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Abstract

How does a machine know who is using it? Current systems
authenticate their users infrequently, and assume the user’s
identity does not change. Such persistent authentication is in-
appropriate for mobile and ubiquitous systems, where associa-
tions between people and devices are fluid and unpredictable.
We solve this problem with Transient Authentication, in which
a small hardware token continuously authenticates the user’s
presence over a short-range, wireless link. We present the four
principles underlying Transient Authentication, and describe
two techniques for securing applications. Applications can be
protected transparently by encrypting in-memory state when
the user departs and decrypting this state when the user returns.
This technique is effective, requiring just under 10 seconds to
protect and restore an entire machine, but indiscriminate. In-
stead, applications can utilize an API for Transient Authenti-
cation, protecting only sensitive state. We describe our ports
of three applications—PGP, SSH, and Mozilla—to this API.
Mozilla, the most complicated application we have ported, suf-
fers less than 4% overhead in page loads in the worst case, and
in typical use can be protected in less than 250 milliseconds.

1 Introduction

How does a device know that the right person is using it?
Unfortunately, authentication between people and their
devices is both infrequent and persistent. Should a de-
vice fall into the wrong hands, the imposter has the full
rights of the legitimate user.

Authentication requires that a user supply some proof
of identity—yvia password, smartcard, or biometric—to
a device. Unfortunately, it is infeasible to ask users to
provide authentication for each request made of a de-
vice. Imagine a system that requires the user to man-
ually compute a message authentication code [26] for
each command. The authenticity of each request can
be checked, but the system becomes unusable. Instead,
users authenticate infrequently to devices. User authen-
tication is assumed to hold until it is explicitly revoked,
though some systems further limit its duration to hours
or days. Regardless, in this model authentication is per-
sistent.

Persistent authentication creates tension between se-
curity and usability. To maximize security, a device must
constantly reauthenticate its user. To be usable, authen-
tication must be long-lived.

We resolve this tension with a new model, called
Transient Authentication. In this model, a user wears
a small token, equipped with a short-range wireless link
and modest computational resources. This token is able
to authenticate constantly on the user’s behalf. It also
acts as a proximity cue to applications and services; if
the token does not respond to an authentication request,
the device can take steps to secure itself.

At first glance, Transient Authentication merely
seems to shift the problem of authentication to the to-
ken. However, mobile and ubiquitous devices are not
physically bound to any particular user; either they are
carried or they are part of the surrounding infrastructure.
As long as the token can be unobtrusively worn, it af-
fords a greater degree of physical security.

Transient Authentication has been applied to crypto-
graphic file systems [7] and could be extended to pro-
tect swap space [28]. These provide a good first line
of defense, protecting persistent storage from physical
possession attacks. If the machine has been shutdown,
hibernated, or has run out of power, this is sufficient to
protect the machine from attack.

Unfortunately, they do not protect applications on ma-
chines that are running or have been suspended. An
application that reads data from a cryptographic file
system—or receives data from a secure network connec-
tion [1, 36]—holds that data in memory without protec-
tion. Mobile devices typically suspend themselves after
an idle period or in response to a user closing its lid.
If the device is suspended, or running, the contents of
memory may be inspected through operating system in-
terfaces or through physically probing the memory bus.
An attacker can recover passwords and sensitive data
such as credit card numbers, or patient records.

One solution is to require reauthentication after sus-
pension or an idle period. This is an insufficient solu-
tion for two reasons. First, after a suspension or time-
out all sensitive, in-memory data must be flushed or
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protected—we are unaware of work that has addressed
this problem. Second, timeouts do not address the ten-
sion in usability versus security. This paper proposes
mechanisms to address both of these problems.

We first describe the trust and threat model we con-
sider, and enumerate the four principles underlying
Transient Authentication. We then present two mech-
anisms for protecting in-memory application state.

The first, application-transparent protection, provides
protection within the kernel. When the user departs, all
user processes are suspended and in-memory pages en-
crypted. When the user returns, pages are decrypted and
processes restarted. Protection and recovery processes
each take at most ten seconds on our hardware, and ap-
plications need not be modified to benefit from this ser-
vice.

Application-transparent protection is effective but in-
discriminate. There are processes that can safely con-
tinue in the user’s absence, and a few processes may be
able to selectively identify and protect sensitive state.
Our second mechanism, application-aware protection,
supports such applications. We provide an API for ap-
plications to use Transient Authentication services di-
rectly. We have modified three applications—PGP, SSH,
and Mozilla—to make use of this APIL. In exchange for
such modifications, these applications can be protected
and restored in well under half a second, and suffer no
noticeable degradation of run-time performance.

2 Trust and Threat Model

Our focus is to defend against attacks involving physical
possession of a device or proximity to it. Possession en-
ables a wide range of exploits. The easiest attack is to
use authentication credentials that are cached by the op-
erating system or individual applications. Even without
cached credentials, console access admits a variety of
well-known attacks; some of these result in root access.
A determined attacker may even inspect the memory of
a running machine using operating system interfaces or
hardware probing.

Transient Authentication must also defend against ob-
servation, modification, or insertion of messages sent be-
tween mobile devices and the token. Simple attacks in-
clude eavesdropping in the hopes of obtaining sensitive
information. A more sophisticated attacker might record
a session between the token and laptop, and later steal a
misplaced laptop in the hopes of decrypting prior traffic.
We defeat these attacks through the use of well-known,
secure protocols [11, 26].

Transient Authentication’s security depends on the
limited range of the token’s radio. Repeaters or arbi-
trarily powerful transmitters and receivers could be used
to extend this range. This is sometimes called a worm-
hole attack [16]. The rapid attenuation of high frequency
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radio signals makes attacks using powerful transmitters
difficult in practice. A better solution would use tim-
ing information to detect the distance of the token from
the device. This technique has been proposed by Brands
and Chaum [4] and explored in the Wormhole detection
project [16], though neither has built a practical imple-
mentation.

Transient Authentication does not defend against a
trusted but malicious user who leaks sensitive data. It
also does not consider network-based exploits to gain
access to a machine, such as buffer overflow attacks [8].
Finally, we do not protect against denial of service at-
tacks that jam the spectrum used by the laptop-token
channel. Other attacks may attempt to exhaust the en-
ergy resources on the token. This can be addressed by re-
serving most resources on the token to deal with trusted
connections [33].

The device operating system must be trusted. If the
operating system has been compromised, secret infor-
mation could be revealed to a third party. Protecting
an operating system from modifications, such as Trojan
horses, has been addressed in other work [21]. It must
be assumed that if the device is stolen and used mali-
ciously in any way, it will never again be used as trusted.
Any device that has been out of the user’s control for a
lengthy period of time should be treated as suspect and
not used.

3 Transient Authentication Principles

Transient Authentication is governed by a set of four
guiding principles. First, users must hold the sole means
to access sensitive resources or invoke trusted operations
on the device. Second, the mechanisms to secure sensi-
tive data do not need to be faster than people using them.
Third, the system must impose no additional usability or
performance burdens. Fourth, users must give explicit
consent to actions performed on their behalf. This list
is a refined version of principles that appeared in earlier
work [25].

3.1 Tie Capabilities to Users

The ability to perform sensitive operations must ulti-
mately reside with the user rather than her devices. For
example, the keys that decrypt private data must reside
on the user’s token, and not on some other device.

At the same time, it is unlikely that the token—a
small, embedded device—can perform large computa-
tions such as bulk decryption. Furthermore, requiring
the token to perform cryptographic operations in the crit-
ical path of common actions will lead to unacceptable
latency. In such cases, it may be necessary to cache ca-
pabilities on a device for performance. The results of
the cryptographic operations can be cached. However,
these decrypted capabilities must be destroyed when the
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user leaves, and the master capability cannot be exposed
beyond the token.

One could instead imagine a simple token that re-
sponded to authentication challenges. This gives evi-
dence of the user’s presence but does not supply a cryp-
tographic capability. An operating system could use this
evidence to govern access to resources, data, and ser-
vices. Unfortunately, this model is insufficient. If the
device is capable of acting without the token, then an
attacker with physical possession can potentially force
it to do so. For example, consider memory access
control. The operating system can be forced to pro-
vide the contents of physical memory through direct OS
interfaces such as Linux’s /dev/mem and Windows’
\Device\PhysicalMemory. An encrypted mem-
ory store, with the keys stored only on the token, is not
subject to the same attack.

Cached capabilities—and the data they protect—can
only remain while the token is present; when the token
is out of range, sensitive items must be protected. As a
simple example consider a cryptographic file system. If
the user leaves, an attacker could physically attack the
machine, recovering the disk cache. Even if the disk is
encrypted, the decryption key can be found in memory.
Instead, the disk cache must be protected and the keys
flushed from the system.

3.2 Secure Just Faster than People

The securing process must happen before an attacker
gains access to the machine. One might think that this
must happen quickly. However, since people are slow,
the limit is on the order of seconds, not milliseconds.

Suppose that a malicious individual wishes to com-
promise a device. After stealing the device, he must
take advantage of persistent authentication information.
For example, a user logs in and leaves a laptop, an at-
tacker can take the device and prevent the machine from
protecting itself, reading the contents of memory at his
leisure. The amount of time required for such a physical
attack depends on a variety of human factors,

Some optimizations in the securing process can be
made to ensure that recovery is fast enough. Rather than
simply erasing sensitive information during the securing
process, one might prefer to encrypt and retain it. This
additional work can save time on restoration: when the
user returns, the laptop can obtain the proper key from
the token and decrypt the data in place, restoring the ma-
chine to pre-departure state. As long as the additional
work to secure the machine is within tens-of-seconds,
this is an acceptable tradeoff.

3.3 Do No Harm

Investing capabilities with users increases the security
of the system. However, increases in security cannot

impose additional burdens. When faced with inconve-
nience, however small, users are quick to disable or work
around security mechanisms. Both performance and us-
ability must remain unaffected.

Users already accept infrequent tasks required for se-
curity. For instance, passwords are used occasionally,
usually on the order of once a day. More frequent re-
quests for passwords are perceived as burdensome; a
transparent authentication system can impose no usabil-
ity constraints beyond those of current systems.

Transient Authentication must also preserve perfor-
mance, despite the additional computation increased se-
curity requires. As long as this computation is impercep-
tible to the user, it is an acceptable burden. For example,
the Secure Socket Layer (SSL) [14] protocol requires
processing time for encryption and authentication. How-
ever, this cost is masked by network latency.

When the user returns after being away, the device
must return itself to the pre-departure state. This in-
cludes user visible state such as open windows, and net-
work connections, as well as pre-departure performance.
If information was flushed, or protected using encryp-
tion, it must not take a visible mount of time to recover.
Users who are forced to wait for recovery to finish are
less likely to use the system.

3.4 Ensure Explicit Consent

Tokens and devices must interact securely, and with the
user’s knowledge. In a wireless environment, it is par-
ticularly dangerous to carry a token that could provide
capabilities to unknown devices autonomously. A “tail-
gating” attacker could force another user’s token to pro-
vide capabilities, nullifying the security of the system.
Instead, the user must authorize individual requests from
devices or create trust agreements between individual
devices and the token.

Theoretically, users could confirm every capability re-
quested by the device. However, usability is paramount,
so the granularity of authorization must be much larger.
Instead of an action-by-action basis, user consent is
given periodically on a device-by-device basis.

To ensure explicit consent, our model provides for the
binding of tokens to devices. Binding is a many-to-many
relationship; One might interact with any number of de-
vices, and any number of users might share a device.
Binding requires the user’s assent but can be long-lived,
limiting the usability burden. The binding process re-
quires mutual authentication between device and token.

Unfortunately it is possible for a user to lose a token.
Token loss is a serious threat, as tokens hold authenti-
cating material; anyone holding a token can act as that
user. To guard against this, users must periodically au-
thenticate to the token. This authentication can be per-
sistent, on the order of many days. This return to an un-
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This figure shows the process for authenticating and in-
teracting with the token. Once an unlocked token is
bound to a device, it negotiates session keys and can de-
tect the departure of the token.

Authentication/
Session Keys

Secure Laptop I

Figure 1: Token Authentication System

bound state is similar to what Ross and Stejano call re-
verse metempsychosis [34]. Nominally, any authenticat-
ing material in the token is encrypted by a user-supplied
password. When the authentication period expires, the
token flushes any decrypted material, and will no longer
be able to authenticate on the user’s behalf. Placing au-
thentication material in PIN-protected, tamper-resistant
hardware [35] further strengthens the token in the event
of loss or theft. The Transient Authentication process, il-
lustrating all of these mechanisms, is shown in Figure 1.

4 Application-Transparent Protection

Applications store sensitive information, such as credit
card numbers and passwords, in their virtual address
space. Even with an encrypted file system [7] and
swap space [28], the in-memory portions of an appli-
cation’s address space vulnerable to attack. The mem-
ory bus or chips may be probed by a knowledgeable at-
tacker, or OS interfaces can be exploited to examine raw
memory contents. This section describes a technique,
called application-transparent protection, for protecting
in-memory process state. The main benefit of this tech-
nique is that it protects processes without modification.
The application designer does not need to identify which
data structures contain secret data and users do not have
to designate which processes to protect.
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4.1 Design

Applying the first stated goal of Transient Authentica-
tion requires that the capability of reading memory be
tied to the user. One approach would be to require
each load and store to use encryption, using keys only
available on the token. The performance of the ma-
chine would suffer greatly, clearly violating the princi-
ple of “do no harm”. An alternative would be to pro-
tect the machine by flushing the contents of memory
into the swap space and zeroing the memory whenever
the user departs. This scheme would make use of swap
space encryption, combined with keys available only on
the token. On return, the paged-out memory would be
read back from the disk into the memory pages. Unfor-
tunately, both protecting and maintaining the machine
would require a significant amount of overhead in disk
operations, leaving the machine vulnerable longer and
burdening the user. This would violate the principles of
“securing just faster than people” and ’do no harm”.

Instead, the system must encrypt the virtual memory
of processes in place. Since all the encryption opera-
tions are done in memory, this mechanism provides both
fast protection and recovery. To avoid corrupting the en-
crypted memory, processes must first be placed in a hi-
bernation state, preventing them from executing while
the user is away. Certain processes can be designated
as unprotected, but most processes will not execute until
the user returns. On recovery, the memory is decrypted
and the process is re-animated; to a returning user it ap-
pears as if nothing has changed.

We have found that the recovery process is fast
enough to remain unnoticed by users. However, if the
ratio of memory size to processing speed were much
greater than on our test machine, the securing or re-
covery process may be too lengthy. In this case, the
application-aware techniques presented later in the pa-
per will be required. If recovery is the bottleneck, it is
possible to first recover applications the user will inter-
act with quickly. Operating systems already track in-
teractive jobs to provide good response time in process
scheduling [32], enabling informed selection of recovery
order. However, we expect that the current memory/pro-
cessor balance will continue for the foreseeable future
making this technique unnecessary.

4.2 Implementation

We have built a Linux prototype to protect the in-
memory portions of application state. At startup, an
in-kernel module receives a fresh key from the token
to govern the memory of running processes. The mod-
ule receives notifications of the token’s status from an-
other in-kernel module. When it receives notification of
user departure, each processes is set to hibernate, using
techniques borrowed from the Linux Software Suspend
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project [6]. First, each process is marked as hibernating
and also as having a pending signal. The only processes
allowed to continue running are essential tasks related to
Transient Authentication and the operating system. The
marked processes are woken up and the kernel signal
dispatcher prevents the process from running until the
hibernate flag is cleared. This ensures that every process
is in a known hibernating state and cannot change its
own memory. This has the property of having to wait for
uninterruptible processes to become interruptible. How-
ever processes normally last in this state only for a short
time. It may be the case that a buggy process has become
stuck in an uninterruptible state; we are currently unable
to handle this situation. Other hibernation methods may
exist; we are looking at improving this mechanism.

After hibernation is complete, the module walks the
virtual memory space of each process, looking for in-
memory pages. Each in-memory page is encrypted us-
ing the pre-fetched key, and marked as such to prevent
multiple encryptions of shared memory pages. The de-
crypted copy of the key is then thrown away. On user
return, the process is reversed—the kernel fetches a de-
crypted version of the key from the token, the memory is
decrypted and all processes are awoken from where they
left off.

Free memory pages present a special difficulty. Appli-
cations may have allocated memory, stored secret infor-
mation in that space, and then terminated. This memory
is returned to the OS, and it may still contain remnants
of that information. To protect these remnants, the mod-
ule must walk the list of free pages and zero the memory
of each page in the list.

Authentication System

. . Keyd
Generic Keyiod YY
Application (Token)
UserSpace | | e
Kernel Space
VM Crypt Proximity
Module Module

This figure shows the components in the transparent pro-
tection system. When authentication is lost, a kernel
module encrypts the in-memory state of any generic ap-
plication. Authentication and token communication are
handled by a kernel proximity module and a user space
daemon.

Figure 2: Transparent Protection

An overview of the transparent protection system is
shown in Figure 2. Fetching the encryption key from
the token is handled by a pair of user space daemons,
keyiod on the laptop and keyd on the token, commu-

nicating via a wireless link. Both keyiod and keyd are
written in C, and keyd is compiled for the StrongARM
processor used by the iPAQ. The laptop client, keyiod,
is multithreaded to allow multiple outstanding requests,
decreasing the latency of multiple requests. The token
process, keyd is primarily compute bound and does not
require acknowledgements, permitting a single threaded
design.

Exposure of the virtual memory encryption key
would nullify its protections, so each message between
keyiod and keyd must be encrypted. Further, since
the token is used to create fresh encryption keys, the link
must be authenticated as well.

The kernel module, tadev also exports an interface
for other OS services to utilize the token. The tadev
module provides three functions: sendmessage,
addhandler, and removehandler. This allows
generic modules to send messages as well as register,
and unregister to receive messages of requested types.
Modules can send requests for capabilities, receive re-
sponses, as well as be informed of events such as loss of
authentication.

Mutual authentication can be provided with public-
key cryptography [23]. In public-key systems, each prin-
cipal has a pair of keys, one public and one secret. To
be secure, each principal’s public key must be certified,
so that it is known to belong to that principal. Because
laptops and tokens fall under the same administrative do-
main, that domain is also responsible for certifying pub-
lic keys. Keyiod and keyd use the Station-to-Station
protocol [11], which combines public-key authentica-
tion and Diffie-Hellman key exchange.

Each message includes a nonce, a number that
uniquely identifies a packet within each session to pre-
vent replay attacks [S]. In addition, the session key is
used to compute a message authentication code, verify-
ing that a received packet was neither sent nor modified
by some malicious third party [26].

The kernel cryptographic module must be informed
when the token is no longer present. To provide this no-
tification, we add a periodic challenge/response between
the laptop and the token. These proximity polling mes-
sages are generated by a second module in the kernel.
We currently set the interval to be one second; this is
long enough to produce no measurable load, but adds
little to the amount of time needed to protect the laptop.

5 Application-Aware Protection

Transparent application support is an effective tech-
nique, but an indiscriminate one. There are several dis-
advantages in protecting every process on the machine,
regardless of the sensitivity of their contents. A pro-
cess that only occasionally conducts sensitive operations
must be completely stopped, regardless of its current
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tasks. Certain processes could be statically designated
as non-sensitive, or the process could mark itself as sen-
sitive dynamically. However, if two processes communi-
cate through shared memory, both must be stopped, even
though only one may be sensitive. Also, some appli-
cations that depend on constant input or network traffic
may not survive the hibernation process. This burdens
the user, who must either restart those applications or
perform work to restore the previous state.

To combat these shortcomings we provide an inter-
face for an application to manage its own sensitive in-
formation. This allows greater flexibility in handling
loss of authentication and permits the application to con-
tinue to run regardless of authentication state. In order to
provide this capability, we have designed an application
programming interface, or API, that allows applications
to use Transient Authentication services. Applications
must be restructured to depend on capabilities, such as
keys, held by the token. For performance, these capabil-
ities can be cached, but they must be flushed when the
token leaves.

Some applications and services already manage au-
thentication and access to sensitive resources. Most of
these systems revoke access through either explicit user
logout or expiration of a long-lived session. Some of
these applications and servers also provide various lev-
els of service, depending on the specific credentials of
the user. Such applications already manage identity and
privilege, and would benefit from direct use of Transient
Authentication services.

An overview of the system is shown in Figure 3.
Generic applications can take advantage of Transient
Authentication using transparent protection. Modified
applications are compiled with a Transient Authentica-
tion library and communicate with the kernel using a
user-space server. All interactions with the token pass
through the proximity polling module and a user-space
communication daemon. We have implemented parts of
the system in the kernel to make the system fail-safe. If
any part of the system fails, the application should still
receive a notice of authentication loss.

5.1 Protecting Targeted Secrets

Identifying secret data is the most difficult part of pro-
tecting an application. The application designer must
first consider the threat model and user requirements.
For instance: Is all of the user’s data secret? What about
the meta-data? What about data received from the net-
work? For example, the text of a word processor docu-
ment is probably private, the formating of that document
may or may not be, and the state of local program vari-
ables is probably not. There are no hard rules for de-
termining these classifications and it must be left to the
designer of the application.
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This figure shows the various components used in the
Transient Authentication system. Generic applications
can be protected by the virtual memory encryption sys-
tem and the ZIA file system. Modified applications
are compiled with a Transient Authentication library
and communicate with the kernel through a user-space
server. All communications with the token go through a
proximity polling module and a user-space communica-
tion daemon.

Figure 3: TA Components

Once secrets have been identified, we use two differ-
ent mechanisms to tie capabilities to the token. The first
is to detect when the user leaves, then encrypt secrets
and forget the local copy of the key. When the user re-
turns, that key can be retrieved from the token and the
secret decrypted. The second is to always store the in-
formation encrypted, and decrypt it for every short term
use.

Choosing which mechanism to use depends on the
properties of the data, including size and frequency of
use. Accessing and restoring secrets must not take a no-
ticeable amount of time, and protection must be done
“just faster than people”. In some cases, both of the
mechanisms conform to the principles of Transient Au-
thentication, allowing the programmer to pick the more
convenient option.

5.2 Application Programming Interface

Before a user starts an application that employs the Tran-
sient Authentication API, that user must have one or
more master keys for that application installed on their
token. In our implementation, master keys are 128-bit
AES [9] keys. These keys must be installed by an ad-
ministrative authority, and can never be exposed beyond
the token. As we will see, the master key is typically
used as a key-encrypting key, but can sometimes protect
small data items directly. Once a key is installed, the
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/% Register an application with the library */
int ta_applicationreg (IN charx app_name,
IN charx username);

typedef
enum ta_change{TA_LOSS, TA_GAIN} ta_change.t;

typedef
int (x ta_auth_hdlrt ) (IN ta_change_t change,
IN int flags );

/% Register a handler for change in
authentication */
int ta_auth_change reg (IN int appid,
IN ta_auth_hdir_t hdlr);
typedef charx ta_keyname t;

/% Decrypt a buffer on the token with a key */
int ta_decr_buf (IN int appid,

IN ta_keyname_t keyid,

IN charx inbuf,

IN size_t inlen,

OUT charx*x* outbuf,

OUT size_tx outlen );

/% Encrypt a buffer on the token with a key */
int ta_encr_buf (IN int appid,
IN ta_keyname_t keyid,
IN charx inbuf,
IN size_t inlen,
OUT charx*x* outbuf,
OUT size_t* outlen );
This listing shows the API for Transient Authentication.
Three types of functions are included: registration with
the user-space server, registration of authentication call-

back functions, and buffer decryption using the token
and previously registered key.

Figure 4: Transient Authentication API

API is available. It is summarized in Figure 4.

On startup, each protected application registers itself
with the API, providing the its name and the user run-
ning it. We chose usernames to provide flexibility in
token identities. There is no reason why this username
cannot be a UID, or some other identity. The application
then installs a handler. The handler is called when the
token fails to respond to a request, revoking authentica-
tion, or when a departed token once again is in range,
reestablishing authentication.

Each master key acts as the capability to perform sen-
sitive actions on behalf of its user and application. Sim-
ple examples of such actions are reading cached pass-

words or credit card numbers. These items are small; it
is feasible to ship encrypted copies of them to the token,
decrypt them, and send them back. This can be done
directly with ta_encr_buf and ta_decr buf. The
application may decrypt and cache such items, but must
clear them when notified of token departure.

As implemented, the token contains a separate mas-
ter key for each application. However, this is flexible
and individual master keys could cover multiple applica-
tions, although this sacrifices the key isolation provided
by separate keys. Although master keys are never ex-
posed outside the token, bugs in applications could lead
to possible attacks on the master keys. Also, these mas-
ter keys should be escrowed by an administrative author-
ity if they are used for any persistent, non-recoverable
data. A similar escrow policy was proposed in the ZIA
file system [7].

Some things cannot be handled with direct encryption
and decryption. Passing large data elements directly to
the token for decryption would likely impose too great of
a performance penalty. To protect large elements, the ap-
plication must first create a sub-master key. Sub-master
keys cover large objects. Encrypted copies of the sub-
master can be stored at any time, while decrypted copies
can be kept only while authentication holds. Our idiom
for creating sub-master keys is to choose a random num-
ber as the encrypted key, and have the token “decrypt” it.
Although the system needs to check for resulting weak
keys, this ensures that a secret key is never generated
without the token’s involvement.

On startup, applications do not hold any sensitive
data; they must first either decrypt an item or obtain a
derived key. These decryption requests will fail if the to-
ken is out of range, leaving the application in a safe state.
Once the first item or key is successfully decrypted, the
user is considered authenticated. Thereafter, the run time
system tracks the token’s comings and goings, reporting
them to registered handler. The next three sections de-
scribe how we modified three user applications to use
the APIL.

5.3 Pretty Good Privacy (PGP)

Pretty Good Privacy [1], or PGP, uses the RSA asym-
metric encryption algorithm to digitally sign and encrypt
data. Users possess a pair of keys, one public and one
private. Data can be encrypted using the public key and
only someone who knows the private key can decrypt
it. The private key can also be used to sign the message,
and anyone can verify the signature using the public key.
PGP can be used to provide data integrity and privacy to
a great variety of applications, however we will focus on
email.

The most valuable secret held by PGP is the user’s
private key K. Commonly, K, is protected by a user’s
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password, P, denoted as P{K,}. When using an email
client, such as Pine, the user is prompted for the pass-
word on each signature or decryption operation. In
adding Transient Authentication services to PGP we
have chosen to preserve the original semantics of the
application and minimize modifications. To do this we
have protected K, with a random password, P, en-
crypted by a key on the token, Kpgp. This chain of
keys is written as Kpgp{P}, P{K,}. The modifica-
tions made to PGP are summarized in Figure 5.

When a user asks PGP to decrypt or sign a piece of
email, the private key, K, is required. PGP reads both
Kpap{P} and P{K,} from the user’s PGP key direc-
tory. It sends a decryption request to the token contain-
ing Kpgp{P} and the token returns P. P is used to
decrypt K, and is then thrown away. The signing or de-
cryption process uses K, for as long as the operation
takes, and the token is no longer needed.

Email encryption and decryption is a short process.
To keep the modifications to PGP as simple as possible,
any loss of authentication while using the private key
causes the process to exit. Any secrets contained in freed
memory can be protected by the zeroing of free pages in
the transparent protection kernel.

A mail program, such as pine, must employ PGP’s
output with care. For instance, if decrypted messages
are displayed to the screen, the mailer must take steps
to obscure that data upon loss of authentication. One
possible mechanism would be to reset the display to the
message index. Another option would be to redisplay
the encrypted form of the message and recover the de-
crypted version when the user returns.

5.4 OpenSSH

The Secure Shell [36] suite of tools provides authenti-
cated and encrypted equivalents for rsh and rcp, called
ssh and scp. Client applications authenticate servers
based on public key cryptography. Servers authenticate
users based on passwords or public keys. Data trans-
mitted during the session is encrypted using a key ex-
changed in the authentication stage. We have modified
an open-source secure shell, OpenSSH; a summary of
the modifications is shown in Figure 6.

OpenSSH contains two secrets that need protection,
the private key, K, used for authentication, and the ses-
sion key, S, used to encrypt data. The private key is cov-
ered by the same methods as PGP—the password, P, for
K, can be decrypted by the token’s Kggp.

The authentication phase generates the session key,
S, which is cached. Before the session continues,
OpenSSH must protect the session key. First, OpenSSH
creates a new “encrypted” key, K gspy{K}. It then uses
the token to decrypt the encrypted key, yielding K ;. Fi-
nally, OpenSSH uses K; to create an encrypted version
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User Password (P)

Private Key (K_p)

PGP Master KEY (K_PGP)

User Password (P)

This figure illustrates the modifications made to PGP.
The private key, K, of the user is protected by a pass-
word, P. P is encrypted by Kpgp, which is only
known to the token. Each time PGP needs to use K,
it asks the token to decrypt P, which enables the laptop
to decrypt K.

Figure 5: PGP Modifications

of the session key, denoted K,{S}, which it caches.

While the user remains present, .S remains decrypted
in memory for session encryption and decryption. If a
disconnection notification is received, OpenSSH flushes
both S and K, but retains K {S} and Kgsu{Ks}.
When the user returns, OpenSSH must decrypt K us-
ing the token. It can then decrypt S and continue the
session.

Each use of the session key requires a simple check
that S is still available. This check takes a small
amount of time, slowing data transmission by a negli-
gible amount. If S is encrypted, the transmission of data
blocks, and received data is held in the network buffer—
still encrypted—until the user returns. Any blocked ses-
sions are resumed where they left off. It may be possible
for unencrypted data to get passed between the terminal
and SSH after a disconnection. We are currently work-
ing on methods to prevent this from happening, such as
locking the keyboard first, rejecting all data from the ter-
minal, or returning an error to the pipe.

5.5 Mozilla Web Browser

Web browsers provide secure access to online accounts,
e-commerce, and web-based email. Consider a typi-
cal session for accessing a secure web server at a bank.
First, the browser creates a Secure Socket Layer (SSL)
session with the bank’s server. SSL provides session en-
cryption to an authenticated server. The user authenti-
cates himself by typing an account number and pass-
word into a web form. The browser often caches this
information to make future logins easier. The server then
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Session KeK (K_s)
{ Session Keys (S) J

User Password (P)
{ Private Key (K_p) }

SSH Master KEY (K_SSH)

{ User Password (P) }

Session KeK (K_s) }

Token
SSH Master Key (K_SSH)

This figure illustrates the modifications made to
OpenSSH. The user’s private authentication key is pro-
tected by a password P, which is encrypted by a key
Kssu. When the user is not present, the session keys,
S, are encrypted by a session key encrypting key K,
which is encrypted by Kssm, as well. When OpenSSH
needs to authenticate, it uses the token to decrypt P, giv-
ing it access to K. Similarly, when the user returns, the
token is used to decrypt K, giving access to the session
keys.

Figure 6: OpenSSH Modifications

sets a cookie on the user’s local machine to authenticate
future requests during this session. Note that SSL can
provide for client authentication, but the vast majority
of sites use cookies instead. Web pages, such as an ac-
count statement, can now be retrieved from the server
and remain available in the browser’s memory cache.
This example identifies several places where secret in-
formation resides in the browser’s address space: SSL
session keys, cached passwords, cookies and the mem-
ory cache of the browser.

We have added Transient Authentication to the
Mozilla web browser. Mozilla is a large and com-
plex piece of software, containing more than 250MB
of code and using several different programming lan-
guages. Some effort was made in the original source
code to separate confidential and non-confidential data;
however, this mostly pertained to secret keys themselves
and not to sensitive data such as cookies and the mem-
ory cache. Mozilla also includes a module, the Secret
Decoder Ring (SDR), that can be used to encrypt and
decrypt arbitrary data. The SDR module depends on a
user login to explicitly provide a decryption key. This
provides an ideal location to add Transient Authentica-
tion to the system. SSL keys are contained in the same
module as SDR, and therefore SSL uses these internal
encryption functions, rather than the external interface.
A diagram of the components in the modified browser is
shown in Figure 7.

Laptop
SDR Password (K_sdr) SSL Submaster (K_ssl)
. Memory
{ Cookles} {Passwords} { Cache } [ SSL Keys }

Mozilla Master Key (K_MOZ)

SDR Password (K_sdr) SSL Submaster (K_ssl)

Token

Mozilla Master Key (K_MOZ)

This figure depicts the modifications made to the
Mozilla web browser. Cookies, passwords and the mem-
ory cache, all depend on Mozilla’s Secret Decoder Ring
for encryption and decryption. The password for the ring
can be accessed using the token. SSL operates in the
same way, and the sub-master key used to encrypt SSL
keys can be obtained using the token.

Figure 7: Mozilla Modifications

SSL session keys are used frequently, so it would be
inefficient to decrypt them on every use. Instead they
remain decrypted until a token departure; they are then
encrypted in-place. SSL session keys could be flushed
and recreated when the user returns, however to replicate
the current semantics we keep the SSL session open.

Cached passwords are used very infrequently and can
be stored on disk. In this case, it makes sense to have
SDR decrypt the information each time it is used—
Mozilla already has this capability. Cookies are used
more frequently than stored passwords, but less than
SSL keys. Thus, either method could be used. We have
chosen to leave them encrypted and decrypt them us-
ing SDR on each use. The evaluation presented in Sec-
tion 6.4 shows that this overhead is tolerable. The web
cache is split into two parts, an in-memory cache and an
on-disk cache. Mozilla’s policy is to store data from SSL
connections only in memory and never on disk. All non-
SSL data is considered to be previously exposed on the
network and is not protected, although there is nothing
that precludes protecting this via file system encryption.
The items in the memory cache are potentially large in
size and frequently accessed. However, the memory
cache is of limited size and can be encrypted in bulk
very quickly. Thus to protect the cache, each item in the
memory cache retrieved from SSL connections is SDR-
encrypted on user departure and decrypted on user re-
turn. The password for SDR is erased when the user
leaves and retrieved from the token when the user re-
turns.
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5.6 Application-Aware Limitations

After making the modifications to these applications we
have noted several limitations. First, sensitive data may
no longer be reachable in the application. These include
secrets contained in leaked memory, due to program-
ming errors in the application, and memory that has been
freed. It is not possible to protect the former. However,
using a pre-loaded library, calls to realloc, free,
and delete can be intercepted and modified to zero
freed memory.

Second, if the application has written secret informa-
tion to the screen in a readable form, the application it-
self must directly obscure it; it can overwrite the data
with blank pixels or other non-protected information.
More generally, any secrets that have been passed to
other processes may not be protected if they do not em-
ploy the API as well. We are currently looking at adding
application-aware support to windowing systems, win-
dow managers, and interface toolkits.

The third difficulty is the most challenging: identify-
ing the secrets in the application. In the examples, we
have made an effort at identifying data structures con-
taining secret data. However, this is an ongoing process
that improves as we learn more about the structure of
these programs. Since the modifications were not made
by the original author of the applications, the effort is
possibly more error-prone. In particular, if the applica-
tion has made a copy of secret data that was not noticed
during our examination, it will not be protected. We are
currently looking at methods to analyze the flow of se-
crets in the memory space. One possibility may be to
use language support [20].

6 Evaluation

In evaluating Transient Authentication, we set out to an-
swer the following questions:

e What overhead does Transient Authentication im-
pose on the system?

e Can Transient Authentication secure applications
quickly enough to prevent attacks when the user de-
parts?

e Can Transient Authentication recover application
state before a returning user resumes work?

To answer these questions, we subjected our prototype
to a variety of benchmarks. For these experiments, the
client machine was an IBM ThinkPad X24, with 256 MB
of physical memory and a 1.1 GHz Pentium IIT CPU.
The token was a Compaq iPAQ 3870 with 64MB of
RAM. They were connected by a Bluetooth [19] wire-
less network running in PAN mode. All encryption,
except the authentication phase, is done using AES [9]
with 128 bit keys. The token is somewhat more powerful
and larger than current wearable devices. However, the
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Time, sec | Over Normal
Normal (small) 0.02 (0.00) -
With TA (small) 0.11 (0.01) 437%
Normal (large) 20.02 (1.24) -
With TA (large) | 20.06 (0.59) 0.21%

Table 1: PGP Signing and Encrypting

rapid advancements in embedded, low-power devices
makes this a realistic token in the near future. One pos-
sibility would be to use the IBM Linux watch [22],

6.1 Transparent Protection

Transparent protection has no effect on system perfor-
mance while the user is present. To measure the cost of
protection and recovery we allocated 200MB of memory
to a user process, occupying all available physical mem-
ory. The machine was also running a standard set of
user processes, including a window manager and several
shells—a total of 38 user processes not including those
used for Transient Authentication and Bluetooth. We
disconnected the token and reconnected it and measured
the time it took to secure and recover the machine. Se-
curing the machine required 632 microseconds to freeze
all the processes, 8.92 seconds to encrypt 215.9MB of
in-memory state, and 6.00 milliseconds to zero 2.25MB
of free pages. On recovery, the system required 7.72
seconds to decrypt the same 215.9MB of state, and 21.2
milliseconds to unfreeze the processes. Thus, the system
can encrypt state at 24MB/s, zero pages at 375 MB/s,
and decrypt state at 28 MB/s. In total the machine can
secure and recover our machine in less that 10 seconds
each.

6.2 PGP

We subjected PGP to 50 trials of signing and encrypt-
ing two files, one 10kB in size and one 10MB. This is
to simulate the two common cases of encrypting small
email and large messages containing attachments. The
mean and standard deviation for each experiment are re-
ported in Table 1.

Recall that Transient Authentication-enabled PGP
uses the token only for initial authentication. Therefore
the only impact on performance is the additional over-
head of using the token to decrypt the private key pass-
word. Both large and small files only require a small
amount of overhead, although the effects are exagger-
ated for the otherwise fast operations on short files. In
either case, the user is unlikely to notice the difference.

6.3 OpenSSH

The modified OpenSSH uses Transient Authentication
for initial authentication and for protection of the session
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key. To measure the impact on a user’s session we used
a script to provide a typical user input to an ssh session.
The script logs into another machine and runs a series of
user commands: pine, opening a mailbox and a single
message, 1s of the home directory, running emacs, a
find on a small directory, and Logout. Between each
user input there is an additional think time of two sec-
onds. The cost of acquiring the key to login accounts
for the majority of the overhead in the typical case. To
measure this, we ran a second experiment: logging into
a remote machine 20 times and computed the average
overhead. A third experiment measures the overhead of
checking for a decrypted session key on each key by us-
ing scp to copy a 10 MB file across the network for
20 trials. The results for each of these experiments are
shown in Table 2.

Time, sec | Over Normal (%)
Normal (session) | 41.01 (0.09) -
With TA (session) | 41.31 (0.15) 0.72%
Normal (login) 0.47 (0.00) -
With TA (login) 0.72 (0.03) 52.9%
Normal (scp) 18.96 (3.88) -
With TA (scp) 19.21 (2.74) 1.31%

Table 2: SSH Experiments

The results show that typical user sessions are almost
unaffected by use of the token—any overhead is dwarfed
by think-time and the length of the session. The login
micro-benchmark confirms that login accounts for most
of the overhead. Long sessions also mask the additional
login time, shown by the statistically identical times for
modified and unmodified scp. We also want to know
how long it takes to secure and restore ssh session keys.
Each ssh session has an incoming key and an outgoing
key and each are recovered separately. We instrumented
ten disconnections and reconnections of the token. The
results show a negligible amount of time needed for pro-
tection and 130 milliseconds, with a standard deviation
of 30 microseconds, for recovery. Protecting ssh only
requires erasing the session key. Recovering the session
key requires two round-trips to the token to recover the
outgoing and incoming session keys. An alternate im-
plementation could recover both session keys simulta-
neously, but the cost is already small enough.

6.4 Mozilla

The only overhead to Mozilla’s normal operation is the
use of stored password data and cookies. Each of these
are encrypted and decrypted on each use. Passwords are
already SDR-encrypted and decrypted by Mozilla; our
version does not add any overhead to this. To benchmark
the cost of cookies, we loaded three popular pages and

Overhead,sec | Load Time,sec
CNN 0.010 (.004) 3.1
Ebay 0.035 (.001) 1.7
ESPN 0.134 (.004) 3.8

Table 3: Mozilla Cookie Overhead

measured the total overhead of encryption and decryp-
tion. To put these costs in context, we also report the
fastest load time we observed for each page. The cookie
store was cleared between each trial and the mean and
standard deviation are reported in Table 3. For these
pages, the additional overhead of encrypting and de-
crypting cookie data is small enough to be masked by
page loading times.

We also measured the amount of time required to pro-
tect and restore Mozilla when the user leaves. To mea-
sure this we connected to two secure sites, a bank and
our own department’s secure web server. We discon-
nected the token and measured the time to safety, then
reconnected the token and measured the recovery time.
The results for each component are shown in Table 4.
We also report the amount of data in the memory cache,
and the amount of data consumed by SSL keys.

Protect, sec | Restore, sec
Memory Cache | 0.222 (0.002) | 0.222 (0.004)
(518 kB)
SSL Keys 0.003 (0.000) | 0.074 (0.006)
(788 bytes)
SDR N/A | 0.066 (0.005)
(16 byte key)

Table 4: Mozilla Protection and Recovery

Recall that the contents of the memory cache and
the SSL keys are encrypted when the user leaves. The
memory cache, stored passwords, and cookies depend
on SDR for encryption support, so SDR’s key must be
flushed on departure and recovered on return. Flushing
the key takes a negligible amount of time. SSL uses
its own key for protecting the SSL keys, and must re-
cover it when the user returns. The total time to secure
and restore Mozilla is less than four tenths of a second.
Compared to the amount of time between a user entering
range and resuming work, this cost will not be visible.

7 Related Work

Tokens are small devices providing authentication infor-
mation for the user. A user must physically possess
the token to authenticate to a local or remote machine.
Examples of hardware tokens include SecurelD [29],
USB tokens, and smartcards [2]. SecurelDs require
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the user to read a password from the token and type it
into the device they are authenticating to. They utilize
one-time passwords [17] solving the problems that tra-
ditional password systems have. USB tokens and smart-
cards are inserted into the device and either transfer au-
thentication information to the machine or must remain
attached for continued operation.

Unfortunately, tokens suffer from a fundamental
weakness in reauthentication. The user must frequently
reauthenticate, or manually logout to ensure that the
device has not been stolen while authenticated, thus
caching credentials. Constant reauthentication can be
accomplished by attaching the token to the device, un-
fortunately this encourages a user to leave the token with
the device, providing little protection.

Several efforts have used proximity-based hardware
tokens to detect the presence, or absence, of an autho-
rized user. Landwehr [18] proposes disabling hardware
access to the keyboard and mouse of a machine when
the trusted user is away. A commercial alternative, Xy-
Loc [13], has a software-based guard on the protected
machine that refuses access when the token is absent.
These systems approximate Transient Authentication,
but do not adhere to its first principle. The capability
to act in these systems does not reside on the token; the
token is merely advisory. Since the computing system
is still capable of carrying out a sensitive operation, it
could be forced to do so. Sensitive operations may be
relegated to a secure coprocessor [12], rendering these
physical attacks more difficult.

Rather than use hardware tokens, one could in-
stead use biometrics. However, biometric authentica-
tion schemes intrude on users in two ways. The first
is the false-negative rate: the chance of rejecting a valid
user [27]. For face recognition, this ranges between 10%
and 40%, depending on the amount of time between
training and using the recognition system. For finger-
prints, the false-negative rate can be as high as 44%, de-
pending on the subject. The second intrusion stems from
physical constraints. For example, a user must touch
a special reader to validate his fingerprint. Such bur-
dens encourage users to disable or work around biomet-
ric protection. A notable exception is iris recognition.
It can have a low false-negative rate, and can be per-
formed unobtrusively [24]. However, doing so requires
three cameras—an expensive and bulky proposition for
a laptop.

For Transient Authentication to succeed, a comput-
ing device must forget sensitive information, typically
through encryption. Thereafter, only the token can pro-
vide the key to recover this information. Such tech-
niques have also been applied to revocable backups [3]
and secure execution of batch jobs [30], and are some-
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times referred to as non-monotonic protocols [31]. It can
be difficult to completely erase previously stored values,
whether in memory or on disk [15]. However, given a
small amount of easily erasable media one can solve this
problem for a much larger, more persistent store [10].

ZIA, a cryptographic file system, uses Transient Au-
thentication for file data protection [7]. ZIA imposes
overheads of less than 10% for representative workloads,
and imposes no new usability burdens. Unfortunately,
ZIA does not protect data once an application has read it.
Application data that is paged out can be protected [28],
leaving only in-memory state vulnerable to attack.

The Resurrecting Duckling security policy [34] pro-
poses a set of policies for binding wireless devices to an
owner. Our approach is similar in that laptops and tokens
are bound by a user action, and trusted until a timeout
period. In the duckling parlance, the binding process is
“imprinting” and the authentication timeout causes to-
ken “assassination”. Bluetooth [19] uses similar tech-
niques to “bond” two devices in a trust relationship and
bonds can be removed manually.

8 Conclusion

Mobile devices are susceptible to loss or theft, leaving
the state of running applications vulnerable to data ex-
posure. Current methods of authentication do not solve
this problem since authentication is both infrequent and
persistent. As a solution to this problem, we propose
Transient Authentication, which allows a system to con-
stantly reaffirm the capability to read sensitive data from
memory, while giving the user no reason to turn protec-
tions off.

In this paper, we have demonstrated two protection
methods that use Transient Authentication support. One
mechanism is transparent, operating without application
modification. The second is an API that gives greater
flexibility to application designers in dealing with au-
thentication. The evaluation of these two techniques
shows that transparent protection can both secure and re-
cover the entire physical memory of the machine within
10 seconds and that the API can be used to secure a com-
plex application within four tenths of a second.
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