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ABSTRACT 

Ubiquitous connectivity on mobile devices will enable numerous 
new applications in healthcare and multimedia. We set out to 
check how close we are towards ubiquitous connectivity in our 
daily life. The findings from our recent field-collected data from 
an urban university population show that while network 
availability is decent, the energy cost of network interfaces poses 
a great challenge. Based on our findings, we propose to leverage 
the complementary strength of Wi-Fi and cellular networks by 
choosing wireless interfaces for data transfers based on network 
condition estimation. We show that an ideal selection policy can 
more than double the battery lifetime of a commercial mobile 
phone, and the improvement varies with data transfer patterns and 
Wi-Fi availability.  

We formulate the selection of wireless interfaces as a 
statistical decision problem. The key to attaining the potential 
battery improvement is to accurately estimate Wi-Fi network 
conditions without powering up its network interface. We explore 
the use of different context information, including time, history, 
cellular network conditions, and device motion, for this purpose. 
We consequently devise algorithms that can effectively learn from 
context information and estimate the probability distribution of 
Wi-Fi network conditions. Simulations based on field-collected 
traces show that our algorithms can improve the average battery 
lifetime of a commercial mobile phone for a three-channel 
electrocardiogram (ECG) reporting application by 39%, very 
close to the theoretical upper bound of 42%. Finally, our field 
validation of our most simple algorithm demonstrates a 35% 
improvement in battery lifetime. 

Categories and Subject Descriptors 

C.2.1 [Computer-Communication Networks]:  Network  Archi-
tecture and Design  

C.2.5 [Computer-Communication Networks]:  Local and Wide-
Area Networks  

General Terms 

Measurement, Performance, Design, Experimentation, Human 
Factors 

 

Keywords 

Energy-efficient wireless, multiple wireless interfaces, context-
for-wireless 

1. INTRODUCTION 

Emerging mobile applications in healthcare and multimedia 
demand ubiquitously available wireless network connectivity. 
Despite of the wide deployment of 2.5G & 3G cellular networks 
and an increasing number of Wi-Fi hot-spots, it is still an open 
question how close we are towards achieving ubiquitous 
connectivity in our everyday life. In this work, we present our 
findings from our recent field collected data about wireless 
network availability and energy cost, and investigate context-
based Wi-Fi estimation for energy-efficient wireless data transfer. 

As a reality check and case study, we gathered field data 
about cellular and Wi-Fi networks through participants from the 
Rice community in Houston, Texas, a major US urban area from 
September 2006 to February 2007. Our data showed a bright 
picture regarding network availability: on average, 99% and 49% 
of our participants’ everyday life was under cellular and 
accessible Wi-Fi network, respectively. However, the reality 
about the energy cost and battery lifetime is not as bright. For 
example, the data transfer for a three-channel ECG reporting 
application will reduce the battery lifetime of a commercial 
mobile phone to below a quarter of the original. 

Our approach towards energy-efficient ubiquitous connecti-
vity is based upon the complementary energy profiles of Wi-Fi 
and cellular network interfaces. Compared with Wi-Fi, cellular 
networks require much lower power to stay connected but incur a 
much higher energy per MB transfer. Our solution is to employ 
Wi-Fi to improve the energy efficiency for cellular data transfer. 
However, unlike cellular networks, Wi-Fi has limited availability 
and its network interface needs to remain powered-off due to its 
overwhelming power consumption. The key challenge is to 
estimate whether attempting a Wi-Fi connection is worthwhile, in 
terms of energy. This in turn requires estimating Wi-Fi network 
conditions without powering on the Wi-Fi interface.  

To address this challenge, we explore the use of different 
context information including time, history, cellular network 
conditions, and device motion, to estimate Wi-Fi network 
conditions, which we call Context-for-Wireless. We devise 
effective algorithms to learn the probability distribution of Wi-Fi 
network conditions from the context information. With the 
probability distribution, we formulate the data transfer through 
multiple wireless interfaces as a statistical decision problem. We 
validate our solutions through both trace-based simulation and 
field trials. For the ECG reporting application, our most effective 
estimation algorithm improves the battery lifetime of a 
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commercial mobile phone by 39%, close to the theoretical upper 
bound of 42%. Our field validation for the same application and 
our most simple estimation algorithm showed a 35% improvement 
in battery lifetime. 

We have made the following contributions in this work: 

• To the best of our knowledge, we presented the first reality 
check of network availability and the energy cost of 
ubiquitous connectivity in people’s everyday life. 

• We studied the use of Wi-Fi networks to improve the energy 
efficiency of cellular networks. We offered a theoretical 
analysis on data transfer through multiple wireless interfaces. 
Based on our power measurements on a commercial mobile 
phone, we provided the theoretical upper bound of energy 
savings by opportunistically selecting between the Wi-Fi and 
cellular interfaces. 

• We investigated various context-sensitive algorithms to 
estimate Wi-Fi network conditions (Context-for-Wireless). 
The estimated network condition is used to minimize the 
energy consumption of data transfers. Our measurement and 
field evaluation showed that our estimation algorithms can 
achieve energy savings close to the theoretical upper bound. 

The rest of the paper is organized as follows. In Section 2, we 
provide the background for our study and discuss related work. In 
Section 3, we describe our experiments and field studies and 
present our findings. In Section 4, we formulate data transfer 
through multiple wireless interfaces as a statistical decision 
problem, present a theoretical analysis, and offer a suite of 
context-sensitive algorithms to estimate network conditions. We 
validate our algorithms through a real field test with a mobile 
healthcare application in Section 5. We discuss our study in 
Section 6 and address related work in Section 7. Finally, we 
conclude in Sections 8. 

2. BACKGROUND 

In addition to traditional applications, such as email and web 
browsing, emerging applications in mobile healthcare, 
multimedia, and Web 2.0 have created an insatiable appetite for 
ubiquitous wireless data. Emerging mobile healthcare applications  
[19, 22] seek to collect health information, via body-worn or 
implanted sensors, and deliver health-promoting messages in situ 
and throughout people’s everyday life. Many mobile healthcare 
applications depend on ubiquitous wireless connectivity from a 
mobile device for reporting health data and delivering messages in 
time. More importantly, they require a broad range of data size 
and allowable transfer latencies [5, 13]. The increasing 
information capturing and processing capabilities of mobile 
devices, especially mobile phones, enables users to produce and 
consume multimedia data in a pervasive fashion. The desire to 
document our life and share our experience has created 
multimedia content for Web 2.0 applications, e.g. video blogging 
and YouTube. Compared with mobile healthcare applications, 
multimedia contents impose a much larger data size but may 
tolerate larger latencies. The need for energy efficient ubiquitous 
connectivity that can address a broad range of data size and 
latency requirements has never been as urgent as it is today. 

Indeed, cellular networks are becoming universal. According 
to the GSM Association [2], there are over 2.5 billion global 
mobile phone users as of October 2006, accounting for 40% of the 
world population. Moreover, 80% of the world population is 

covered by cellular networks, double that of year 2000. As a 
result, the deployment of 2.5G/3G data services has the potential 
to enable an unprecedented portion of the world population with 
increasingly ubiquitous wireless Internet access. The effective 
expansion of cellular network coverage roots in that it is a 
wireless metro-area technology and each base station covers a 
relatively large area. However, the potential distance between a 
mobile phone and its base station limits the achievable energy 
efficiency for data transfers.  

Shorter range wireless networks are also increasingly 
available, especially in urban, residential, and business settings. 
Wi-Fi, a wireless local-area network (WLAN) technology, has 
seen rapid expansion. It is estimated that there are more than 14 
million Wi-Fi access points in US homes [8].  Several major US 
cities have announced plans to deploy city-wide Wi-Fi networks. 
Compared with cellular networks, Wi-Fi still has very limited 
availability. However, its relative short range enables it to have a 
much higher data rate and lower energy per MB data transfer, 
compared to cellular. Therefore, to achieve energy-efficient 
ubiquitous wireless connectivity, it is important to combine the 
strength of both networks, as is the focus of this work. 

3. REALITY CHECK 

In order to check how close we are toward ubiquitous connectivity 
in our everyday life, over six months, we have gathered network 
data from a number of mobile users, and obtained the energy 
profiles of wireless interfaces on multiple mobile phones through 
measurement. We next present our findings. 

3.1 Experimental Setup  

We have used multiple HTC Wizard PDA phones for our data 
collection. The HTC Wizard is commercially available under a 
variety of brands, including T-Mobile MDA and Cingular 8125. It 
is a Windows Mobile 5.0 GSM phone with integrated 802.11b and 
is capable of EDGE data connectivity. It has a battery capacity of 
1250mAh at 3.7 volts.  

We have developed logging software to record various 
network characteristics with minimal intrusion to the normal 
phone operation. We have converted eleven HTC Wizards into 
experimental mobile phones by installing our logging software. 

14 volunteers from the Rice campus participated in our data 
gathering. They carried around our experimental phones for at 
least three weeks and could opt to use their own SIM card on the 
phone. We requested all participants to carry the phone as they 
would carry their own phone. We interviewed each participant 
regularly to document any significant diversion from their daily 
activities, for example, travels and forgetting carrying the phone. 
Our participants are described in Table 1. 

3.1.1 Rate Logger: Measuring Data Rates 

Our first logging software, called Rate Logger, measures Wi-Fi 
and cellular data rates (both uplink and downlink), round-trip 
latencies, and signal strength, every five minutes. When a network 
is available, Rate Logger will attempt to send and receive a 
specific amount of data to and from our lab server using HTTP 
POST and GET. The lab server is a Windows PC on Rice campus 
network with a static IP address. We used transfer sizes of 20KB 
for cellular and 200KB for Wi-Fi. We found those sizes adequate 
after testing approximately one thousand cellular transfers of 5, 
20, and 80 KB, and Wi-Fi transfers of 50, 200, and 800 KB.  If a 
transfer successfully finishes, Rate Logger will record the data 
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transfer time and round-trip latency. If the connection is dropped 
before the transfer could finish or no response is received from the 
server, Rate Logger records the transfer as a failed attempt. We 
define the transfer success rate as the percentage of successful 
transfers to all attempted transfers. 

The first version of Rate Logger records the cellular and Wi
Fi signal strength reported by the operating system, Windows 
Mobile. Windows provides cellular signal strength in the form of 
a “raw signal strength” integer between 0 and 100, instead of the 
actual signal strength in dBm. Even worse, the Windows on our 
HTC Wizards only reports a limited number of discrete values 
between 0 and 100. It also incorrectly reports Wi
strength. We later upgraded our software to record the driver
reported signal strength levels (in dBm), in addition to the 
Windows-reported ones. However, the majority of our Rate 
Logger measurements only had Windows-reported signal
strength. Therefore, we created a lookup table based on the
collected by the second version, and converted the Windows
reported signal strength from the traces collected b
version to their actual levels in dBm. Because Windows reported 
cellular signal strength above -80 dBm as 100 (maximum)
treat all that cellular signal levels above -80 dBm as -80 dBm

In Experiment A, we installed Rate Logger on the phones 
P1 and P2, who have unlimited data plans from Cingular and T
Mobile, respectively. We used the participants as sampling too

to measure data rates for the different signal strength
encountered. We logged them for approximately one month.

3.1.2 Tower Logger: Measuring Network Conditions 

Our second logging software, called Tower Logger, measures 
network availability and signal levels, and context information
records the cell tower ID, signal strength, and channel of the 

Table 1. Information about data collection participants

Participant Profession Cellular carrier Comments

P1 Faculty Cingular Multiple trips out of town

P2 Grad T-Mobile Lives close to campus

P3 Grad Cingular 

P4 Undergrad Cingular Lives on campus

P5 Undergrad Cingular Lives on campus

P6 Staff Cingular Multiple trips out of town

P7 Grad Cingular 

P8 Grad Cingular Lives close to campus

P9 Grad T-Mobile 

P10 Grad Cingular Lives close to campus

P11 Grad T-Mobile Lives close to campus

P12 Grad T-Mobile 

P13 Grad T-Mobile Lives close to 

P14 Undergrad Cingular 

 

 

trip latency. If the connection is dropped 
or no response is received from the 

a failed attempt. We 
as the percentage of successful 

lular and Wi-
reported by the operating system, Windows 

Mobile. Windows provides cellular signal strength in the form of 
a “raw signal strength” integer between 0 and 100, instead of the 

, the Windows on our 
orts a limited number of discrete values 

Wi-Fi signal 
r software to record the driver-

addition to the 
the majority of our Rate 

reported signal 
up table based on the traces 

the second version, and converted the Windows-
collected by the first 

Because Windows reported 
80 dBm as 100 (maximum), we 
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e installed Rate Logger on the phones for 
have unlimited data plans from Cingular and T-

sampling tools 
different signal strength they 

We logged them for approximately one month. 

Tower Logger: Measuring Network Conditions  

ogger, measures 
context information. It 

ID, signal strength, and channel of the 

currently-associated GSM cell and those of up to 6 other visible 
cells every 30 seconds. It also records the unique 
Set Identifier (BSSID), signal strength and the 
all visible Wi-Fi access points. With an extra sensor board, 
Logger can also record motion information 
developed the sensor board based on the 
platform [1], which can be placed in the phone battery 
compartment with a cover from a larger battery 
directly powered by the phone battery. The sensor board 
continuously samples an on-board three-axis 
32Hz per channel. The data is buffered by the sensor 
collected by the phone every 30 seconds.  

 

  

Figure 1. An HTC Wizard with the sensor board in its battery 

compartment (left) and an opened battery

measurement (right) 

 

In Experiment B, we installed Tower Logger on the phones of 
all 14 participants. Participants P1, P2, and P3 were given phones 
equipped with the sensor board.  

. Information about data collection participants 

Comments Length 

(weeks) 
# Cell towers 

observed 
# Wi-Fi Access points observed

Preferred Preferred + 

unencrypted

Multiple trips out of town 4 497 113 416

Lives close to campus 4 349 224 398

 4 427 136 258

Lives on campus 4 445 713 982

Lives on campus 4 701 713 1226

Multiple trips out of town 3 968 113 310

 3 706 96 210

Lives close to campus 4 606 626 1300

 4 287 490 913

Lives close to campus 4 269 394 604

Lives close to campus 4 748 599 980

 4 963 499 1011

Lives close to campus 4 922 628 1072

 4 248 596 972

up to 6 other visible 
also records the unique Basic Service 

the security property of 
With an extra sensor board, Tower 

information of the phone. We 
the Rice Orbit sensor 

placed in the phone battery 
battery (Figure 1) and 

directly powered by the phone battery. The sensor board 
axis accelerometer at 

fered by the sensor board and 

 

Figure 1. An HTC Wizard with the sensor board in its battery 

pened battery for power 

In Experiment B, we installed Tower Logger on the phones of 
participants. Participants P1, P2, and P3 were given phones 

Fi Access points observed 

Preferred + 

unencrypted 

All 

416 1063 

398 703 

258 456 

982 1397 

1226 2048 

310 846 

210 477 

1300 2440 

913 1627 

604 852 

980 1537 

1011 1898 

1072 1714 

972 1397 
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3.1.3 Measuring Phone Power Consumption 

We have developed software to measure the power consumption 
of various phone components under controlled conditions. Due to 
the smart battery interface [6], most modern phones only boot 
with an actual battery inside. Therefore, we had to leave the 
battery inside for measurements. To eliminate interference from 
the battery charging circuitry, we measured the power transferred 
between the battery and the phone, instead of between the charger 
and the phone. We opened the battery packaging and placed a 0.1-
ohm resistor in series with the Ground pin (Figure 1). The phone 
power consumption can then be calculated by measuring the input 
voltage to the phone and the voltage drop on the resistor. We used 
the Measurement Computing USB-1608FS data acquisition 
device for our measurements. We found that the sampling rate of 
1 KHz is adequate for the power characteristics important to us. 

3.2 Real-Life Data Rates vs. Signal Strength 

In Experiment A, we collected information regarding the success 
rates of data transfers and the data rates of successful transfers 
from P1 and P2. Although P1 and P2 had two different cellular 
carriers, our analysis showed little difference between the two 
carriers. Therefore, we will report their cellular data together. 

Figure 2 shows data rates versus signal strength for all 
successful transfers. Figure 3 shows success rates versus signal 
strength. Despite of some diversions, the general trend is higher 
data and success rates with higher signal strength. However, the 

diversions for Wi-Fi data rates are larger. This is not surprising: 
the average data rate is around 1Mbps, suggesting the bottleneck 
is probably the Internet connection instead of the wireless 
medium. We were surprised to see average cellular upload speeds 
were faster than downloads, although uploads had much lower 
success rates. We re-ran the experiment for one week for both 
Cingular and T-Mobile three months later, only with similar 
results. 

3.3 Real-Life Network Availability 

In Experiment B, we collected the signal strength of cellular and 
Wi-Fi networks from all 14 participants. Unlike war-drives or 
spatial coverage measurements, such as in [8, 16], we measured 
personal coverage: the signal strength seen in a person’s daily 
life. Figure 4 shows a sample 48-hour best signal strength trace 
from one of the participants. 

Figure 5 summarizes the distribution of best cellular signal 
strength for each participant. There is no coverage when signal 
strength is below -112dBm. Signal strength between -112 and -94 
dBm shows as one or two bars on the phone. Signal strength 
between -94 and -81 dBm shows as three or four bars. Signal 
strength higher than -81 dBm is reported as 100% by Windows.  

Our first observation is that cellular network availability is 
extremely high (99.1%). For more than 75% time on average for 
all our participants, signal strength is above -94 dBm (three or 
four bars). This is not surprising for a major urban area like 

                  

Figure 2. Signal strength impacts data rates of successful transfers for cellular (GSM/EDGE)(left) and Wi-Fi (right) 

 

                

Figure 3. Signal strength impacts transfer success rates for cellular (GSM/EDGE) (left) and Wi-Fi (right) 
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Houston. Nevertheless, while weak signal strength may be 
acceptable for voice communications, it is not true with data 
communications. Our measurement in Section 3.2 showed data 
transfer success rates are very low at the lower end of the signal 
strength range. This corroborates our real life experience that the 
cellular data connectivity is poor at lower signal strength.  

Figure 6 shows the distributions of best Wi-Fi signal strength 
for each participant. Figure 6 (a) only includes participants’ 
preferred networks, those that the user is known to have access to. 
We will use the preferred network traces throughout this paper. 
On average, our participants are covered by preferred Wi-Fi 
networks for 49% of their daily lives. Figure 6 (b) includes all 
visible unencrypted access points in addition to preferred 
networks. On average, our participants are covered by these 
networks for 77% of their daily life. This obviously overestimates 
network availability. Nonetheless, measurements by Nicholson et 

al. showed over 46% of all unencrypted access points in 
residential areas were in fact accessible [17]. 

 

 

Figure 5. Distributions of best signal strength for cellular 
 

3.4 Energy Cost & Model for Data Transfers 

We next present the energy cost for various wireless activities that 
we obtained through direct measurements on three mobile phones, 
including the HTC Wizard. We also present a simple yet accurate 
model for the energy cost of a wireless transfer.  

3.4.1 Measured Energy Costs 

Table 2 provides the additional energy cost for various activities 
in cellular and Wi-Fi network interfaces on the HTC Wizard, the 
HP iPAQ hw6925, a Pocket PC phone with built-in GPS, and the 
HTC Tornado, a Smartphone commercially available under 
various brands, e.g., T-Mobile SDA.  

 

 

(a) Preferred networks 
 

 

(b) Preferred and unencrypted networks 

 
Figure 6. Distributions of best signal strength for Wi-Fi 

 

The additional energy cost for a wireless activity refers to the 
extra energy consumption as compared to that if the activity is 
absent in an idle device. The values are averages from multiple 
measurements. Ee denotes the energy cost of establishing a 
connection. Since we assume the phone is always connected to the 
cellular network, its Ee is zero.  Et denotes the additional energy 
cost for transferring 1MB data. We have ignored the effects of 
TCP and HTTP connection establishment, round trip latency 
(RTT), and TCP slow start, due to the much larger energy cost of 
data transfer. Em denotes the energy cost for maintaining a 
connection for a minute, compared to that when the corresponding 
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network interface is powered off. For Wi-Fi, the values are shown 
with and without 802.11 power-saving mode (PSM), using the 
“maximum battery” setting on the phones, if available. We must 
note that the mobile device must stay connected to an access point 
to use PSM. The range for each value is based on best and worst 
signal strength. It is interesting that the maximum power saving 
setting on the HTC Wizard only provided a 3.5% reduction in Em, 
compared to the default (balanced) setting. 

Our measurements in Table 2 clearly show that cellular and 
Wi-Fi network interfaces have complementary energy profiles: the 
cellular interface can cost an order of magnitude more than the 
Wi-Fi interface to transfer data (Et), but cost an order of 
magnitude less energy to maintain the connection (Em). It is 
important to note that the cellular network interface on mobile 
phones is typically always on. Therefore, Em should be regarded 
as zero for the cellular interface. 

Since the Wi-Fi interface consumes high power even in PSM 
and Wi-Fi availability is low (so PSM cannot always be used), it 
is usually more energy-efficient to power off the Wi-Fi interface 
and then re-establish the connection when necessary. For 
example, on the HTC Wizard, it is more energy-efficient to power 
off the Wi-Fi interface if it has to be idle for more than 15 
seconds. Unfortunately, checking for Wi-Fi availability and 
establishing a connection consume considerable energy too. On 
the HTC Wizard, as Table 2 shows, Ee=5J, for both successful 
connection and a failed attempt with a five-second timeout. This 
large energy overhead makes Wi-Fi inefficient for small data 
transfers. 

We also found that the built-in GPS of the HP iPAQ hw6925 
Pocket PC phone consumes about 600mW (36 J per minute) 
additional power, which is too high to be used continually. 

3.4.2 Energy Model of Wireless Data Transfers 

We have built a simple energy model for wireless data transfers, 
assuming a constant network condition throughout a single 
transfer. The assumption is reasonable if the transfer time is short. 
We can also apply our model to a long transfer by splitting it into 
multiple short transfers.  

We model the energy cost for establishing a connection and 
transferring n megabytes data as 

EtnEeE ⋅+=     (1) 

where Ee is the energy cost for connection establishment and Et  
the energy per MB transfer. To account for possible transfer 
failures, we assume a failed transfer will simply be retransmitted 
under the same network condition. Then, the energy cost is 
approximately 

Et
S

n
EeE ⋅+=     (2) 

where S  is the transfer success rate.  

3.5 Application Requirements 

Mobile applications have diverse requirements in wireless transfer 
intervals and data sizes, as illustrated in Figure 7 with some 
representative applications. 

Figure 8 highlights the challenge in battery lifetime imposed 
by mobile applications. We can see that cellular network, the only 
network with ubiquitous coverage, is inadequate for many 
applications because of its higher energy cost for data transfer. 
For most application requirements, the battery lifetime of the HTC 
Wizard will be reduced by more than 50% (The standby battery 
lifetime is eight days). Assuming Wi-Fi is always available with 
perfect signal strength, Figure 8 (b) offers the battery lifetime for 
transferring data through Wi-Fi with Wi-Fi interface powered off 
if not in use. The battery lifetime is more than double than that of 
the same data size and transfer interval with GSM/EDGE. This is 
essentially because Wi-Fi has much lower energy cost for data 
transfer. Unfortunately, Wi-Fi is far from being ubiquitous, as our 
reality check has shown. Even worse, with the Wi-Fi interface 
powered off to save energy, the mobile system does not know if 
Wi-Fi is available. Searching for Wi-Fi, again, costs considerable 
energy. Ultimately, neither cellular network nor Wi-Fi can 
achieve energy-efficient ubiquitous connectivity alone. 

3.6 Summary of Reality Check 

We summarize our findings as follows.  

• We observed that for both cellular and Wi-Fi, the average data 
rates and transfer success rates are related to signal strength.  

• While there were differences between individuals, on average, 
our participants spent 49% of their daily life under accessible 
Wi-Fi networks and more than 99% under cellular networks.  

• We observed wireless energy consumption depends on network 
type, signal strength, connection time, and size of data 
transferred.  

• We showed that cellular and Wi-Fi interfaces have 
complementary energy profiles. For cellular, there is no extra 
energy cost to maintain connectivity, but the energy cost per 
MB is more than an order of magnitude higher than that of Wi-
Fi. On the other hand, the energy cost of maintaining a Wi-Fi 
connection is very high, even with maximal use of the power-
saving mode. Moreover, establishing a Wi-Fi connection incurs 
considerable energy cost too. 

 

Table 2. Average measured additional energy costs for various cellular and Wi-Fi activities 

Device Cellular (EDGE) Wi-Fi 

Em 

(J/min) 

Et (J/MB) Ee 

(J) 

Em (J/min) Et (J/MB) 

Download Upload PSM No PSM Download Upload 

HTC Wizard 1.2 – 6 40 – 50 95 – 125 5 19 61 5 – 7 7 – 11 

HTC Tornado 1.2 – 2 100 – 150 170 – 300 10 6 53 4 – 6 5 – 7 

HP iPAQ hw6925 1 –  2 130 – 160 220 - 330 13 4 46 5 – 14 6 – 15 
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Our reality check shows that neither cellular nor Wi-Fi alone can 
provide acceptable battery lifetime for future mobile applications 
requiring ubiquitous connectivity. This motivates our proposal to 
combine their complementary strength for achieving energy-
efficient ubiquitous connectivity. 

4. CONTEXT-SENSITIVE ENERGY-

EFFICIENT WIRELESS DATA TRANSFER 

We next present our problem formulation for data transfer through 
multiple wireless interfaces. Using the energy profiles from our 
measurement and our field-collected traces, we theoretically 
analyze the energy-saving potential of selecting between Wi-Fi 
and cellular. We then present our solutions to exploit the 
complementary strength of Wi-Fi and cellular, and compare their 
energy savings with the theoretical upper bound. We employ the 
Tower Logger traces and the energy model to evaluate our 
solutions through simulation. For each simulation and each 
participant, we use half of the trace for training, if necessary, and 
the rest for evaluation. 

4.1 Data Transfer through Multiple Wireless 

Interfaces  

Based on our reality check, we assume that a mobile system is 
always connected through a low-power high-availability primary 
wireless network, which offers a lower data rate and consumes 
higher energy per MB transfer. For mobile phones, the primary 
network is the cellular network (in our case, GSM/EDGE). We 
assume that alternative wireless networks may be available at 
limited locations or time. They offer higher data rates and 
consume lower energy per MB transfer. However, they cost extra, 
usually significant, power to stay connected and incur significant 
energy and time overheads for connection establishment. For the 
HTC Wizard and many modern mobile handsets, one additional 
network is Wi-Fi.  

The problem that we propose to solve is: 

If the device needs to transfer n MB data with minimal 

energy consumption, should it search for an alternative 

network to transfer the data? 

To solve this problem, we need to calculate the expected energy 
saving for attempting to use an alternative network, a, instead of 
the primary network, p, to transfer data. Assuming network a is 

available with condition aC , the expected energy cost for 

establishing a connection and transferring n MB data through it 
can be estimated with Equation (2) as 

 

aaa

aa

availablea EeCEt
CS

n
E +⋅= )(

)(
,

r
r   (3) 

 
If network a is unavailable, the energy cost of attempting an 
unsuccessful transfer would be the energy required to check for a 
connection: 

aeunavailabla EeE =,
    (4) 

Since the interface for the primary network is always on, there is 
no energy cost for connection establishment. Therefore, the 

      

Figure 7. Data size and transfer intervals for different 

applications  

 

(a) Battery lifetime with GSM/EDGE 

(b) Battery lifetime with perfect Wi-Fi 

 

Figure 8. Challenge in battery lifetime 
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energy cost to transfer the data through the primary interface is 
simple  

 )(
)(

pp

pp

p CEt
CS

n
E

r
r ⋅=    (5) 

Let Pa denote the probability that the alternative network a is 
available. The expected energy saving of attempting to use 
network a is 
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Our data transfer algorithm works as follows. The system 
calculates Ea,p for every data transfer. If Ea,p is negative, the 
system transfers the data through the primary network. Otherwise, 
it will attempt to connect using interface a. In the case of multiple 
alternative interfaces, the system can choose the network with the 
most expected energy saving by calculating Ea,p for all alternative 
networks. 

In our study, the primary network is cellular and the only 
alternative network is Wi-Fi. The only network condition we 
consider is signal strength, denoted by Cp and Ca, for cellular and 
Wi-Fi networks, respectively. For them, we have measured S in 
Section 3.2, and measured Et and Ee in Section 3.3. The data size, 
n, can be obtained through the software attempting the transfer. 
Cellular signal strength, Cp, is available without any extra energy 
cost. Therefore, the key to calculating Ea,p using (7) is Ca and Pa. 
Before we address how to estimate Ca and Pa, we next offer the 
theoretical upper bound for energy savings by using multiple 
wireless interfaces for data transfer, assuming Ca and Pa are 
available with an insignificant energy cost. 

4.2 Theoretical Analysis  

To determine the maximum potential energy benefit of the use of 
multiple wireless interfaces, we first examine the ideal case where 
Ca and Pa are available without an extra energy cost. Pa is equal to 
1 if a Wi-Fi connection is available and 0 otherwise. Analysis of 
the ideal case will give the theoretical upper bound in energy 
savings achievable by estimating Ca and Pa. 

Using the network traces and the energy data for the HTC 
Wizard, we calculate the average battery lifetime of an otherwise 
idle phone using cellular-only transfer and that of one using the 
ideal case of data transfer through multiple wireless interfaces. 
Figure 9 shows the average battery lifetime gain for different data 
rates and transfer intervals. We can see the use of multiple 
wireless interfaces has a large impact for larger data sizes and/or 
longer transfer intervals. Moreover, Wi-Fi network availability is 
a major factor too. The average Wi-Fi availability in our field-
collected traces is 49%. In Figure 10, we show the battery lifetime 
gains for hypothetical 20% and 80% Wi-Fi availabilities, 
assuming average Wi-Fi signal strength from the traces. Figure 10 
clearly shows that the effectiveness of the use of multiple wireless 
interfaces, compared to a cellular-only policy, is improved with 
increased Wi-Fi coverage. 

Figure 9. Potential battery lifetime gain with field-collected 

traces from all participants 

 

(a) 20% Wi-Fi coverage 
 

(b) 80% Wi-Fi coverage 
 

Figure 10. Potential battery lifetime gain for different Wi-Fi 

coverage 
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4.3 Context-for-Wireless 

In Section 4.2, we calculated the theoretical upper bound of 
energy savings achievable by the judicious use of multiple 
wireless interfaces, assuming the system knows network 
conditions, Ca and Pa, for free. In reality, measuring Wi-Fi 
network conditions incurs the connection establishment energy 
cost. In this section we present and evaluate different methods for 
the system to estimate Ca and Pa without powering on the Wi-Fi 
interface.  

4.3.1 Naïve and Simple Solutions 

A naïve solution is to have the system attempt a Wi-Fi connection 
for every data transfer, regardless of data size and expected 
network conditions. Obviously, for small data sizes, the high 
connection establishment energy (Ee) can easily cancel out the 
energy saving from the actual data transfer. 

The Simple Solution uses minimal context information. It 
employs each user’s all time average for Ca and Pa, to decide 
whether to attempt a Wi-Fi connection. We use the Simple 
Solution as the baseline, along with the theoretical upper bound 
from Section 4.1, for evaluating other algorithms in below. 
Figures 11 and 12 show the average data transfer energy and 
energy savings vs. data size using our measured traces and 
hypothetical 20% and 80% Wi-Fi coverage, respectively. It is 
clear that the Simple Solution provides substantial power saving 
for larger data sizes and higher Wi-Fi network coverage. 
However, the difference between the ideal case and the Simple 
Solution is substantial for smaller data sizes and/or lower Wi-Fi 
coverage. In these cases, accurate network condition estimation is 
critical. We next propose several advanced algorithms for network 
condition estimation for this sake.  

4.3.2 Hysteretic Estimation 

People often stay at a location for a rather long time. This forms 
the basis for our Hysteretic Estimation. For Hysteretic Estimation, 
we use the previously measured network conditions for Ca and Pa 
until we either have a new measurement or a predetermined 
timeout runs out. Obviously, Hysteretic Estimation is more 
effective for shorter data transfer intervals, where network 
conditions are more likely to remain unchanged. The performance 
of this algorithm depends on the predetermined timeout value, and 
how often network conditions change. The timeout can be 
adaptively tuned by the system based on the success rate of its 
previous estimations. We have tested a simple version of this 
algorithm with a constant 25-minute timeout. It has the advantage 
of not requiring training.  

4.3.3 History and Cell ID Estimation 

People often spend days in predictable fashion, e.g., at work at 
home, commuting, etc. Therefore, the network conditions at the 
same time of different days are likely to be statistically related. 
This can potentially be extended to account for different days in a 
week. Network conditions are also highly correlated to 
geographical location. While a GPS can provide very accurate 
location information, its energy cost is too high for our purpose, 
as our measurement showed in Section 3.1. Furthermore, GPS 
systems only work outdoors. There has been considerable 
research on calculating location from visible cell tower IDs [15, 
16, 18, 28]. However, they typically require extensive training 
against a known ground truth, such as a GPS. On the contrary, we 

use visible cell towers to directly train our algorithm and estimate 
Wi-Fi network conditions without positioning. 

Our Cell ID Estimation works as follows. We store a list of all 
previously seen cell tower IDs. For each cell tower, i, we calculate 
and store three values; Pcell_i, the average Wi-Fi availability when 
that cell tower was visible, ni,  the number of samples used for 
calculating Pcell_i, and Ccell_i, the average Wi-Fi signal strength 
when Wi-Fi was available. In our simulations, for each cell tower, 
we calculate Pcell_i as the number of occasions Wi-Fi was 
available when that tower was visible divided by the number of 
occasions Wi-Fi was checked when that tower was visible. 
Potentially, more weight can be given to more recent 
measurements. 

 
(a) Average among all participants 

 

 
(b) Simulated 80% Wi-Fi availability 

 

 
(c) Simulated 20% Wi-Fi availability 

 

Figure 11. Data transfer energy vs. data size 
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We then estimate Wi-Fi availability, Pcell, as the weighed 
mean of Pcell_i among all visible cell towers, denoted by V. 

   

∑

∑

∈

∈

⋅
=

Vi

i

Vi

icelli

cell
w

Pw

P

_
,   ( )4

_ 5.0)log( −⋅= icellii Pnw     (8) 

The weight, wi, consists of two parts. log(ni) gives more weight to 
the Pcell_i of towers that have been seen more often. In other 
words, the more samples we have of any tower, the more we trust 
its estimation. (Pcell_i – 0.5)4 gives more weight to towers that have 
a Pcell_i close to 0 or 1. In other words, the more certain an 
estimation is, the more we trust it.   

We calculate the Cell ID estimated Wi-Fi signal, Ccell, as the 
simple mean of Ccell_i among all visible cell towers.  

For History Estimation, we divide days into 24 one-hour 
timeslots and compute the all time average Wi-Fi availability and 
signal strength, for each timeslot, and use them as the History 
estimated Phist  and Shist when we are in the same timeslot.  We 
then combine Cell ID and History Estimations using: 
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Again, we give more weight to estimations with higher certainty, 
and slightly favor Cell ID Estimation. 

4.3.4 Acceleration Estimation 

For P1, P2, and P3, we have recorded three-axis acceleration of 
their mobile phones. While there has been extensive research to 
extract user context information and physical activity from 
acceleration sensors [5], we use the acceleration data in a very 
simple fashion. We have observed the recorded acceleration 
values for a stationary phone are virtually constant. However, they 
constantly change when the phone is moving, often carried or 
handled by the user. In turn, wireless network conditions are 
expected to remain relatively constant if the phone hasn’t moved 
much. Therefore, we compute the potential for a change in Wi-Fi 
conditions, m, as: 

[ ]∑
=

+∆+∆+∆=
current

resett

zyx ctAtAtAm )()()(    (11) 

where ∆Αx(t), ∆Ay(t), and ∆Az(t), are the change in acceleration 
along the three axes, measured at 32 Hz. c is a small positive 
constant to account for drift, or slow rate changes in wireless 
conditions. m is reset to zero every time network conditions are 
measured. It then accumulates as time passes by. If m is below a 
predetermined threshold, our Acceleration Estimation assumes 
network conditions are unchanged and uses previous measured 
network conditions. Similar to Hysteretic Estimation, 
Acceleration Estimation is more effective for shorter data transfer 
intervals, where previous network conditions are more likely to 
remain valid. The performance of this algorithm depends on the 
predetermined values and how much the user actually moves 
around. The predetermined values can be adaptively tuned by the 
 

software based on the success rate of its previous estimation. We 
have tested a simple version of this algorithm with a constant 
threshold and c. It has the advantage of not requiring training. 

A few commercial phones today are already equipped with 
accelerometers, e.g., the Nokia 3220 and Sharp V603SH. 
Accelerometers can be made ultra-low power. For example, the 
Kionix KXM52 three-axis accelerometer on our sensor board 
consumes less than 0.35 J/h for a 32 Hz sampling rate. As large 
displacements typically do not happen instantaneously, we expect 
the energy consumption of the accelerometer can be further 
reduced by reducing its measurement duty cycle, e.g. recording 
two seconds every ten seconds. 

 
(a) Average among all participants 

 

 
(b) Simulated 80% Wi-Fi availability 

 

 
(c) Simulated 20% Wi-Fi availability 

 

Figure 12. Data transfer energy saving vs. data size 
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4.3.5 Combination Algorithms 

To further improve the History and Cell ID Estimation, we 
combined it with Hysteretic Estimation and Acceleration 
Estimation as follows:  

We use either Hysteretic Estimation or Acceleration 
Estimation to determine if we should expect a change in network 
conditions. If no change is expected, we will use the previously 
measured network conditions. If a change is expected, we will use 
History and Cell ID Estimation to calculate network conditions.  

4.3.6 Performance and Comparison 

In this section, we present the average energy saving of our 
estimation algorithms. For each algorithm, we compare its energy 
saving to that of the Simple Solution, using that of the ideal case 
as 100%. For example, if the average energy cost for a data 
transfer is 23 J for an estimation algorithm, and 20 J and 30 J for 
the Simple Solution and the ideal case, respectively, the 

effectiveness of the estimation algorithm is %70
2030

2330 =
−
− .  

We use the field-collected traces to calculate the energy 
consumption of each algorithm. We use data transfers of 270 KB 
every 5 minute, a data rate of a typical  three channel ECG (each 
sampled at 200Hz with 12-bit resolution [13], without 
compression). Since we are normalizing with the ideal case, the 
result is relatively independent of data size (for larger data sizes).  

Figure 13 shows the performance of our estimation 
algorithms, except Acceleration Estimation, for all participants in 
our reality check. The lowest effectiveness was for P4, who had a 
very high Wi-Fi coverage during out test period (90%). Our 
estimation algorithms had a hard time improving the already good 
Simple Solution for him. The highest effectiveness was for P6. 
We attribute the high effectiveness of our History and Cell ID 
Estimation to his regular work hours and locations. Our other 
participants, being students and faculty, typically have less regular 
work hours and locations. Another interesting observation was 
that in all cases where Hysteretic Estimation is more effective 
than History and Cell ID Estimation, the participants lived close 
to campus. We attribute this to the reduced accuracy of Cell ID 
Estimation for shorter displacements. 

Participants P1, P2, and P3 had phones equipped with the 
acceleration sensor board. Figure 14 shows the performance of all 
estimation algorithms for them.  We conjecture  that  Acceleration 

 

Figure 14. Effectiveness of all estimation algorithms for P1, 

P2, and P3 

 

Figure 15. Effectiveness of estimation algorithms for different 

transfer intervals 

 
Estimation would work well for users that regularly move 
between close locations with different Wi-Fi conditions, or for 
applications where cellular network information is not available. 
As previously mentioned, the data transfer interval impacts the 
efficiency of Hysteretic and Acceleration Estimation algorithms. 
To highlight the impact of transfer interval, we present their 
performance for 1, 5, and 25 minute intervals for P1, P2, and P3 
in Figure 15. The data size for each transfer is 270 KB for all 
three intervals. As expected, their performance is reduced with 
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Figure 13. Effectiveness of estimation algorithms for all participants 
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increased transfer intervals, when network conditions are less 
likely to remain unchanged. 

 

In this section, we presented and evaluated several algorithms for 
estimating Ca and Pa with various context information. We 
showed that they have very good performance when Wi-Fi 
estimation is important, i.e., lower Wi-Fi availability. Moreover, 
our algorithms have complementary strength. For example, 
Hysteretic and Acceleration Estimation work well for shorter 
transfer intervals and for participants with high Wi-Fi availability. 
History and Cell ID Estimation works very well for participants 
with regular hours and locations of Wi-Fi availability. We also 
observed that History and Cell ID Estimation performance is 
improved with increased mobility, which is opposite of 
Acceleration Estimation. Finally, combining different estimation 
algorithms can further improve performance.  

Our goal is by no means to devise the best possible estimation 
algorithm. Instead, our main focus is to demonstrate how readily 
available context information, such as time and cell tower ID, can 
be used to estimate Wi-Fi network conditions. We have kept our 
algorithms simple and have limited the number of parameters in 
them. Therefore, we would expect our algorithms to generalize 
well [14], instead of only having good results for our own traces.  

5. FIELD VALIDATION 

To measure the effectiveness of our solution in real life 
conditions, we have implemented Context-for-Wireless interface 
selection for a mobile ECG reporting application, which collects 
ECG data from body-worn wireless (e.g. Bluetooth) sensors and 
periodically reports it to an Internet server. Since the focus of this 
work is on data transfer between the mobile device and the 
Internet server, we assume ECG data is already available on the 
phone. We use the same data rate and interval as in Section 4.3.6 
(270 KB every 5 minutes).  

We have developed the ECG reporting software that 
automatically runs on the phone every 5 minutes. Our software 
has two modes of operation. In cellular-only mode, it transfers 
data only using cellular. In Context-for-Wireless interface 
selection mode, it uses our Hysteretic algorithm, a constant 25 
minute timeout, to estimate network conditions and decide 
whether to power up the Wi-Fi adapter and attempt a Wi-Fi 
transfer. We chose Hysteretic Estimation because it has relatively 
good performance without training or extra hardware and our 
simulation in Section 4 showed that it is effective when transfer 
intervals are short. If the connection fails, is dropped, or no 
response is received from the server, the transfer is considered 
unsuccessful and our software will attempt a resend. Whenever a 
Wi-Fi resend fails, our software will resort to cellular.  

We installed our ECG reporting software on two HTC Wizard 
phones and gave them to participants P1 and P2, who used the 
phones as their primary mobile phones during our experiments. 
We ran three experiments, each with two trials (cellular only and 
Context-for-Wireless), for each participant. We measured the 
battery lifetime as the operational time between when the phone is 
disconnected from its charger (with a fully charged battery) and 
when the phone automatically shuts itself off due to low battery, 
with no charging in between. The battery lifetimes for cellular 
only mode and Context-for-Wireless interface selection mode are 
shown in Table 3. The average battery lifetime gain was 35%. 

 

Table 3. Phone battery lifetime during our field test 

Participant Experiment Cellular 

only (h) 

Context-for-

Wireless (h) 

P1 1 12.3 16.2 

2 20.3 20.4 

3 17.5 21.5 

Average 16.7 19.4 

P2 1 13.2 21.6 

2 15.0 21.4 

3 14.4 23.6 

Average 14.2 22.2 

Average 15.4 20.8 

 

For comparison, the average battery lifetime gain simulated 
using the field-collected traces was 29% for the Simple Solution, 
37% for Hysteretic Estimation, 39% for the combined History, 
Cell Tower ID and Hysteretic Estimation, and 42% for the ideal 
upper bound.  

6. DISCUSSION 

Our reality check and studies of Context-for-Wireless data 
transfer are limited in our participants, who were affiliated with 
Rice University and spent a significant portion of their everyday 
life under the Rice campus Wi-Fi coverage. Moreover, the 
majority of our field-collected traces were from Houston, a major 
metropolitan area. Cellular networks in rural or suburb areas can 
have different characteristics. Therefore, we expect our 
participants might have led to a much brighter picture for 
ubiquitous connectivity than what is available for the general 
population. Nonetheless, with the increasing availability of Wi-Fi 
and expanding deployment of 3G cellular networks, we believe 
our participants represent the trend in the development of 
ubiquitous wireless connectivity.  

While we studied the use of Wi-Fi and cellular networks, the 
approach of selecting between multiple network interfaces to 
achieve energy-efficient ubiquitous connectivity is general. While 
newer cellular technologies, such as 3G, will support higher data 
rates, they are still metro-area networks and each base station 
covers a relatively large area. The long range radio 
communication between the mobile phone and its base station will 
still have high energy per MB requirement compared to shorter 
range wireless technologies, such as the current and future 
wireless LAN technologies. On the other hand, although Wi-Fi 
hotspots are growing, their availability will still remain well 
below cellular networks, due to their short range. Therefore, we 
expect the availability and range vs. energy tradeoff behind 
different wireless interfaces to remain valid in the foreseeable 
future. Emerging technologies, such as WiMAX, can be yet 
another network interface to select from.  

In our work, we assumed that cellular and Wi-Fi networks are 
separate. An integration of cellular and Wi-Fi networks will create 
additionally opportunities in estimating Wi-Fi network condition 
and availability. Due to E911 requirements, cellular network 
providers are already aware of approximate location of their 
subscriber phones. Therefore, they could potentially co-operate  
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with Context-for-Wireless and send prior known Wi-Fi 
availability data, based on location, to subscribers. This could be 
especially appealing to cellular providers that also offer Wi-Fi 
hotspots, such as T-Mobile. Nevertheless, our network estimation 
methods can still be useful to improve the accuracy of Wi-Fi 
estimation. 

It is important to note that using context information to 
estimate wireless network conditions (Context-for-Wireless) is a 
mechanism. While we used context information to estimate 
current network conditions, it can also be employed to predict 
future network conditions. Based on the prediction, system 
policies can be devised to prefetch wireless data if the network is 
predicted to degrade, or to buffer data transfers while respecting 
latency requirements if the network is predicted to improve.  

7. RELATED WORK 

Our use of multiple wireless interfaces for data transfer resonates 
with a considerable body of work employing a secondary low-
power wireless interface for improving Wi-Fi energy efficiency. 
For example, Wake-on-wireless [25] uses a low-power radio 
interface to transmit control information so that Wi-Fi can stay 
powered-off most of the time. Coolspots [20] employs Bluetooth 
to improve power efficiency of Wi-Fi. Nevertheless, these works 
and others [11, 21, 26] target at improving Wi-Fi energy 
efficiency and are restricted by limited Wi-Fi availability. On the 
contrary, our approach utilizes Wi-Fi to improve the efficiency of 
cellular networks and provide energy-efficient ubiquitous 
connectivity. Armstrong et al. also found that Wi-Fi is more 
energy-efficient for transfers of large data sizes and subsequently 
selected the wireless interface based on the data size [3]. 
However, they assumed that Wi-Fi is always available and sought 
to reduce the energy cost of data transfer without considering that 
of establishing or maintaining a Wi-Fi connection, which is 
nontrivial as our work demonstrated. Moreover, while they only 
showed that Wi-Fi is more energy-efficient when the data size is 
larger than 30KB, we provided more detailed energy profiles for 
Wi-Fi and cellular network interfaces with an analytical model. 
Integrating Wi-Fi and cellular networks and seamlessly switching 
between them has also been widely studied [4, 7, 23, 24] through 
cooperation between networks on various layers. For example, 
Always Best Connected [12] seeks to achieve best performance 
and coverage. On the contrary, our solutions work at the 
application layer and do not require any cooperation between Wi-
Fi and cellular networks.  

Related to our use of Wi-Fi, Virgil [17] automatically 
discovers and selects access points with faster connection 
establishment, which will lead to energy savings too. Virgil is 
complementary to our approach and can be readily incorporated to 
improve the connection establishment in multi-interface data 
transfer. Related to our reality check, Bychkovsky et al. [8] 
presented Wi-Fi access point data collected by war-drives to 
evaluate the possibility of a large-scale Wi-Fi network made up by 
volunteered home Wi-Fi hotspots. Intel Place Lab [10, 16] also 
collected extensive network data on GSM cellular networks for 
the sake of positioning. These works provide a reality check of the 
spatial network availability. On the contrary, our reality check 
was targeted at the personal coverage of wireless networks, i.e., 
how networks are available throughout people’s daily life.  

Place Lab is also related to our endeavor on estimating Wi-Fi 
network condition. With positioning accuracy around 100m, Place 
Lab can indeed provide important clues for Wi-Fi network 

condition, which is highly position-related. However, Place Lab 
requires a pre-mapping of GSM towers (base stations) with GPS. 
Instead, our estimation methods seek to learn the direct relations 
between Wi-Fi network conditions and context information, 
including cellular network conditions, thus eliminating the need 
for mapping. In Turducken [27], the authors used a Wi-Fi detector 
to reduce Wi-Fi connection attempts that fail. However, a Wi-Fi 
detector can only detect the existence of Wi-Fi signal; it cannot 
determine whether it is from an accessible network. Furthermore, 
the energy cost and benefit of the Wi-Fi detector were not 
addressed. The authors of [9] used GPS-based movement 
prediction to reduce wireless communication energy between two 
mobile nodes. They targeted at a specific application scenario 
with a single wireless network. More importantly, GPS only 
works outdoors and its energy cost is too high for our purpose, as 
showed in Section 3.4.1.  

8. CONCLUSION 

The driving vision of our work is to leverage the complementary 
strength of multiple available wireless networks for energy-
efficient ubiquitous connectivity. We achieve this by estimating 
network condition using context information. 

We showed, using findings from our recent field study, that 
while network availability is decent, the energy cost of ubiquitous 
network connectivity is overwhelming. We also showed that Wi-
Fi and cellular network interfaces (802.11b and GSM/EDGE in 
our study) have energy profiles with complementary strength. 
Therefore, we proposed to leverage increasingly available Wi-Fi 
networks to improve the data transfer energy efficiency of cellular 
networks. Our theoretical analysis showed that judiciously 
choosing between network interfaces can considerably improve 
battery lifetime under a broad range of application requirements, 
while careless use of Wi-Fi can backfire.  

We formulated data transfer through multiple wireless 
interfaces as a statistical decision problem and explored various 
contextual clues to estimate Wi-Fi network conditions in order to 
solve it. Our best algorithm without additional hardware, a 
combination of short and long term Wi-Fi condition 
measurements and cellular network information, can achieve 
battery lifetime improvement close to the theoretical limit. We 
also explored the use of a three-axis accelerometer (motion 
sensor) and different combinations of context information to 
estimate Wi-Fi network conditions. We validated our solutions 
using data collected from the real lives of a number of participants 
as well as using field trials.  

As emerging mobile applications rely on ubiquitous connec-
tivity, our work presented a challenging picture from field 
measurements. Our experiment showed that the data transfer 
required for mobile ECG reporting reduced the battery lifetime of 
our mobile phone to an average 15.4 hours. By judiciously 
choosing a wireless interface using Context-for-Wireless, with our 
most simple algorithm, Hysteretic Estimation, we were able to 
improve the average battery lifetime by 35% to 20.8 hours. Yet 
more sophisticated algorithms, some described in this work, will 
produce even more opportunities for the solutions presented in 
this paper.  
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