all other honest nodes on each honest

node. With such a list, the task of distributing successor

records is a simple variation of consistent hashing [13].



The analysis in Section 7.1 breaks down for k > m:

more than m calls to SUCCESSORS-SAMPLE will tend

to have many repeats, and thus can’t be treated as inde-

pendent trials. To recover this property, we can treat each

node as k/m virtual nodes, as we did with node degrees.

Now consider the other extreme: k < 1, i.e. only some

nodes are storing key-value records in the system. The

extreme limiting case is only a single honest node stor-

ing a key-value record into the system, i.e. k = 1/m.

Whānau can be modified to handle the case k < 1 by

adopting the systolic mixing process described above and

omitting empty random walks. This reduces to flooding

in the extreme case, and smoothly adapts to larger k.

Handling key churn. It is clear that more bandwidth

usage can be traded off against responsiveness to churn:

for example, running SETUP twice as often will result in

half the latency from key insertion to key visibility. Using

the observation that the DHT capacity scales with the ta-

ble size squared, we can improve this bandwidth-latency

tradeoff. Consider running SETUP every T seconds with

R resources, yielding a capacity of K = O(R2) keys.

Compare with this alternative: run SETUP every T/2
seconds using R/2 resources, and save the last four in-

stances of the routing tables. Each instance will have ca-

pacity K/4, but since we saved four instances, the total

capacity remains the same. The total resource usage per

unit time also remains the same, but the responsiveness

to churn doubles, since SETUP runs twice as often.

This scaling trick might seem to be getting “some-

thing for nothing”. Indeed, there is a price: the number of

lookup messages required will increase with the number

of saved instances. However, we believe it may be pos-

sible to extend Whānau so that multiple instances can be

combined into a single larger routing table, saving both

storage space and lookup time.

11 Summary

This paper presents the first efficient DHT routing pro-

tocol which is secure against powerful denial-of-service

attacks from an adversary able to create unlimited

pseudonyms. Whānau combines previous ideas — ran-

dom walks on fast-mixing social networks — with the

idea of layered identifiers. We have proved that lookups

complete in constant time, and that the size of routing

tables is only O(
√

km log km) entries per node for an

aggregate system capacity of km keys. Simulations of

an aggressive clustering attack, using social networks

from Flickr, LiveJournal, YouTube, and DBLP, show that

when the number of attack edges is less than 10% of the

number of honest nodes and the routing table size is
√

m,

most lookups succeed in only a few messages. Thus, the

Whānau protocol performs similarly to insecure one-hop

DHTs, but is strongly resistant to Sybil attacks.
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