Subscription Dynamics and Competition in Communications Markets

Shaolei Ren, Jaeok Park, and Mihaela van der Schaar

Electrical Engineering Department
University of California, Los Angeles

October 3, 2010
Outline

1. Introduction
2. Model
3. User Subscription Dynamics
 Equilibrium Analysis
 Convergence Analysis
4. Competition in Duopoly Markets
5. Illustrative Example
6. Conclusion
Overview of Communications Markets

Interaction among technology, users and service providers
How does the technology influence the users’ demand and the service providers’ revenues?

- We consider a duopoly communications market.
- Given prices, how does QoS affect the subscription decisions (or demand) of users?
- How are prices determined through competition between the service providers?
Outline

1 Introduction
2 Model
3 User Subscription Dynamics
 Equilibrium Analysis
 Convergence Analysis
4 Competition in Duopoly Markets
5 Illustrative Example
6 Conclusion
Network model

- network service providers: S_1 and S_2
- continuum model: a large number of users
Model

Service providers

- S_i: price p_i and fraction of subscribers $\lambda_i(p_i, p_{-i})$
Model

Service providers

- S_i: price p_i and fraction of subscribers $\lambda_i(p_i, p_{-i})$
- utility (revenue): $R_i(p_i, p_{-i}) = p_i \lambda_i(p_i, p_{-i})$
Service providers

- S_i: price p_i and fraction of subscribers $\lambda_i(p_i, p_{-i})$
- utility (revenue): $R_i(p_i, p_{-i}) = p_i \lambda_i(p_i, p_{-i})$

Users

- user k: $u_k = \alpha_k q_i - p_i$ if it subscribes to S_i
Service providers

- S_i: price p_i and fraction of subscribers $\lambda_i(p_i, p_{-i})$
- utility (revenue): $R_i(p_i, p_{-i}) = p_i \lambda_i(p_i, p_{-i})$

Users

- user k: $u_k = \alpha_k q_i - p_i$ if it subscribes to S_i
- α_k follows a distribution with PDF $f(\alpha)$
Model

Service providers

• S_i: price p_i and fraction of subscribers $\lambda_i(p_i, p_{-i})$
• utility (revenue): $\mathcal{R}_i(p_i, p_{-i}) = p_i \lambda_i(p_i, p_{-i})$

Users

• user k: $u_k = \alpha_k q_i - p_i$ if it subscribes to S_i
• α_k follows a distribution with PDF $f(\alpha)$

assumptions on $f(\alpha)$

• $f(\alpha) > 0$ if $\alpha \in [0, \beta]$ and $f(\alpha) = 0$ otherwise
• $f(\alpha)$ is continuous on $[0, \beta]$
Model

Service providers

• S_i: price p_i and fraction of subscribers $\lambda_i(p_i, p_{-i})$
• utility (revenue): $R_i(p_i, p_{-i}) = p_i \lambda_i(p_i, p_{-i})$

Users

• user k: $u_k = \alpha_k q_i - p_i$ if it subscribes to S_i
• α_k follows a distribution with PDF $f(\alpha)$

QoS model

• q_1 is constant
• $q_2 = g(\lambda_2)$, where $g(\lambda_2) \in (0, q_1)$ is a differentiable and non-increasing function of $\lambda_2 \in [0, 1]$
Outline

1 Introduction

2 Model

3 User Subscription Dynamics
 Equilibrium Analysis
 Convergence Analysis

4 Competition in Duopoly Markets

5 Illustrative Example

6 Conclusion
User Subscription

- Discrete-time model \(\{(\lambda_1^t, \lambda_2^t) \mid t = 0, 1, 2 \cdots \} \)

- Users' belief model and subscription decisions
 - naive (or static) expectation: every user expects that the QoS in the current period is equal to that in the previous period (i.e., \(\tilde{g}_k(\lambda_2^t) = g(\lambda_2^{t-1}) \))
 - a user subscribes to whichever NSP provides a higher (non-negative) utility
User Subscription

- Discrete-time model \(\{(\lambda^t_1, \lambda^t_2) | t = 0, 1, 2 \cdots\} \)

- Users' belief model and subscription decisions
 - naive (or static) expectation: every user expects that the QoS in the current period is equal to that in the previous period (i.e., \(\tilde{g}_k(\lambda^t_2) = g(\lambda^{t-1}_2) \))
 - a user subscribes to whichever NSP provides a higher (non-negative) utility

- Dynamics of user subscriptions
User Subscription Dynamics

User Subscription

- Discrete-time model \(\{(\lambda_1^t, \lambda_2^t) \mid t = 0, 1, 2 \cdots \} \)

- Users' belief model and subscription decisions
 - naive (or static) expectation: every user expects that the QoS in the current period is equal to that in the previous period (i.e., \(\tilde{g}_k(\lambda_2^t) = g(\lambda_2^{t-1}) \))
 - a user subscribes to whichever NSP provides a higher (non-negative) utility

- Dynamics of user subscriptions

 if \(\frac{p_1}{q_1} > \frac{p_2}{g(\lambda_2^{t-1})} \), then

\[
\lambda_1^t = h_{d,1}(\lambda_1^{t-1}, \lambda_2^{t-1}) = 1 - F \left(\frac{p_1 - p_2}{q_1 - g(\lambda_2^{t-1})} \right),
\]

\[
\lambda_2^t = h_{d,2}(\lambda_1^{t-1}, \lambda_2^{t-1}) = F \left(\frac{p_1 - p_2}{q_1 - g(\lambda_2^{t-1})} \right) - F \left(\frac{p_2}{g(\lambda_2^{t-1})} \right)
\]
User Subscription

- Discrete-time model \(\{(\lambda^t_1, \lambda^t_2) \mid t = 0, 1, 2 \cdots \} \)

- Users’ belief model and subscription decisions
 - naive (or static) expectation: every user expects that the QoS in the current period is equal to that in the previous period (i.e., \(\tilde{g}_k(\lambda^t_2) = g(\lambda^{t-1}_2) \))
 - a user subscribes to whichever NSP provides a higher (non-negative) utility

- Dynamics of user subscriptions

\[
\text{if } \frac{p_1}{q_1} \leq \frac{p_2}{g(\lambda^{t-1}_2)}, \text{ then }
\]

\[
\begin{align*}
\lambda^t_1 &= h_{d,1}(\lambda^{t-1}_1, \lambda^{t-1}_2) = 1 - F\left(\frac{p_1}{q_1}\right), \\
\lambda^t_2 &= h_{d,2}(\lambda^{t-1}_1, \lambda^{t-1}_2) = 0.
\end{align*}
\]
Equilibrium Analysis

- Stabilized fraction of subscribers will stabilize in the long run

Definition

$(\lambda_1^*, \lambda_2^*)$ is an *equilibrium* point of the user subscription dynamics in the duopoly market if it satisfies $h_{d,1}(\lambda_1^*, \lambda_2^*) = \lambda_1^*$ and $h_{d,2}(\lambda_1^*, \lambda_2^*) = \lambda_2^*$.
Equilibrium Analysis

- Stabilized fraction of subscribers will stabilize in the long run

Proposition (uniqueness and existence of \((\lambda_1^*, \lambda_2^*)\))

For any non-negative price pair \((p_1, p_2)\), there exists a unique equilibrium point \((\lambda_1^*, \lambda_2^*)\) of the user subscription dynamics in the duopoly market. Moreover, \((\lambda_1^*, \lambda_2^*)\) satisfies

\[
\begin{align*}
\lambda_1^* &= 1 - F \left(\frac{p_1}{q_1} \right), \quad \lambda_2^* = 0, \quad \text{if} \quad \frac{p_1}{q_1} \leq \frac{p_2}{g(0)}, \\
\lambda_1^* &= 1 - F \left(\theta_1^* \right), \quad \lambda_2^* = F \left(\theta_1^* \right) - F \left(\theta_2^* \right), \quad \text{if} \quad \frac{p_1}{q_1} > \frac{p_2}{g(0)},
\end{align*}
\]

where \(\theta_1^* = (p_1 - p_2)/(q_1 - g(\lambda_2^*))\) and \(\theta_2^* = p_2/g(\lambda_2^*)\).
$q_1 = 2.5$, $g(\lambda_2) = 1.2e^{-0.5\lambda_2}$, and α is uniformly distributed on $[0, 1]$, i.e., $f_\alpha(\alpha) = 1$ for $\alpha \in [0, 1]$.
Convergence of User Subscription Dynamics

- Convergence is not always guaranteed
Convergence of User Subscription Dynamics

- Convergence is not always guaranteed

Example: when the QoS of NSP S_2 degrades fast w.r.t. the fraction of subscribers

1. suppose that only a small fraction of users subscribe to NSP S_2 at period t and each subscriber obtains a high QoS
2. a large fraction of users subscribe at period $t+1$, which will result in a low QoS at period $t+1$
3. a small fraction of subscribers at period $t+2$
Convergence of User Subscription Dynamics

- Convergence is not always guaranteed

Theorem

For any non-negative price pair \((p_1, p_2)\), the user subscription dynamics converges to the unique equilibrium point starting from any initial point \((\lambda_1^0, \lambda_2^0) \in \Lambda\) if

\[
\max_{\lambda_2 \in [0,1]} \left\{ -\frac{g'(\lambda_2)}{g(\lambda_2)} \cdot \frac{q_1}{q_1 - g(\lambda_2)} \right\} < \frac{1}{K},
\]

where \(K = \max_{\alpha \in [0,\beta]} f(\alpha)\alpha\).
Illustration of Oscillation & Convergence

\[
\lambda_2: g(\lambda_2) = e^{-2\lambda_2}
\]

\[
\lambda_2: g(\lambda_2) = e^{-0.8\lambda_2}
\]

\[t = 2 \]
Illustration of Oscillation & Convergence

$t = 3$

\[
\lambda_2: g(\lambda_2) = e^{-2\lambda_2}
\]

\[
\lambda_2: g(\lambda_2) = e^{-0.8\lambda_2}
\]
Illustration of Oscillation & Convergence

\[\lambda_2(t) = e^{-\lambda_2 t} \]

\[\lambda_2(t) = e^{-0.8\lambda_2 t} \]

\[t = 4 \]
Illustration of Oscillation & Convergence

\[\lambda_2(t) = e^{-0.8\lambda_2} \]

\[\lambda_2(t) = e^{-2\lambda_2} \]

\[t = 5 \]
Illustration of Oscillation & Convergence

\[\lambda_2: g(\lambda_2) = e^{-0.8\lambda_2} \]

\[\lambda_2: g(\lambda_2) = e^{-2\lambda_2} \]

\[t = 6 \]
Illustration of Oscillation & Convergence

\[\lambda_2: g(\lambda_2) = e^{-2\lambda_2} \]

\[\lambda_2: g(\lambda_2) = e^{-0.8\lambda_2} \]

\[t = 7 \]
Illustration of Oscillation & Convergence

\[\lambda_2: g(\lambda_2) = e^{-2\lambda_2} \]

\[\lambda_2: g(\lambda_2) = e^{-0.8\lambda_2} \]

\[t = 15 \]
Outline

1. Introduction
2. Model
3. User Subscription Dynamics
 Equilibrium Analysis
 Convergence Analysis
4. Competition in Duopoly Markets
5. Illustrative Example
6. Conclusion
We model competition between the NSPs using Cournot competition.

- each NSP chooses the fraction of subscribers independently
- prices are determined such that the equilibrium market shares equate the chosen quantities
We model competition between the NSPs using Cournot competition. Each NSP chooses the fraction of subscribers independently. Prices are determined such that the equilibrium market shares equate the chosen quantities.

\[G_C = \{ S_i, R_i(\lambda_1, \lambda_2), \lambda_i \in [0, 1) \mid i = 1, 2 \} \]
We model competition between the NSPs using Cournot competition.

- each NSP chooses the fraction of subscribers independently
- prices are determined such that the equilibrium market shares equate the chosen quantities

\[\mathcal{G}_C = \{ S_i, R_i(\lambda_1, \lambda_2), \lambda_i \in [0, 1) \mid i = 1, 2 \} \]

\((\lambda_1^{**}, \lambda_2^{**})\) is a (pure) NE of \(\mathcal{G}_C\) (or a Cournot equilibrium) if it satisfies

\[R_i(\lambda_i^{**}, \lambda_{-i}^{**}) \geq R_i(\lambda_i, \lambda_{-i}^{**}), \forall \lambda_i \in [0, 1), \forall i = 1, 2. \]
Existence of NE

Lemma

Suppose that $f(\cdot)$ is non-increasing on $[0, \beta]$. Let $\tilde{\lambda}_i(\lambda_{-i})$ be a market share that maximizes the revenue of NSP S_i provided that NSP S_{-i} chooses $\lambda_{-i} \in [0, 1)$, i.e., $\tilde{\lambda}_i(\lambda_{-i}) \in \arg\max_{\lambda_i \in [0,1)} R_i(\lambda_i, \lambda_{-i})$. Then $\tilde{\lambda}_i(\lambda_{-i}) \in (0, 1/2]$ for all $\lambda_{-i} \in [0, 1)$, for all $i = 1, 2$. Moreover, $\tilde{\lambda}_i(\lambda_{-i}) \neq 1/2$ if $\lambda_{-i} > 0$, for $i = 1, 2$.
Existence of NE

Lemma

Suppose that $f(\cdot)$ is non-increasing on $[0, \beta]$. Let $\tilde{\lambda}_i(\lambda_{-i})$ be a market share that maximizes the revenue of NSP S_i provided that NSP S_{-i} chooses $\lambda_{-i} \in [0, 1)$, i.e., $\tilde{\lambda}_i(\lambda_{-i}) \in \arg\max_{\lambda_i \in [0, 1)} R_i(\lambda_i, \lambda_{-i})$. Then $\tilde{\lambda}_i(\lambda_{-i}) \in (0, 1/2]$ for all $\lambda_{-i} \in [0, 1)$, for all $i = 1, 2$. Moreover, $\tilde{\lambda}_i(\lambda_{-i}) \neq 1/2$ if $\lambda_{-i} > 0$, for $i = 1, 2$.

• Implication
 • when the strategy space is specified as $[0, 1)$ and $f(\cdot)$ satisfies the non-increasing property, strategies $\lambda_i \in \{0\} \cup (1/2, 1)$ is strictly dominated for $i = 1, 2$
 • if a NE $(\lambda_1^*, \lambda_2^*)$ of \tilde{G}_C exists, then it must satisfy $(\lambda_1^*, \lambda_2^*) \in (0, 1/2)^2$
Existence of NE

Theorem

Suppose that $f(\cdot)$ is non-increasing and continuously differentiable on $[0, \beta]$. If $f(\cdot)$ and $g(\cdot)$ satisfy some conditions (Eqn. 18 and Eqn. 19 in the paper), then the game \tilde{G}_C has at least one NE.
Corollary

Suppose that the users’ valuation of QoS is uniformly distributed, i.e., \(f(\alpha) = \frac{1}{\beta} \) for \(\alpha \in [0, \beta] \). If \(g(\lambda_2) + \lambda_2 g'(\lambda_2) \geq 0 \) for all \(\lambda_2 \in [0, 1/2] \), then the game \(G_C \) has at least one NE.

- Interpretation
 - if the elasticity of the QoS provided by NSP \(S_2 \) with respect to the fraction of its subscribers is no larger than 1 (i.e., \(-[g'(\lambda_2)\lambda_2/g(\lambda_2)] \leq 1 \)), the Cournot competition game with the strategy space \([0, 1)\) has at least one NE.
 - the condition is analogous to the sufficient conditions for convergence in that it requires that the QoS provided by NSP \(S_2 \) cannot degrade too fast with respect to the fraction of subscribers.
Outline

1. Introduction

2. Model

3. User Subscription Dynamics
 Equilibrium Analysis
 Convergence Analysis

4. Competition in Duopoly Markets

5. Illustrative Example

6. Conclusion
Figure: Dynamics of market shares under the best-response dynamics. Solid: $g(\lambda_2) = 1 - \frac{\lambda_2^2}{8}$; dashed: $g(\lambda_2) = 1 - \frac{\lambda_2^2}{2}$.
Figure: Iteration of revenues under the best-response dynamics. Solid: $g(\lambda_2) = 1 - \frac{\lambda_2}{8}$; dashed: $g(\lambda_2) = 1 - \frac{\lambda_2}{2}$.
Outline

1. Introduction
2. Model
3. User Subscription Dynamics
 Equilibrium Analysis
 Convergence Analysis
4. Competition in Duopoly Markets
5. Illustrative Example
6. Conclusion
Conclusion

Study the impacts of technologies on the user subscription dynamics

- constructed the dynamics of user subscription based on myopic updates
- showed that the existence of a unique equilibrium point of the user subscription dynamics
- provided a sufficient condition for the convergence of the user subscription dynamics: the QoS provided by NSP S_2 should not degrade too fast as more users subscribe
Conclusion

Study the impacts of technologies on the user subscription dynamics

- constructed the dynamics of user subscription based on myopic updates
- showed that the existence of a unique equilibrium point of the user subscription dynamics
- provided a sufficient condition for the convergence of the user subscription dynamics: the QoS provided by NSP S_2 should not degrade too fast as more users subscribe

Study the impacts of technologies on competition between the NSPs

- modeled the NSPs as strategic players in a non-cooperative Cournot game
- provided a sufficient condition that ensures the existence of at least one NE of the game
Selected References

Related Publications

Convergence of User Subscription Dynamics

Proof.

1. Show that

\[
\| h_d(\lambda_1, a, \lambda_2, a) - h_d(\lambda_1, b, \lambda_2, b) \|_\infty = K \left[-\frac{g'(\lambda_2, c)}{g(\lambda_2, c)} \cdot \frac{q_1}{q_1 - g(\lambda_2, c)} \right] |\lambda_2, a - \lambda_2, b| \\
\leq \kappa_d \|\lambda_a - \lambda_b\|_\infty.
\]

where \(\kappa_d = K \cdot \max_{\lambda_2 \in [0, 1]} \left\{ \left[-\frac{g'(\lambda_2)}{g(\lambda_2)}\right] \cdot \left[\frac{q_1}{q_1 - g(\lambda_2)}\right] \right\} \)
Convergence of User Subscription Dynamics

Proof.

1. Show that

\[
\| h_d(\lambda_1, a, \lambda_2, a) - h_d(\lambda_1, b, \lambda_2, b) \|_\infty = K \left[- \frac{g'(\lambda_2, c)}{g(\lambda_2, c)} \cdot \frac{q_1}{q_1 - g(\lambda_2, c)} \right] |\lambda_2, a - \lambda_2, b| \\
\leq \kappa_d \|\lambda_a - \lambda_b\|_\infty .
\]

where \(\kappa_d = K \cdot \max_{\lambda_2 \in [0,1]} \left\{ \left[- \frac{g'(\lambda_2)}{g(\lambda_2)} \right] \cdot \frac{q_1}{q_1 - g(\lambda_2)} \right\} \)

2. If \(\max_{\lambda_2 \in [0,1]} \left\{ - \frac{g'(\lambda_2)}{g(\lambda_2)} \cdot \frac{q_1}{q_1 - g(\lambda_2)} \right\} < \frac{1}{K} \), then the mapping is contraction!