Trade & Cap: A Customer-Managed, Market-Based System for Trading Bandwidth Allowances at a Shared Link

Azer Bestavros
Computer Science Department
Boston University

Joint work with
Jorge Londono (BU/Pontificia Bolivariana)
Nikos Laoutaris (BU/Telefonica)

Usenix/ACM NetEcon'10, Vancouver, Canada
October 3, 2010

Today's last mile

The perils of the fixed pricing model

- It's here to stay; metered pricing rejected
- Implications:
 - Customer has no incentive to save bandwidth
 - ISP cost depends on peak demand – 95/5 rule
 - Reigning in bandwidth hogs is incompatible with Net Neutrality

- Must devise mechanisms that take ISPs out of the "traffic shaping" business

DSLAM "last-mile" architecture

Traffic shaping done at BRAS

Solution: Create a marketplace

- Recognize the two types of user traffic:
 - Reserved Traffic (RT)
 - For interactive browsing, VoIP, messaging, gaming, ...
 - Limited bandwidth; highly sensitive to response time
 - Fluid Traffic (FT)
 - P2P, Network backup, Netflix/software downloads, ...
 - Open-ended bandwidth; less sensitive to response time

- Create a marketplace:
 1. Give users rights to DSLAM bandwidth, and
 2. Let users trade RT/FT allocations over time

The Marketplace

- Each user gets a fixed budget per epoch
 - Budget proportional to level of service
 - An epoch is a fixed number of time-slots, e.g., 1 day = 288 5-min slots

- Trade & Cap
 - User engages in a pure strategies game that yields a schedule for its RT bandwidth
 - User acquires as much FT bandwidth as its remaining budget would allow
Trading Phase: Strategy Space

- **Session:**
 - An RT session is the sequence of slots during which an RT application is active.

- **Slack:**
 - User may have flexibility in scheduling RT sessions; slack specifies the number of slots that an RT session is allowed to be shifted back/forth.

- **Strategy Space:**
 - The set of all possible arrangements of RT sessions within allowable slack define the strategy space for a user.

Trading Phase: Cost Function

- Let x_{ik} be the bandwidth used in slot k by a chosen RT session schedule for user i.
- The cost incurred by user i is given by:
 \[
 c_i = \sum_{k \text{ slots}} x_{ik} \cdot U_k = \sum_{k \text{ user}} \left(\sum_{j \text{ users}} x_{jk} i \right).
 \]
- Cost of user i depends on the choices made by other users – hence the game!

Trading Phase: Illustration

Cost(User 2) = 6

Trading Phase: Best Response

- BR of user i is a schedule of RT sessions that minimizes its cost c_i.
- Computing BR is NP-hard, equivalent to solving a generalized knapsack problem.
- Dynamic programming solution is pseudo-polynomial in the product of the number of sessions and number of slots.
- Scales well for all practical settings – 100s of users and 100s of slots.

Trading Phase: Findings

- Provably converges to Nash Equilibrium, even in presence of constraints.
- For n users, Price of Anarchy is n, but in practice below 2, especially for $n > 10$.
- Experimentally, large reduction of peak utilization, even with small flexibility.
Capping Phase: Best Response

BR of user \(i \) is to maximize total FT allocation

\[
W_i = \sum_{j=1}^{\text{slots}} W_{jk} \text{subject to the budget constraint}
\]

\[
\sum_{j=1}^{\text{slots}} w_j \left(U_0 + \sum_{j=1}^{\text{slots}} w_j \right) = B_i - c_i
\]

Capping Phase: Budget

Let \(l \) be some desirable upper bound on the total traffic per slot

The ISP sets a target capacity \(C = V/R \), where \(R \geq l \) reflects its “resistance” to traffic

The ISP allocates \(C \) in some proportion (e.g., equally) to all \(n \) users over all slots

This constitutes the budget \(B \) assigned to a user over an epoch \(T \)

\[
B = \frac{C}{n} T
\]

Capping Phase: Findings

- Locally computing BR is efficient using Lagrange Multipliers method
- Provably, converges to a unique global (social) optimum that maximizes the FT allocations of all users (thus could be done centrally by ISP)
- Experimentally, smoothes the aggregate RT+FT traffic to any desirable level controlled by the resistance parameter \(R \)

Trade & Cap: Implementation

- On Client Side (e.g., DSL Modem):
 + Strategic agent to execute Trade & Cap
 + Operational service to profile, classify, and shape

- ISP Side (e.g., DSLAM or BRAS):
 + Support exchange between strategic agents
 + Enforce total traffic/slot/user from Trade & Cap

Trade & Cap: Implementation notes

- User Input:
 - As simple as checking box to join marketplace, and as elaborate as micromanaging RT slacks
 - May set a fraction of “budget” as insurance

- Client-side Profiler:
 - May be explicitly controlled by applications (or user settings)

- Client-side Traffic Shaper:
 - Work-conserving (not reservation based) Linux Hierarchical Token Bucket (HTB)
 - Allows FT to use underutilized RT bandwidth
Experimental Evaluation

- **Workload**
 - Derived from WAN traces of MAWI project†
 - Identify users from volume and direction of flows to known ports (e.g., most traffic destined to port 80)
 - Identify user RT sessions using thresholds on per-IP traffic intensities over time
 - Slack introduced using various models (e.g., fixed, proportional, etc.)

† Reported results are negatively impacted by less-than-ideal (atypical) trace.

Trading Phase: Experimental PoA

- Over 5 slots
- Over 10 slots

Theoretical PoA is \(n \) but not in practice

Trading Phase: Smoothing effect

- **Value proposition to ISPs**
 - Max Slack
 - Reduction in 95%
 - | Max Slack | Reduction in 95% |
 - | 3 | 15% |
 - | 6 | 24% |
 - | 12 | 31% |

Trading Phase: Smoothing effect

- **Value proposition to ISPs**
 - Max Slack
 - Reduction in 95%
 - | Max Slack | Reduction in 95% |
 - | 3 | 15% |
 - | 6 | 24% |
 - | 12 | 31% |

Trade & Cap: Flexibility pays off!

- **Value proposition to customers**

Trade & Cap

- **A win-win for ISPs and customers**

Trade & Cap: Beyond DSLAMs

- **Trade & Cap is a general mechanism**
 - It can be used to coordinate how a shared resource is used by selfish parties who are not subject to the "pay as you go" model – e.g., "fixed pricing"

- **Examples**
 - Coordinating consumption of "reserved" versus "fluid" (CPU/network) capacities of VMs sharing a single host
 - Coordinating "reserved" versus "fluid" bandwidth utilization by multiple ISP customers (e.g., enterprises)
Selfish Resource Packing Problems

- **Shared bandwidth arbitration**
 - Trade & Cap
 - A temporal packing game

- **Cloud resource acquisition**
 - Colocation Games
 - A spatial packing game

Colocation Games

08:00 am / Amazon $3

09:00 am / Amazon $3

10:00 am / Amazon $2

11:00 am / Amazon $2

Conclusion

- In many settings, resource management can only be seen as a strategic game among rational peers.
- By setting up the right mechanism, one can ensure convergence and efficiency.
- New services are needed to support strategic and operational aspects of these mechanisms.

→ **Trade & Cap** is an example of such mechanisms

- It coordinates the shared use of a resource by trading in “rights to quality” for “volume”
- It has been implemented in a last-mile setting as a proof of concept with very promising performance.

Publications

- "netEmbed: A service for embedding distributed applications (Demo)". Londono and Bestavros. ACM/Usenix Middleware’07.
- "netEmbed: A resource allocation service for distributed applications". Londono and Bestavros. IEEE/ACM IPDPS’08.
- "Colocation games with application to distributed resource management". Londono, Bestavros, and Teng. USENIX HotCloud’09.
- "Colocation as a Service: Strategic & operational cloud colocation services". Ishakian, Sweha, Londono, and Bestavros. IEEE HICCA’10.

http://csr.bu.edu/cc