A Decision-Analytic Approach for P2P Cooperation Policy Setting

G. Vakili1, Th. G. Papaioannou2, S. Khorsandi1

1 Amirkabir University of Technology
Tehran – Iran

2 Ecole Polytechnique Fédérale de Lausanne (EPFL)
Lausanne – Switzerland

NetEcon’10
Outline

- Our Motivation & Goal
- Our Approach
- System Model
- Decision-Analytic Approach
- Analysis
 - NE Analysis
- Evaluation
- Conclusion
Our Motivation & Goal

- Overall performance of P2P systems depends on resource contributions of individual peers.

- Rational peers decide on their cooperation policies according to their individual utilities.

- **Inherent conflict** among individual utilities of the rational peers results in
 - free-riding
 - unfair contribution
 - low participation

- Our goal is dealing with the inherent individual utility conflicts to improve overall performance of the system.
Our Approach

- We employ decision-theory to model cooperation policy setting of participating peers:
 - Each peer chooses its strategy according to observable strategies of the other peers.
 - Through a swarm-based iterative learning process:
 - Rational peers set their cooperation policies so as to maximize their own utility.
 - Their decisions are coordinated in a distributed manner to improve the social welfare of the system.

- The game-theoretic analysis lacks an explicit and tractable handling of the individual strategy dynamics present in the interactions among individual peers.
SYSTEM MODEL
Individual-based Lagrangian Swarm Model

- Interacting participants of a P2P system exhibit general properties of an individual based Lagrangian swarm model:
 - composed of many individual peers;
 - the interactions are based on local information exchange;
 - emergence;
 - self-organization.

- We made two modifications to adopt this model in the context of a P2P system:
 - Distributed local objectives (utility functions) are defined for individual peers.
 - The interaction of particles is represented as a non-cooperative game.
Definitions

- We assume that N peers $p_i ; i: 1, \ldots, N$ participate in the system.

- Policy (d_i)
 - a peer’s policy is its level of cooperation (a numerical assessment of the peer’s contributed resources to the system).

- Strategy (s_i)
 - the strategy of a peer reflects its decision on the change in its cooperation level (policy).

- Utility (U_i)
 - A peer's utility is determined by its strategy choices and depends on several parameters - discussed as follows.
Utility Function

- Cost and Benefit
 - the total cost for participating in the system with cooperation level of d_i will be $c_i d_i$
 - the benefit of cooperation of p_j to p_i is represented by $b_{ij} d_j$; where b_{ij} is measured (e.g.) as the inverse of latency

- Incentives for high contribution
 - it is modeled by a monotonically increasing function of the cooperation policy of a peer p_i, denoted by bc_i

- Utility:
 \[
 U_i = bc_i \sum_{j \in N} b_{ij} d_j - c_i d_i ; b_{ii} \equiv 0
 \]
DECISION-ANALYTIC APPROACH
Overall

- Observable strategies of other peers are monitored by each peer in a sequence of iterations.

- Based on this empirical evidence, each peer can decide rationally on a strategy in every iteration.

- This chain of decisions are made based on a method inspired by particle swarm optimization (PSO).

- Through this chain of decisions each participating peer concludes its final cooperation policy with respect to the other peers' behavior.
More Formally

- To maximize its expected utility U_i, each peer p_i sets its final cooperation policy through an iterative decision making process:
 - p_i monitors the strategies of the other peers in its neighborhood N_i locally and evaluates their strategies.
 - It chooses its strategy s_i^{next} in the next iteration with respect to the evaluation result and to its own experience:

 $$s_i^{\text{next}} = s_i^{\text{current}} + r_1 c_1 (d_p - d_i^{\text{current}}) + r_2 c_2 (d_n - d_i^{\text{current}})$$

 - d_p is the best previous policy of p_i and d_n denotes the best policy of the other peers in N_i.

 - Then the cooperation policy d_i of peer p_i is revised as follows:

 $$d_i^{\text{next}} = d_i^{\text{current}} + s_i^{\text{next}}$$
ANALYSIS - EVALUATION
NE Analysis

- We employ Nash equilibrium analysis to investigate the predicted strategies for the participating peers by the decision-analytic approach.

- According to [Buragohain et al. P2PComputing03] for a similar quantitative model of the system in a homogeneous setting (for all $p_i, b_{ij} = b, c_i = c$), the NE is given by:

$$d^* = \left(\frac{b(N - 1)}{2c} - 1 \right) \pm \left(\left(\frac{b(N - 1)}{2c} - 1 \right)^2 - 1 \right)^{1/2}$$

- As we numerically show:
 - The expected NE of the game is not the Pareto-optimal one.
 - The outcome derived from the proposed decision-analytic approach would make all players better-off.
The comparison of the average cooperation level

- Tendency toward Pareto efficiency
- Better outcome than NE
- Both homogeneous and heterogeneous settings evolve similarly
Convergence to a set of Pareto efficient strategy

- Fast convergence regardless of the target cooperation level
CONCLUSION
Conclusion – Future Work

- We propose a decision-analytic approach based on the modified swarm model, to set and coordinate rational decisions of the individual peers on their cooperation policies in a distributed manner.

- The resulting cooperation policies constitute the final set of decisions that maximize rational peers' utility in-line with the social welfare of the system.
 - Incentive-compatible for peers to follow

- Our approach quickly approximates a Pareto-optimal operating point of the system.

- In our future work, we will investigate information exchange mechanisms that involve incentives for neighbor truthfulness or own observation and verification.
THANK YOU FOR YOUR ATTENTION.
MORE QUESTIONS TO:

Golnaz Vakili

\texttt{g_vakili@aut.ac.ir}

Distributed Information Systems Lab, EPFL \url{http://lsir.epfl.ch}