TrInc: Small Trusted Hardware for Large Distributed Systems

Dave Levin

University of Maryland

John R. Douceur Jacob R. Lorch Thomas Moscibroda

Microsoft Research

Trust in distributed systems

Selfish Participants Malicious Participants

Trust in distributed systems

Powerful tool: Equivocation

A participant "equivocates" by sending conflicting messages to others

Byz. Generals

TrInc – NSDI 2009

Byz. Generals

Byz. Generals

- f malicious users
- If completely untrusted,
 3f+I users needed for consensus
 [Lamport et al, 1982]

Byz. Generals

- f malicious users
- If completely untrusted,
 3f+I users needed for consensus
 [Lamport et al, 1982]
- If users cannot equivocate, only 2f+1 users are needed [Chun et al, 2007]

- New design space
 - All participants have a trusted component

- New design space
 - All participants have a trusted component

- New design space
 - All participants have a trusted component

- New design space
 - All participants have a trusted component
- To be practical, the hardware must be small
 - Ubiquity via low cost
 - Tamper-resilient
 - Easier to verify a small TCB

Contributions

TrInc – A new, practical primitive for eliminating equivocation

Implementation in currently available hardware

Contributions

TrInc – A new, practical primitive for eliminating equivocation

Implementation in currently available hardware

Motivating question

What is the minimal abstraction needed to make equivocation impossible?

Motivating question

What is the minimal abstraction needed to make equivocation impossible?

A counter and a key are enough

I. Monotonically increasing counter2. Key for signing attestations

I. Monotonically increasing counter2. Key for signing attestations

Attestations bind data to counters

I. Monotonically increasing counter2. Key for signing attestations

Attestations bind data to counters

"Bind this data to counter value 36"

I. Monotonically increasing counter
2. Key for signing attestations

Attestations bind data to counters

"Bind this data to counter value 36"

TrInc – NSDI 2009

Dave Levin

I. Monotonically increasing counter
2. Key for signing attestations

Attestations bind data to counters

"Bind this data to counter value 36"

TrInc – NSDI 2009

Dave Levin

I. Monotonically increasing counter2. Key for signing attestations

Attestations bind data to counters

"Bind this data to counter value 36"

I. Monotonically increasing counter2. Key for signing attestations

Attestations bind data to counters

"Bind this data to counter value 36"

I. Monotonically increasing counter
2. Key for signing attestations

Attest(36, data)
$$\longrightarrow$$
 36 $K \longrightarrow$ 34, 36, data $>_{K}$

Attestations bind data to counters

"Bind this data to counter value 36"

TrInc – NSDI 2009

Dave Levin

TrInc Attestations

< 34, 36, data >_K

< 36, 36, nonce >_K

TrInc Attestations

Advance attestation

- Can only move to a state once
- "data" is forever bound to 36
- There was nothing bound to 35

Status attestation

- "What is your current counter?"
 - Nonces assure freshness
- There is nothing beyond 36 (yet)

< 36, 36, nonce >_K

Multiple counters

- Need multiple trusted counters
 - Systems running concurrently
 - Some systems benefit from more counters

Multiple counters

- Need multiple trusted counters
 - Systems running concurrently
 - Some systems benefit from more counters

Trinket

- Hardware that contains ≥ 1 counter is a Trinket
 - Allocates and frees counters
 - Establishes session keys

TrInc is practical

- Trusted Platform Module (TPM) is ubiquitous
- Has what we need
 - Tamper-resistance
 - Counters (currently 4)
 - Crypto
 - Small amount of storage
- It just lacks the right interface

Contributions

TrInc – A new, practical primitive for eliminating equivocation

Implementation in currently available hardware

Contributions

TrInc – A new, practical primitive for eliminating equivocation

Implementation in currently available hardware

What can TrInc do?

- Trusted append-only logs
- Prevent under-reporting in BitTorrent
- Reduces communication in PeerReview
- BFT with fewer nodes and messages
- Ensure fresh data in DHTs
- Prevent Sybil attacks

What can TrInc do?

- Trusted append-only logs
- Prevent under-reporting in BitTorrent
- Reduces communication in PeerReview
- BFT with fewer nodes and messages
- Ensure fresh data in DHTs
- Prevent Sybil attacks

What can TrInc do?

- Trusted append-only logs
- Prevent under-reporting in BitTorrent
- Reduces communication in PeerReview
- BFT with fewer nodes and messages
- Ensure fresh data in DHTs
- Prevent Sybil attacks

Append(data):

Bind new data to the end of the log

Lookup(sequence num): No equivocating on what is or is not stored

Append(data):

Bind new data to the end of the log

Lookup(sequence num):

Append(data):

Bind new data to the end of the log

Lookup(sequence num): No equivocating on what

is or is not stored

Append(data):

Bind new data to the end of the log

Lookup(sequence num): No equivocating on what is or is not stored

TrInc – NSDI 2009

Append(data):

Bind new data to the end of the log

Lookup(sequence num): No equivocating on what

is or is not stored

Trinc – NSDI 2009

Append(data):

Bind new data to the end of the log

Lookup(sequence num): No equivocating on what

is or is not stored

Append(data):

Bind new data to the end of the log

Lookup(sequence num):

Append(data):

Bind new data to the end of the log

Lookup(sequence num):

Append(data):

Bind new data to the end of the log

Lookup(sequence num):

Append(data):

Bind new data to the end of the log

Lookup(sequence num):

Untrusted storage

Append(data):

Bind new data to the end of the log

Lookup(sequence num):

Append(data):

Bind new data to the end of the log

Lookup(sequence num):

Append(data):

Bind new data to the end of the log

Lookup(sequence num):

Untrusted storage

Append(data):

Bind new data to the end of the log

Lookup(sequence num): No equivocating on what

is or is not stored

<9,10, >

Untrusted storage

Append(data):

Bind new data to the end of the log

Lookup(sequence num): No equivocating on what is or is not stored

<9,10, > Fast lookups Few hardware accesses

TrInc-A2M

- Attested Append-only Memory (A2M)
 - Stores logs in trusted storage
 - Accesses trusted storage for all methods
- A2M shown to solve
 - Byzantine fault tolerance using fewer nodes
 - SUNDR file system
 - Quorum/Update protocol

• By construction, TrInc solves these systems, too

What can TrInc do?

- Trusted append-only logs
- Prevent under-reporting in BitTorrent
- Reduces communication in PeerReview
- BFT with fewer nodes and messages
- Ensure fresh data in DHTs
- Prevent Sybil attacks

What can TrInc do?

- Trusted append-only logs
- Prevent under-reporting in BitTorrent
- Reduces communication in PeerReview
- BFT with fewer nodes and messages
- Ensure fresh data in DHTs
- Prevent Sybil attacks

Fast, users share the work

Does not have piece 2

Piece under-reporting is equivocation [SIGCOMM'08]

Yields prolonged interest from others and faster download times

Piece under-reporting is equivocation

Applying Trlnc

- What does the counter represent?
 - The number of pieces received
- To what do peers attest?
 - Their bitfield
 - The most recent piece received
- When do peers attest?
 - When they receive
 - When they sync their counters

TrInc – NSDI 2009

Macrobenchmarks

- Trlnc-BitTorrent
 - Solves piece under-reporting
- TrInc-A2M
 - Reduces hardware requirements
 - Higher throughput
- TrInc-PeerReview
 - Reduces the communication necessary to achieve fault detection

Contributions

TrInc – A new, practical primitive for eliminating equivocation

Implementation in currently available hardware

Contributions

TrInc – A new, practical primitive for eliminating equivocation

3 Implementation in currently available hardware

Implementation

- Gemalto .NET Smartcard
 - Crypto unit (RSA & 3-DES)
 - 32-bit micro-controller
 - 80 KB persistent memory
- A few dozen lines of C#
- Case studies
 - TrInc-A2M
 - TrInc-PeerReview
 - TrInc-BitTorrent

Why so slow?

- Fundamentally new application of trusted hardware
 - Typically used for bootstrapping
 - TrInc makes it intrinsic to the protocol

- It can be faster
 - There just has not been the call for it prior to TrInc

- Equivocation is a versatile and powerful
- A small amount of trust can secure a large system
- TrInc is
 - Minimal A counter and a key
 - Versatile Applies to a wide range of systems
 - Practical Uses the same components available today

TrInc speeds up A2M

TrInc speeds up A2M

27

TrInc speeds up A2M

Dave Levin

SIGCOMM'08 - BitTorrent is an Auction

28

Strategically under-report

SIGCOMM'08 - BitTorrent is an Auction

Under-reporter pulls ahead

But ultimately downloads slower

Under-reporter pulls ahead

But ultimately downloads slower

Under-reporter pulls ahead

But ultimately downloads slower

Under-reporter pulls ahead

29