
USENIX Association

Proceedings of MobiSys 2003:
The First International Conference on

Mobile Systems, Applications, and Services

San Francisco, CA, USA
May 5-8, 2003

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 187

Design and Implementation of a Framework for Efficient and Programmable
Sensor Networks

Athanassios Boulis, Chih-Chieh Han, and Mani B. Srivastava
Networked and Embedded Systems Laboratory (NESL), EE Dept. UCLA

{boulis, simonhan, mbs}@ee.ucla.edu

Abstract – Wireless ad hoc sensor networks have
emerged as one of the key growth areas for wireless
networking and computing technologies. So far these
networks/systems have been designed with static and
custom architectures for specific tasks, thus providing
inflexible operation and interaction capabilities. Our
vision is to create sensor networks that are open to
multiple transient users with dynamic needs. Working
towards this vision, we propose a framework to define
and support lightweight and mobile control scripts that
allow the computation, communication, and sensing
resources at the sensor nodes to be efficiently
harnessed in an application-specific fashion. The
replication/migration of such scripts in several sensor
nodes allows the dynamic deployment of distributed
algorithms into the network. Our framework,
SensorWare, defines, creates, dynamically deploys, and
supports such scripts. Our implementation of
SensorWare occupies less than 180Kbytes of code
memory and thus easily fits into several sensor node
platforms. Extensive delay measurements on our
iPAQ-based prototype sensor node platform reveal the
small overhead of SensorWare to the algorithms (less
than 0.3msec in most high-level operations). In return
the programmer of the sensor network receives
compactness of code, abstraction services for all of the
node’s modules, and in-built multi-user support.
SensorWare with its features apart from making
dynamic programming possible it also makes it easy
and efficient without restricting the expressiveness of
the algorithms.*

I. INTRODUCTION

Wireless ad-hoc sensor networks (WASNs) have
drawn a lot of attention in recent years from a diverse set
of research communities. Researchers have been mostly
concerned with exploring applications such as target
tracking and distributed estimation, investigating new
routing and access control protocols, proposing new
energy-saving algorithmic techniques for these systems,
and developing hardware prototypes of sensor nodes.

Little concern has been given on how to actually
program the WASN. Most of the time, it is assumed that

* This work was partially supported by DARPA SensIT program,
by ONR MinuteMan project, and by the NSF funded UCLA
Center for Embedded Networked Sensing.

the proposed algorithms are hard-coded into the memory
of each node. In some platforms the application developer
can use a node-level OS (e.g. TinyOS) to create the
application, which has the advantages of modularity,
multi-tasking, and a hardware abstraction layer.
Nevertheless the developer still has to create a single
executable image to be downloaded manually into each
node. However, it is widely accepted that WASNs will
have long-deployment cycles and serve multiple transient
users with dynamic needs. These two features clearly
point in the direction of dynamic WASN programming.

What kind of dynamic programmability do we want
for WASNs? Having a few algorithms hard-coded into
each node but tunable through the transmission of
parameters, is not flexible enough for the wide variety of
possible WASN applications. Having the ability to
download executable images into the nodes is not feasible
because most of the nodes will be physically unreachable
or reachable at a very high cost. Having the ability to use
the network in order to transfer the executable images to
each and every node is energy inefficient (because of the
high communication costs and limited node energy) and
cannot allow the sharing of the WASN by multiple users.
What we ideally want is to be able to dynamically
program the WASN as a whole, an aggregate, not just as a
mere collection of individual nodes. This means that a
user, connected to the network at any point, will be able to
inject instructions into the network to perform a given
(possibly distributed) task. The instructions will task
individual nodes according to user needs, network state,
and physical phenomena, without any intervention from
the user, other than the initial injection. Furthermore, since
we want multiple users to use the WASN concurrently,
several resources/services of the sensor node should be
abstracted and made sharable by many users/applications.

One approach of programming the WASN as an
aggregate is a distributed database system (e.g., [21]).
Multiple users can inject database-like queries to be
autonomously distributed into the network. The WASN is
viewed as a distributed database and the query's task is to
retrieve the needed information by finding the right nodes
and possibly aggregate the data as they are routed back to
the user. This approach ignores though the fact that
information is not always resident in nodes but sometimes
has to be retrieved by custom collaboration among a
changing set of nodes (e.g., target tracking). Thus even

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association188

though the database model is programming the network in
the desirable way, it is not expressive enough to
implement any distributed algorithm.

The other approach to WASN programmability that is
used by our framework, and is gaining momentum lately,
is the "active sensor" approach. This term was used in
[20], to describe a family of frameworks that try to task
sensor nodes in a custom fashion, much like active
networking frameworks task data network nodes. The
difference is that while active networking tasks are
reacting only to reception of data packets, active sensor
tasks need to react to many types of events, such as
network events, sensing events, and timeouts. Active
sensor frameworks abstract the run-time environment of
the sensor node by installing a virtual machine or a high-
level script interpreter at each node. For example, single
instructions of the scripts (or bytecodes) can send packets,
or read data from the sensing device. Moreover, the scripts
(or bytecodes) are made mobile through special
instructions, so nodes can autonomously task their peers.

The difficulty in designing an active sensor framework
is how to properly define the abstraction of the run-time
environment so that one achieves compactness of code,
sharability of resources for multi-user support, portability
in many platforms, while at the same time keeping a low
overhead in delays and energy. Our proposal of such a
framework, called SensorWare, employs lightweight and
mobile control scripts that are autonomously populated in
sensor nodes after a triggering user injection. The sensor
node abstraction was made in such a way so that multi-
user accessibility is given to all of the node's modules
(e.g., radio, sensing devices) while also creating other
services (e.g., real-time timers). Considerable attention
was given to the portability and expandability of the
framework by allowing the definition of new modules. By
choosing the right level of abstraction the scripts are
compacted to 10s-100s of bytes. For the non-trivial
application examined in section V.A, the SensorWare
script is smaller than the code of other frameworks with
comparable capabilities in algorithm expressiveness (e.g.
other active sensors scripts, binary images).

Our implementation and porting of SensorWare in
several sensor node platforms shows that the size of the
framework is small enough (<180Kbytes) to fit in most
current sensor node designs. Moreover, extensive
measurements in our prototype iPAQ-based sensor node
platform reveal the delay and energy overheads of
SensorWare. Every SensorWare script command has a
delay less than 0.3msec showing the limits of real-time
operation. Note that the script commands have a high-
level of abstraction (i.e., each command performs multiple
low-level operations). Experiments with both compiled
and interpreted versions of the scripts are conducted in

order to explore the energy trade-off space between
different representations of an algorithm.

Section II discusses in depth the nature of WASNs,
approaches to WASN programmability, and the general
idea of our approach. Section III presents related work.
Section IV presents SensorWare's architecture. Section V
illustrates how is SensorWare ported to a platform and
explains a moderately large script solving a real problem.
Section VI presents our current implementation and the
measurements we acquired through it. Finally, section VII
concludes the paper.

II. MOTIVATION AND BACKGROUND

A. Wireless Ad hoc Sensor Networks

Figure 1 shows an example of a WASN, highlighting
its main characteristics. An ad hoc network of miniature,
resource-limited, static, wireless, sensor nodes is being
used to monitor a dynamic physical environment. The use
of low power communication and the need for diversity in
sensing necessitates a multi-hop, distributed architecture
[24]. Typically a user queries the network (consider the
term “query” in the broad sense, not just database query),
the query triggers some reaction from the network, and as
the result of this reaction the user receives the information
needed. The reaction to the query can vary from a simple
return of a sensor value, to a complex unfolding of a
distributed algorithm among some or all of the sensor
nodes, such as a collaborative signal processing algorithm
or a distributed estimation algorithm. Furthermore, there
are multiple users who are transiently connected to the
network; each having different needs in requested
information.

Figure 1: Wireless Ad-hoc Sensor Network

 Collaborative
processing among

sensor nodes

Useful
information

Static
sensor node

Transient
mobile users

User query

event

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 189

These systems are quite different from traditional
networks. First, they have severe energy, computation,
storage, and bandwidth constraints. Second, their overall
usage scenario is quite different from traditional networks.
There is not a mere exchange of data between users and
nodes. The user will rarely be interested in the readings of
one or two specific nodes. The user will be interested in
some parameters of a dynamic physical process. To
efficiently achieve this, the nodes have to form an
application-specific distributed system to provide the user
with the answer. Moreover, the nodes that are involved in
the process of providing the user with information are
constantly changing as the physical phenomenon is
changing. Therefore the user interacts with the system as a
whole. The WASN is not there to connect different parties
together as in the traditional networking sense but to
provide information services to users.

As a consequence, efficiently designed WASNs
operate in a fashion where a node's actions are affected
largely by physical stimuli detected by the node itself or
nearby nodes. Frequent long trips to the user are
undesirable because they are time and energy consuming.
This decentralized (i.e. not all traffic flows to/from user),
autonomous (i.e., user out-of-the-loop most of the time)
way of operating, is called “proactive computing” (as
opposed to interactive) by David Tennenhouse [29]. We
also adopt the term “proactive” throughout the paper to
denote an autonomo us and non-interactive nature.

Efficiently designed WASNs are application-specific
distributed systems that require a different distributed
proactive algorithm as an efficient solution to each
different application problem. Given the nature of SNs,
one can coarsely define two classes of problems in their
design. First, the application-specific problem: How does
one find the most efficient distributed algorithm for a
particular problem? Second, the generic problem: How
does one dynamically deploy different algorithms into the
network, what is the programming model that will
implement these algorithms, and what general support
does one need from the framework? The second class of
problems is the focus in this paper, emphasizing in the
description of our own framework, i.e., SensorWare.

B. Approaches to WASN programmability

As mentioned in the introduction, a popular approach
to dynamic WASN programmability views the WASN as
a distributed database. The data exist in the network and
have to be found, probably processed in predefined ways
(e.g., aggregated) and delivered to the user. Heidemann et
al. [10], closely follow this model without explicitly
employing traditional database terms and mechanisms .
They focus on a data-driven low-level naming scheme
based on attributes. A query describes the data it is
looking for and directed diffusion [15] is used as the

underlying routing protocol. The data can be processed
with predefined filters as they are routed back to the user.
Other systems , such as Cougar [1], focus more on
transferring the SQL semantics of traditional databases to
the distributed setting of WASNs. In this case, the naming
system developed in [10] is replaced by an SQL
equivalent. Each node is equipped with a fixed database
query resolver. As queries arrive to a node, the local
resolver decides on the best, distributed plan to execute the
query and distributes the query to the appropriate nodes.
The more recent and probably more advanced system that
follows the database model is TinyDB [21] developed in
Berkeley. Their main focus is aggregate queries (e.g., min,
max, avg) thus they provide special optimizations for them
(e.g., exploit the shared medium, perform hypothesis
testing).

The strong point of the database approach is that it
offers an intuitive way to extract information from a
WASN hiding the complications of embedded and
distributed programming. The model’s limitation though
is that there are only pre-defined ways to process the data,
which implies that only certain types of applications (i.e.
applications that were studied by the specific researchers
and are mainly aggregation applications) are addressed in
the most efficient way by the database model. If a new
way to process and react to the data is needed by
application N&U (New-and-Unexplored), this can only be
done at the user node (assuming that the human-controlled
user node is easily upgradeable). Consequently, the
algorithmic pattern to address application N&U under the
database model will be an iteration of the generalized
steps: 1) partially processed data arriving to the user node,
2) data undergoing custom processing and 3) based on the
result a new database query is issued. In most cases, this is
not the structure of the most efficient algorithm to solve an
application problem.

C. SensorWare

Our proposal seeks to remedy the limited flexibility
problem at the expense of increased responsibility for the
programmer. SensorWare provides a language model
powerful enough to implement any distributed algorithm
while at the same time hiding unnecessary low-level
details from the application programmer and providing a
way to share the resources of a node among many
applications and users that might concurrently use the
WASN. A distributed algorithm can be viewed as a set of
collaborating programs executing in a corresponding
(often time-varying) set of nodes. In SensorWare these
programs are sensor-node control scripts. The sensing,
communication, and signal-processing resources of a node
are exposed to the control scripts that orchestrate the
dataflow to assemble custom protocol and signal
processing stacks.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association190

Equally important is the role of SensorWare in the
dynamic deployment of the distributed algorithms into the
network. Usually this means that a distributed algorithm
has to be incorporated in several sensor nodes, which in
turn means that these sensor nodes have to be dynamically
programmed. A user-friendly and energy-efficient way of
programming the nodes keeps the user out-of-the-loop
most of the time by allowing sensor nodes to program
their peers. By doing so, the user does not have to worry
about the specifics of the distributed algorithm (because
the information on how the algorithm unfolds lies within
the algorithm), and the nodes save communication energy
(because they interact with their immediate neighbors and
not with the user node through multi-hop routes). In order
to facilitate the user-friendly and energy-efficient dynamic
deployment of an algorithm the scripts are made mobile
using special language commands and directives. A script
can replicate or migrate its code and data to other nodes,
directly affecting their behavior. The replication or
migration of a script will be called “population” in the
paper. The user "injects" the query/program into the
network, and the query autonomously unfolds the
distributed algorithm into the nodes that should be
affected.

A usage scenario can be like the following: A user
sends a query to the sensor network. The query is a script,
a state machine in its simplest form, which is injected to
one or more sensor nodes. The script will describe among
other things how it is going to populate itself to other
nodes. The process of population can continue depending
on events and the current state. For example as the events
of interest are moving to a different area, the scripts can
move along with them, possibly trying to predict their next
move. The populated scripts will collaborate among
themselves in order to extract the information needed by
the user, and when this information is acquired it is sent
back to the user. Although the scripts are defining
behavior at the node level, SensorWare is not a node-level
programming language. It can be better viewed as an
event-based language since the behaviors are not tied to
specific nodes but rather to possible events that depend on
the physical phenomena and the WASN state.

It should be also noted that this model comes at a cost,
compared to the database model. The programmer has to
explicitly take care of the distribution of the algorithm, so
only the complications of embedded programming are
hidden.

III. RELATED WORK

SensorWare falls under the family of active sensor
frameworks. Its closest relatives in the traditional
networks realm are Mobile Agent frameworks. Other
active networking frameworks exhibit similarities, such as
the scripting abstraction. In this section we only consider

work that tries to make WASNs programmable using
active sensor concepts . Therefore, general mobile-agent
and active-network platforms are not presented, nor any
distributed database systems for WASNs are further
discussed. The interested reader can refer to [2] for a
comprehensive comparison of SensorWare with mobile
agent platforms, as well as with an active networking
framework called PLAN [11].

An active sensor framework for WASNs is currently
being developed in Berkeley under the name Maté. Maté
[20] is a tiny virtual machine build on top of TinyOS [13].
TinyOS is an operating system, designed specifically for
the Berkeley-designed family of sensor nodes, generically
named "motes" [12][13]. Maté's goal is to make a WASN
made of motes dynamically programmable in an efficient
manner. This includes the capability to dynamically
instruct a mote to execute any program, and expressing
this program in a concise way. They achieve this by
building a virtual machine (VM) for the motes. The virtual
machine supports a very simple, assembly-like language,
to be used for all needs of mote-tasking. Programs (called
capsules) written on the VM language can be injected to
any node and perform a task. Furthermore the capsules
have the ability to self-transfer themselves by using
special language commands. This model seems extremely
like our own in SensorWare. Indeed, Maté shares the same
goals as SensorWare as well as the same basic principles
to achieve these goals. Differences appear though when
one looks thoroughly into each platform's implementation.

Maté, like its substrate TinyOS, was built with a
specific platform in mind: the extremely resource-limited
mote. The main restriction for the developer of mote-
targeted frameworks (such as an OS or a VM) is memory.
The newest version of a mote called mica offers
128Kbytes of program memory and 4Kbytes of RAM. An
older version called rene2 has 16Kbytes of program
memory and 1Kbyte of RAM. Maté, with an ingenious
architecture, supports both platforms. Being so memory
constrained, Maté has to sacrifice some features that
would make programming easier and more efficient. First,
a stack-based architecture with an ultra-compact
instruction set (all instructions are 1 byte) is adopted
which is reminiscent of a low-level assembly language or
the byte code of the Java VM. This kind of model makes
programming of even medium-sized tasks difficult.
Furthermore, due to the ultra-compact instruction set,
many 1-byte instructions are needed to express a medium
complexity algorithm, which in turn leads to large
programs, compared to a higher-level, more abstracted
scripting language. The size of programs is important
since the code is transmitted/received using the radios of
the nodes spending energy for every transmitted/received
bit. Second, the behavior of a program when radio packets
are received is rather rigid. A handler to process such
events is essentially stateless in Maté. Thus, if a new

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 191

pattern of packet processing is needed, a new handler has
to be transferred through the network. This imposes an
overhead in energy consumption and execution time.
Third, because there is only one context (i.e., handler) per
event (e.g., clock tick, reception of packet) multiple
applications cannot run concurrently in one mote.

SensorWare cannot fit in the restricted memory of a
mote. SensorWare targets richer platforms that we believe
are going to be the mainstream in sensor node design in
the immediate future. Such platforms (e.g., [26]) include a
1Mbyte of program memory and 128Kbytes of RAM.
Having the luxury of more memory, SensorWare supports
easy programming with a high-level scripting language, as
well as concurrent multi-tasking of a node so that multiple
applications can concurrently execute in a WASN. The
programming model and properties of SensorWare are
extensively discussed in section IV.

Particularly instructive is to study the relationship
between SensorWare’s mobile scripting approach and the
mobile code approach in Penn State’s Reactive Sensor
Network [25] (RSN) project under DARPA’s SenseIT
program [27]. RSN’s focus is on providing an architecture
whereby sensor nodes can: (i) download executables and
DLLs, identified by URLs, from repositories or their
cache, (ii) execute the program at the local node using
input data which itself may be remotely located and
identified by a URL, and (iii) write the data to a possibly
remote URL. The RSN model is in essence Java’s applet
model generalized to arbitrary executables and data, and
combined with a lookup service. The focus of RSN is
quite different from SensorWare. Differences include: (i)
RSN provides a general lookup and download service, (ii)
RSN does not seek to provide a scripting environment
with an associated sensor node resource model for use by
scripts, and (iii) RSN’s notion of mobility is download
oriented, as opposed to SensorWare’s approach of a script
which can autonomously spawn scripts to remote nodes.
RSN views sensor nodes as network switches with
dynamically adaptable protocols, trying to directly map
the motivation and methods of classical active networks
into sensor networks. Unfortunately such an approach
does not address the basic problems of sensor networks.
Although one might be able to construct some distributed
applications using the above scheme, by no means the
creation and diffusion of distributed proactive applications
into the network is supported by its architecture.

Finally, extremely relevant is the work that is being
conducted in University of Delaware by Jaikaeo et al. [17]
called SQTL (Sensor Querying and Tasking Language).
Having the same goals as our research, but starting from a
different point (database-like queries), the researchers end
up with the same basic solution as SensorWare, namely a
tasking language for sensor networks. To lively
demonstrate the relevance to our work we are quoting an

excerpt from [17].”We model a sensor network as a set of
collaborating nodes that carry out querying and tasking
programmed in SQTL. A frontend node injects a message,
that encapsulates an SQTL program, into a sensor node
and starts a diffusion computation. A sensor node may
diffuse the encapsulated SQTL program to other nodes as
dictated by its logic and collaboratively perform the
specified querying or tasking activity.”

SQTL fits in a more general architecture for sensor
networks called SINA (Sensor Information Networking
Architecture) [28]. SINA uses both SQL-like queries as
well as SQTL programs. Some of its main features
include: 1) hierarchical clustering, 2) attribute-based
naming, 3) a spreadsheet paradigm for organizing sensor
data in the nodes. SQL-like queries use these three
features to execute simple querying and monitoring tasks.
When a more advanced operation is needed though, SQTL
plays the essential role by programming (or “tasking” as
the researchers from Delaware call it) the sensor nodes
and allowing proactive population of the program. In
SINA, SQTL is used as an enhancement of simple SQL-
like queries. The framework is there mainly to support the
queries not the mobile scripts. As a consequence, SQTL
scripts do not have all the provisions that SensorWare
scripts have. The most important of them are: 1) Rich
sensor-node-related APIs (e.g. for networking, sensing). 2)
Diverse rules for mobility. A SQTL script can only specify
the nodes to be populated. SensorWare first checks if the
script is already in the remote node and offers a multitude
of possibilities depending on how many instances of the
script are already running in the remote node. 3) Code
modularity in order to share functionality and avoid
redundant code transfers 4) Support for multi-user scripts.
5) Resource management in the presence of multiple
scripts running in the node.

IV. ARCHITECTURE

First, we show SensorWare's place inside the overall
sensor node's architecture (Figure 2). The architecture of a
sensor node can be viewed in layers. The lower layers are
the raw hardware and the hardware abstraction layer (i.e.,
the device drivers). An operating system (OS) is on top of
the lower layers. The OS provides all the standard
functions and services of a multi-threaded environment
that are needed by the layers above it. The SensorWare
layer for instance, uses those functions and services
offered by the OS to provide the run-time environment for
the control scripts. The control scripts rely completely on
the SensorWare layer while populating around the
network. Static applications and services coexist with
mobile scripts. They can use some of the functionality of
SensorWare as well as standard functions and services of
the OS. These applications can be solutions to generic
sensor node problems (e.g., location discovery), and can

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association192

be distributed but not mobile. They will be part of the
node's firmware.

Figure 2: The general sensor node architecture

Two things comprise SensorWare: 1) the language,
and 2) the supporting run-time environment. The next two
subsections describe each of the parts in detail. A third
subsection discusses issues of portability and
expandability, and presents the final SensorWare code
structure. Finally, the fourth subsection discusses the
issues of addressing and routing in SensorWare.

A. The language

As discussed earlier, the basic idea is to make the
nodes programmable through mobile control scripts. Here
the basic parts that comprise the language will be
described as well as the programming model that emerges
from the parts.

First, a scripting language needs proper
functions/commands to be defined and implemented in
order to use them as building blocks (i.e., these will be the
basic commands of the scripts). Each of these commands
will abstract a specific task of the sensor node, such as
communication with other nodes, or acquisition of sensing
data. These commands can also introduce needed
functionality like moving a script to another node or
filtering the sensing data through a filter implemented in
native code. Second, a scripting language needs constructs
in order to tie these building blocks together in control
scripts. Some examples include: constructs for flow
control, like loops and conditional statements, constructs
for variable handling and constructs for expression
evaluation. We call all these constructs the "glue core" of
the language, as they combine several of the basic building
blocks to make actual control scripts.

Figure 3 illustrates the different parts of the
SensorWare language. Several of the basic
commands/functions are grouped in theme-related APIs.

We use the term API in a generic fashion, to denote a
collection of theme-related functions that provide a
programming interface to a resource or a service. As the
figure hints, there is a question on what happens when we
are dealing with different sensor node platforms that may
support different/additional kinds of modules. Do we
allow the set of APIs to be expandable? If so, who has the
authority to name and define new commands? We will
return to this topic with a solution in subsection C.

Figure 3: The language parts in SensorWare

As a glue core we can use the core from one of the
scripting languages that are freely available, so we are not
burdened with the task of building and verifying a core.
One such scripting language, that is well suited for
SensorWare's purposes, is Tcl [22], offering great
modularity and portability. Thus, the Tcl core is used as
the glue core in the SensorWare language. All the basic
commands, such as wait, or the ones included in the
APIs, are defined as new Tcl commands using the
standard method that Tcl provides for that purpose.

The set of APIs is basically a way of easily exporting
services and shared resources to the scripts. For example,
the Timer API defines and sets/resets real time timers,
while the Mobility API provides the basic functions to the
scripts so they can transfer themselves around the
network.

A.1 The general programing model

As discussed earlier, according to the proactive
distributed model the scripts will look mostly like state
machines that are influenced by external events. Such
events include network messages from peers, sensing data,
and expiration of timers. The programming model that is
adopted is equivalent to the following: An event is
described, and it is tied with the definition of an event
handler. The event handler, according to the current state,
will do some (light) processing and possibly create some
new events or/and alter the current state. Figure 4
illustrates SensorWare's programming model with an
example.

SensorWare

O S

Hardware

HW abstraction
layer

Scripts
Apps,

Services

SensorWare

O S

Hardware

HW abstraction
layer

Scripts
Apps,

Services

Sensor node1 Sensor node2

Transient external user can inject script
Message

exchanging

Code
migration

The glue core
(The basic script

interpreter)

Mobility API

Radio API

Sensor 1 API

wait command

id command

Timer API

Extensions to the core

Sensor 2 API GPS API Optional
modules . . .

. . .

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 193

Figure 4: The programming model

The behavior described above is achieved through the
wait command. Using this command, the programmer
can define all the events that the script is waiting upon, at
a given time. Examples of events that a script can wait
upon are: i) reception of a message of a given format, ii)
traversal of a threshold for a given sensing device reading,
iii) filling of a buffer with sensing data of a given
sampling rate, iv) expiration of several timers. When one
of the events declared in the wait command occurs, the
command terminates, returning the event that caused the
termination. The code after the wait command processes
the return value and invokes the code that implements the
proper event handler. After the execution of the event
handler, the script moves to a new wait command, or
more usually it loops around and waits for events from the
same wait command.

B. The run-time environment

Equally important to the programming model is the
run-time environment that supports the scripts. Figure 5
illustrates the basic tasks performed by the environment.
We separate tasks into fixed and platform-specific. The
fixed tasks are always included in a SensorWare
implementation, while the platform-specific depend on the
existence of specific modules and services in the node
platform. Again, the problem of expandability and
portability appears. Do we allow any developer to
arbitrarily define and create any tasks, according to the
specific needs of each platform? Subsection C addresses
this question. The Script Manager is the task that accepts
all requests for the spawning of new scripts. It forwards
the request to the Admission Control task and upon
receiving a positive reply, it initiates a new thread/task
running a script interpreter for the new script. The Script

Manager also keeps any script-related state such as script-
data for as long as the script is active.

Figure 5: Tasks in the SensorWare run-time
environment

The Admission Control and Policing of Resource
Usage task, as the name reveals, takes all the script
admission decisions, makes sure that the scripts stay under
their resource contract, and most importantly checks the
overall energy consumption. If the overall consumption
exhibits alarming characteristics (e.g., the current rate
cannot support all scripts to completion) the task
selectively terminates some scripts according to certain
SensorWare policies. For more information on resource
management the interested reader can refer to [4].

The run-time environment also includes "Resource
Abstraction and Resource Metering" tasks (sometimes
referred to as "Resources Handling" tasks for brevity).
Each task supports the commands of the corresponding
APIs and manages a specific resource. There are two fixed
tasks in this category since every platform is assumed to
have at least one radio and a timer service. The “Radio”
task manages the radio: i) it accepts requests from the
scripts about the format of network messages that they
expect, i) it accepts all network messages and dispenses
them to the appropriate scripts according to their needs,
and finally iii) measures the radio utilization for each
script, a quantity that is needed by the “Admission Control
& Policing of Resource Usage” task. The second fixed
task, the "Timer service", accepts the various requests for
timers by all the scripts and manages to service them using
a real-time timer the embedded system provides. In
essence the task provides many virtual timers relying on
one timer provided by the system. According to platform
capabilities a specific porting of SensorWare may run
additional tasks For instance, a “Sensor Abstraction” task
manages a sensing device. It accepts all requests for sensor
data from all the scripts and decides on the optimal way to

Admission Control &
Policing of Resource

Usage

Script Manager
(script state keeping,

spawns new scripts)

Resource Abstraction &
Resource Metering Tasks

Radio/Networking

Sensor 1

Timer service

Event handler a

Event handler b

Initialization

Exit code

Zzz
a?

b?

Zzz
a?

c?

Event handler a

Event handler c

Example

code Zzz
a?

b?
c? wait for event

a or b or c

Fixed tasks

Platform specific

Sensor 2

Paging radio
. . .

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association194

control the sensing device (e.g., setting the A/D sampling
rate). It also measures the sensing device utilization for
each script. Figure 6 depicts an abstracted view of
SensorWare's run-time environment for an example
platform with one sensing device.

Figure 6: Abstracted view of SensorWare's run-time
environment for an example platform

Most of the threads running are coupled with a generic
queue. Each thread "pends" on its corresponding queue,
until it receives a message in the queue. When a message
arrives it is promptly processed. Then the next message
will be fetched, or if the queue is empty, the thread
"pends" again on the queue. A queue associated with a
script thread is receiving events (e.g., reception of network
messages, sensing data, or expiration of timers). A queue
associated with one of the resource handling tasks,
receives events of one type (from the specific device
driver that is connected to), as well as messages that
declare interest in this event type. For instance, the
Sensing resource-handling task is receiving sensing data
from the device driver and interests on sensing data from
the scripts. The Script Manager queue receives messages
from the network that wish to spawn a new script. There
are also system messages that are exchanged between the
system threads (like the ones that provide the Admission
Control thread with resource metering information, or the
ones that control the device drivers).

Finally, concerning security, we distinguish between
code safety and security in the following sense: code
safety relates to the execution of a script in the
SensorWare run-time environment inside a node, whereas
security relates to the network as a whole. For code safety,
one would want guaranties that a buggy or malicious
script will not have any effect on other scripts or on the
run-time system. For security, one would want guaranties
that an intruder could not gain access to resources or
information of the network, and could not affect the use of
the network by legitimate users. SensorWare does not
consider general security issues. The major problems are
authenticating the current set of users and deny any
service to anyone else, as well as encrypt the data. Wen et
al. [31] describe a security scheme for sensor networks
called SPINS that could work alongside with SensorWare.
Code safety on the other hand is an integral part of
SensorWare as it is closely related to the language and
run-time environment design choices. For more
information on SensorWare’s code safety the reader can
refer to [2].

C. Portability and expandability of SensorWare

In the previous subsections the problem of platform
variability was revealed. Here we will present a solution
for SensorWare's code structure. There are two kinds of
platform variability: 1) capabilities variability (i.e. having
different modules, such as sensing devices, GPS), 2)
HW/SW variability (i.e. although the capabilities are the
same we have different OS and/or specifics of hardware
devices). We will explore solutions for each kind in two
different subsections.

C.1 Capabilities variability

Different platforms may have different capabilities.
For instance, imagine that one platform A has a radio and
a magnetometer, while another platform B has two radios
(a normal and a paging one) and a camera. How will we
abstract the two platforms with the same framework?
Since SensorWare's building blocks are the interface to the
abstracted modules/services, we can allow an expandable
API. Further, most modules/services will need a
supporting task (as described in subsection B), so we can
allow the definition and addition of arbitrary tasks in
SensorWare's run-time environment. This kind of solution
would create severe problems in the manageability of the
code by different developers. SensorWare advocates a
more modular and well-structured solution. SensorWare
declares, defines, and support virtual devices (an idea
triggered by Linux's virtual devices). Any module or
service is represented as a virtual device. For example a
radio, a sensing device, the timer service, a location
discovery protocol are all view as virtual devices.

There is a fixed interface for all devices. More
specifically there are four commands that are used to

 generic queue

event

interest in event

system thread/task
script thread/task

Radio

Sensing

CPU &timers

Script Manager
Admission

control

Script 1

Script n

device driver System msg (e.g.,
req, reply, resource
metering info)

Radio

Sensing
device

Timers
cpu ctrl

Resource metering info from
all resource handling tasks

The Manager spawns a new
thread for every new script.

. . . .

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 195

communicate with the device. They are: query, act,
createEventID, and disposeEventID. Query
asks for a piece of information from the device and
expects an immediate reply. Act instructs the device to
perform an action (e.g., modify some parameters of the
device, or if the device is an actuator perform an action).
CreateEventID describes a specific event that this
device can produce and gives this event a name/ID. The
name can be used subsequently from the wait command
to wait on this specific event. DisposeEventID just
disposes that name. Additionally, if a device can produce
events, a task is needed to accept createEventID and
disposeEventID commands and react to wait commands
that are waiting on the device's events. The task definition,
and the parsing of the arguments of the four commands are
defined in a custom fashion by the developer. This is
where the expandability stems from, while at the same
time keeping a structured form.

C.2 HW/SW variability

Even though two platforms may have the same
capabilities (i.e., the same modules/services), they may
rely on different hardware and/or operating system. In
order to facilitate the porting process it is desirable to
clearly separate the OS and HW-specific code from the
fixed code and the capabilities-definition code. To achieve
this we need to identify the dependencies of the code to
the OS and the hardware and create abstracted wrapper
functions. The wrapper functions are actually defined in
separate sections of the code (i.e., different .c files) so that
the developer can easily identify the points of change for a
porting procedure.

Figure 7:SensorWare code structure

From the OS we need support to create and initiate
threads/tasks, and support to define, post, and pend into

mailboxes/queues. Thus, we create wrapper functions for
these operations. We also need low-level functions to
access the hardware, thus we create wrapper functions
around them (these functions will depend on the specific
capabilities the platform supports). Figure 7 illustrates
SensorWare's code structure.

D. Addressing and routing

Addresses in SensorWare have the generic format:
[nodes_specification.script_name.userID.appID].
Currently nodes_specification is just a node ID but we are
extending it to attribute-described nodes. Script_name is a
string with a hierarchical structure: [namelevel_0.
namelevel_1.... namelevel_n]. UserID is just a user id. AppID
is an id denoting the application (i.e. collection of scripts)
that the particular instance of a script belongs to. It is also
used to distinguish instances of the same script running
under the same node and under the same user (but for
different applications).

Although a fixed addressing scheme is necessary we
cannot say the same for a fixed routing scheme. Routing
can take multiple facets in a WASN (e.g. directed
diffusion, geographical routing, energy aware unicast,
multicast to members of a cluster, etc). All these examples
can be used by different applications or even by the same
application according to circumstances. Furthermore,
many applications can use their own custom-made routing,
or more frequently, no routing at all, as they are restricted
to purely 1-hop local interaction (e.g., the aggregation
application we describe in the paper). Thus, SensorWare
needs to provide a way to easily export the functionality of
multiple routing protocols to the scripts and allow the easy
insertion of new routing protocols at SensorWare compile
time. The clearest way to achieve this is to define routing
protocols as devices in SensorWare. Furthermore, in order
to support application-level routing we define a special
device that gives scripts the ability to handle system-kept
routing tables, so they are alleviated from this burden.

V. CODE EXAMPLES

In order to make SensorWare more concrete, we will
present code examples and porting details in the next two
subsections. The first one involves the creation of a
specific application using the SensorWare script language.
The second example, present details on how to port
SensorWare in a specific platform. More specifically, we
will show how to define new devices and how to connect
the framework with the existing OS and hardware.

A. Script example

In this subsection we will present the code for the
snapshot aggregation application with multiple (static)
users support. The specific problem that we are solving is
to find the global maximum among current sensor node

Changed for porting

Never changed

Changed with platform
 capabilities

Code
dependency

Platform independent
code

Device Definition
code

OS specific code

• Register all devices
• Define functions for

options parsing

HW access code
Definition of threads
Definition of msg passing

Tcl

APIs

Script manager

Admission control

Device 1 code

Device 2 code

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association196

readings and report it back to the user. Furthermore,
multiple users may request this maximum while the
algorithm is running (i.e., time to populate the script into
the network, collect and aggregate data towards the user).
The users are accommodated with the minimum traffic,
without the need to launch a different application/script for
each user. Finding the minimum, average, or any other
aggregation function, among different kinds of sensor
node readings or state, can be easily achieved by trivial
modification in our script. More on aggregation
applications in general can be found in [3].

Before proceeding with the script code, it is beneficial
to describe the internal workings of two Sensorware
commands, namely "replicate" and "wait".
Replicate (possibly) transfers the script that it was
called from, to other node(s). It does not blindly pack and
transmit the code and state of the script like analogous
commands of other active sensor approaches currently do.
Replicate first starts with a transmis sion of "intention
to replicate" message, carrying the name of the script and
the issuing user. If the same script already exits in the
other node(s) replicate, according to options, defined
by the user, may choose not to transfer the code, may
choose to initiate a second script of the same type in the
node, or if the script has multi-user support, send an "add
user" message. By default, replicate will send the
"intention to replicate" message to avoid unnecessary code
transfers, and will spawn a second script only if the
requesting user is different by the existing one.
Furthermore, it is assumed by default that the parent of the
script (i.e., the node that spawned the script to the current
node) already has the code for the script, thus does not
need an "intention to replicate" message. The arguments of
the replicate command are:

replicate [-[f] [d] [p] [m] [rc] [rs] [ru]] [node_list]
[] means optional
f : forced replicate, no "intention to replicate" message sent
d: duplication of script at remote node irrespective of user
p: parent not assumed to have script in memory
m: script supports multi-users. Do not spawn new script in

remote node, instead send "add user" message to existing
script

rc: return nodes that code was transferred
rs: return nodes that spawned new script
ru: return nodes "add user" message was sent
by default option rsru is in effect.
node_list: nodes to replicate. Leaving this field empty implies a
broadcast to neighbors. Parent is excluded unless p is chosen.

It is also useful to reveal some of the details of the
wait command. Wait returns when an event named in
the command's arguments occurs. In order to expedite
processing of the event by the subsequent scrip code, the
wait command sets the following predefined variables:

event_name : the name of the occurred event. It indicates the
device that caused the event and the type of the event
event_data: data returned by the event
If the event is a packet reception the following are defined and
set: msg_sender, msg_body

 Listing 1 shows the actual SensorWare script.
SensorWare commands and reserved words are in
boldface. Variable names are in italics. Reserved variable
name are in boldface and italics. Basic Tcl knowledge is
needed to follow the script, although we do explain most
of the code step by step. The example is sufficient to
illustrate the programming style and the use of some of the
most important commands, while solving a real problem.

set need_reply_from [replicate -m]
set maxvalue [query sensor value]
if {$need_reply_from == ""} { send $parent $maxvalue; exit }
else { set return_reply_to $parent }
set first_time 1
while {1} {
 wait anyRadioPck // "anyRadioPck" is a predefined eventID
 if { $msg_body ==add_user } {
 if { $first_time == 1 } {
 send $parent $msg_body
 set first_time 0
 }
 set return_reply_to "$return_reply_to $msg_sender"
 }else {

set maxvalue [expr {($maxvalue<$msg_body) ? $maxvalue
: $ msg_body }]

set n [lsearch $need_reply_from $ msg_sender]
set need_reply_from [lreplace $need_reply_from $n $n]

 }
 foreach node $return_reply_to {
 if { ($need_reply_from=="")||($need_reply_from==$node)} {
 send $node $maxvalue
 set n [lsearch $return_reply_to $node]
 set return_reply_to [lreplace $return_reply_to $n $n]
 }
 }
 if {$return_reply_to==""} {exit}
}

Listing 1: Multi-user aggregation code

The specific script keeps two important variables at
each node: a list of nodes that replies are needed from, and
a list of nodes that replies are due. The first command tries
to replicate the script to all the neighbors (except the
parent), declaring that this is a multi-user script. The nodes
that the script was spawned or an "add user" message was
sent are returned and added to the need_reply_from
variable. The second command reads the current value
from the sensing device and sets the maxvalue variable
with it. If there are no nodes to return a reply the script
sends the maxvalue to the parent node and exits.
Otherwise the parent node is added to the list
return_reply_to and the big loop begins. Each time a
packet is received we check if it is a data reply or an "add

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 197

user" message and modify our lists and maxvalue
accordingly. To graphically see how this algorithm works,
refer to [3].

The script is its raw form is 882 bytes. If reserved
words and variable names are compressed, the script
becomes 277 bytes. If furthermore, we compress this
intermediate form with gzip, we end up with 209 bytes.
This is a compact description for this non-trivial
algorithm. An equivalent SQTL script has a size in the
order of 1000 bytes (based on the simpler algorithm of
aggregation for a single user and without replication
checking). Building the same algorithm in Maté was
proven impossible due to its limited heap and stack sizes.
There was not enough space to hold the need_reply_from
and return_reply_to lists. Even with a larger memory
space though, Maté's stack based architecture and lack of
higher-level services results in code of many instructions
even for simple tasks. As stated earlier, Maté's restrictions
are a design choice, coming from the desire to support the
restrictive underlying platform. Finally, C code is written
for this algorithm, with external references to SensorWare
functions. The compiled native code has a size of 764
bytes (without including the size of SensorWare functions
called from within the native code).

B. Porting SensorWare to a platform

In this subsection we will present some of the issues
while porting SensorWare to a platform. We consider our
iPAQ-based prototype as the testbed. A full description of
the platform can be found in section VI.A. Here it is
sufficient to know that the node has one radio and one
sensing device, and that the underlying OS is Linux.

First, we should add the proper capabilities to
SensorWare by creating a virtual device for the sensing
device (the radio has a virtual device by default). This
means name and register the device by calling the
function:

create_device(char* name, int (*query)(), int (*act)(), void*
(*createEventID)(), int (*disposeEventID)(), void* (*task)())

As it can be seen by the declaration of the
create_device function we need to define the four
functions to parse the arguments of the four standard
interface commands, plus a function to be executed by the
thread/ task of the device. Not going any further into the
definition of these functions, we are sufficed to say that
they are very similar to the radio device functions.

The next step is to define the OS-specific code. More
precisely, have the ability to create threads and use
mailboxes/queues. For the definition and creation of
threads we use the pthreads (i.e., posix threads) provided
by Linux. Even though mailboxes are available in Linux,
we chose to construct our own structures using

semaphores. Finally, the hardware-specific code is directly
provided by the Linux's device drivers.

VI. IMPLEMENTATION

Some active sensor frameworks choose to evaluate
their performance by showing their expressiveness. They
create a distributed algorithm for a particular application
and compare it against a more centralized approach
(usually a distributed database approach). We believe that
the energy savings from such comparisons are evident for
any active sensor framework and do not add value to the
investigation and evaluation of the framework. To
evaluate SensorWare we chose to implement it and
measure the overheads we are paying for dynamic
programmability. How much memory do SensorWare and
its components occupy? How much delay is introduced by
various SensorWare operations? How much slower and
consequently how much more energy-consuming is
SensorWare compared to native code approaches? These
questions are answered in the following subsections. We
begin by a description of the implementation platform.

A. Platform description

The prototype platform used in the implementation and
evaluation of SensorWare was built around the iPAQ 3670
[16]. The iPAQ has an Intel StrongARM 1110 rev 8 32 bit
RISC processor, running at 206Mhz. The flash memory
size is 16Mbytes and the RAM memory size 64Mbytes.
The OS installed is a familiar v0.5 Linux StrongARM port
[9], kernel version 2.4.18-rmk3. The compiler used, is the
gcc cross-compiler. A wavelan card [30] is used as the
radio device and a Honeywell HMR-2300 Magnetometer
[14] as the sensing device.

Figure 8: The implementation platform

SensorWare is also ported into the Rockwell WINS
nodes [26] that also have a StrongARM processor, but
only 1Mbyte of flash memory. Both eCos [6] and
microC/OS-II [19] were used as operating systems for
these nodes.

WaveLan
radio

magnetometer

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association198

B. Memory size measurements

The first question to answer is how much size does the
whole framework occupy. Figure 9 shows that the total
size is 179Kbytes and it is consisted of 74Kbytes of Linux
specific code (e.g., kernel, libraries), 74Kbytes of a
stripped down Tcl core called tinyTcl, 22Kbytes of
SensorWare code and 8Kbytes of platform dependent code
(i.e., functions to access the hardware). The bottom part of
the figure shows the breakdown of the SensorWare core
part into smaller parts.

0

20

40

60

80

100

120

140

160

180

200

C
o

d
e

S
iz

e
(K

b
yt

es
)

linux specific

platform dependent
code
SensorWare Core

tinytcl core

SensorWare binary breakdown

4692

2728

2432

400

3284

508

1828

696

5372

0 1000 2000 3000 4000 5000 6000

script manager

device manager

delta queue

event object

mailbox

main

user terminal

timer service

radio device

binary size (bytes)

Figure 9: Code size breakdown

C. Delay measurements

The next question to answer is how long do different
basic commands need to execute. We measured each
command individually 100 times under the same basic
conditions (only one script executing) and derived an
average and standard deviation for the delay. Most

commands exhibited negligible variance. All the
commands, except the ones that used the radio and the one
that spawned a 50byte script, have an execution time less
than 0.3msec.

0
10
20
30
40
50
60
70

query wait
packet

id list dev
events

list dev
param

command

d
el

ay
 (

u
s)

0

2000

4000

6000

8000

10000

spawn (local) spawn (one hop) send (one hop)

command

d
el

ay
 (

u
s)

0

50

100

150

200

250

300

350

send
(local)

query
location

set/wait
timer

dispose
eventID

create
eventID

command

d
el

ay
 (

u
s)

Figure 10: Execution times of SensorWare commands

The top graph of the figure 10, shows commands with
less than 0.06msec delay. The last two commands that
return some part of the device's state are internal to
SensorWare and not exported for script use. The middle
graph shows the most time consuming commands. The
first one spawns a 50 byte script locally. The other two
commands use the radio to spawn a script in a neighboring
node and send a message in a neighboring node. The delay
for achieve these two operations is dominated by the radio

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 199

transmission time. Note that the send command and some
operation modes of the spawn command, do not wait for
the whole operation to finish, instead they return as soon
as they hand off the task to the radio device. In the graph,
the total operation time is shown. The bottom graph of
figure 10, shows yet another set of delays. Of particular
interest is the set/wait timer delay. For this instance, we
measure the delay to set a zero-valued timer and wait for
its expiration. In essence we are measuring the overhead
of real-time measurements in scripts. The overhead is
0.25msec with very small variation, which means that the
overhead is virtually constant. Therefore, we can
internally subtract this number each time a script sets a
timer, in order to measure the true desired time.

In order to acquire all delay measurements we used the
gettimeofday() system call. This function is based on the
timer count register found in the StrongARM processor.
The accuracy of this method is measured to be 1µsec.

D. Energy measurements and related tradeoffs

Finally, we are interested in knowing the energy
overhead from the interpreted nature of SensorWare. For
that purpose we compare the interpreted version of the
script presented in section V.A., with a compiled native
code version of the same algorithm. The native version
uses the services that SensorWare provides by directly
calling the appropriate functions. Since most of the work
inside a script is done by the SensorWare commands and
services (which are implemented in native code) we do not
expect a significant change when we resort to fully native
code. Indeed, we measured an 8% speedup of the native
code compared to the interpreted code. We acquired this
number by measuring the total execution times of both
codes, and excluding time periods when the code was
accessing the radio, or was waiting for events to occur.
Essentially, the time we measured, was the non-idle CPU
time. This time is linearly coupled with the energy spent
on the CPU, assuming that we have a mechanism to shut
down the CPU during idle time. Thus a reduction of 8% in
the non-idle time, directly translates to a reduction of 8%
in CPU-energy spent.

As we already mentioned in section V.A, the script has
a final compressed size of 209 bytes, while the native code
has a size of 764 bytes. So even if the native version
executes faster (and potentially consumes less energy, by
allowing to shut down the CPU during idle time), there is
an energy overhead related to its transmission. The
wavelan radio in typical operation would spent 0.47mJ to
transmit the script, and 1.10mJ to transmit the native code
(including the MAC overhead). Thus, the energy
difference between the two transmissions is 0.63mJ. The
typical power for the StrongARM is 230mW, so 0.63mJ
are spent in 2.7msec. From these numbers we deduce that
if the native code uses StrongARM for 2.7msec less than

the interpreted code then its initial transmission energy
overhead is balanced. For the particular algorithm that we
tested, 8% speedup is translated into 1.2msec gain in
absolute numbers. So for the particular algorithm and
hardware platform, transmitting and executing native code
is not beneficial overall. For applications with heavier
computation workload it might be desirable, from an
energy viewpoint, to transmit and execute native code.
Also in other platforms the tradeoff points might change
as the CPU and radio characteristics change. Although
usually, in low-end nodes, the CPU is slower and the radio
much slower than our platform making the communication
costs more dominant and thus favoring the script
approach. Finally, a native-code approach would sacrifice
the portability of the code in several platforms, and most
importantly would sacrifice the code safety offered by the
scripts (refer to [2] for more information on scripts code
safety).

VII. CONCLUSIONS

In this paper we argue that the development of a
framework based on a scripting abstraction where the
scripts are mobile, will help bring many desired properties
in sensor networks. It will make the sensor networks
programmable and open to external users and systems,
keeping at the same time the efficiency that distributed
proactive algorithms have. We explain the framework's
architecture and present code examples. Through our
implementation we are able to measure the time and
energy overheads that we are paying for programmability
and explore some part of the solution space for sensor
node run-time environment abstractions.

VIII. REFERENCES

[1] P. Bonnet, J. Gehrke, and P . Seshadri, “ Querying the Physical
World”, IEEE Personal Communications, October 2000.

[2] A. Boulis and M. B. Srivastava, " A Framework for Efficient and
Programmable Sensor Networks", In Proceedings of:
OPENARCH 2002, New York, NY, June 2000.

[3] A. Boulis, “Illustrating Distributed Algorithms for Sensor
Networks”, http://www.ee.ucla.edu/~boulis/phd/Illustrations.html

[4] A. Boulis and M. B. Srivastava, “Node-level Energy Management
for Sensor Networks in the Presence of Multiple Applications,”
The first IEEE Annual Conference on Pervasive Computing and
Communications (PerCom 2003), Dallas-Fort Worth, TX, March
23-26, 2003.

[5] L. Clare, G. Pottie, J.R. Agre, “Self-Organizing Distributed Sensor
Networks”, Proceedings of SPIE conference on Unattended
Ground Sensor Technologies and Applications, pp. 229-237, April
1999.

[6] eCos: Embedded Configurable Operating System,
http://sources.redhat.com/ecos/

[7] D.Estrin, R.Govindan, J.Heidemann (Editors), “Embedding the
Internet”, Communications of the ACM. Vol. 43, no 5, pp. 38-41,
May 2000.

[8] D. Estrin, R. Govindan, J. Heidemann, S. Kumar, “Next Century
Challenges: Scalable Coordination in Sensor Networks”, ACM
Mobicom Conference, Seattle, WA, August 1999.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association200

[9] Familiar Project, “http://familiar.handhelds.org”.
[10] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govidan, D. Estrin,

D. Ganesan, "Building Efficient Wireless Sensor Networks with
Low-Level Naming", Proceedings of Symposium of Operating
Systems Principles, October 2001

[11] M. Hicks, P. Kakkar, J. Moore, C. Gunter and S. Nettles, “PLAN:
A Packet Language for Active Networks”, Proceedings of the
International Conference on Functional Programming (ICFP '98),
1998.

[12] J. Hill and D. Culler, "A wireless embedded sensor architecture for
system-level optimization", Intel Research IRB-TR-02-00N, 2002.

[13] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister,
“System Architecture Directions for Networked Sensors”,
Proceedings of ASPLOS-IX, November 2000 Cambridge, MA,
USA.

[14] Honeywell HMR-2300 Magnetometer,
http://www.ssec.honeywell.com.

[15] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed
diffusion: A scalable and robust communication paradigm for
sensor networks”, MobiCOM '00, August 2000, Boston, MA.

[16] iPAQ 3670, http://thenew.hp.com/.
[17] C. Jaikaeo, C. Srisathapornphat, and C. Shen, “Querying and

Tasking of Sensor Networks”, SPIE's 14th Annual International
Symposium on Aerospace/Defense Sensing, Simulation, and
Control (Digitization of the Battlespace V), Orlando, Florida,
April 26-27, 2000.

[18] D. Kotz, R. Gray, “Mobile Agents and the Future of the Internet”,
in ACM Operating Systems Review, 33(3), 1999.

[19] J. Labrosse, " MicroC/OS-II: The Real Time Kernel", CMP
Books, November 1998.

[20] P. Levis, D. Culler, “Maté: A Tiny Virtual Machine for Sensor
Networks.” Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS X), October 5-9 2002.

[21] S. R. Madden, R. Szewczyk, M. J. Franklin and D. Culler,
Supporting Aggregate Queries Over Ad-Hoc Wireless Sensor
Networks, Workshop on Mobile Computing and Systems
Applications, 2002.

[22] J. K. Ousterhout, “Scripting: higher level programming for the
21st Century”, Computer, vol.31, (no.3), IEEE Comput. Soc,
March 1998. p.23-30.

[23] J. K. Ousterhout, “Tcl and the Tk toolkit”, Addison-Wesley, 1994.
[24] G.J. Pottie and W.J. Kaiser, “Wireless Integrated Network

Sensors”, Communications of the ACM. Vol. 43, no 5. May 2000.
[25] Reactive Sensor Networks, http://strange.arl.psu.edu/ RSN/
[26] Rockwell WINS nodes, http://wins.rsc.rockwell.com/
[27] SenseIT program,

http://www.darpa.mil/ito/research/sensit/index.html
[28] C. Srisathapornphat, C. Jaikaeo, and C. Shen, “Sensor Information

Networking Architecture”, International Workshop on Pervasive
Computing (IWPC'00), Toronto, Canada, August 21-24, 2000.

[29] D. Tennenhouse, “Proactive Computing”, Communications of the
ACM. Vol. 43, no 5, pp.43-50, May 2000.

[30] Wavelan card, http://www.orinocowireless.com
[31] V. Wen, A.Perig, R. Szewczyk, “SPINS: Security suite for Sensor

Networks”, Proceedings of MOBICOM’01, Rome, Italy, July 16-
21, 2001

IX. APPENDIX

A. The SensorWare Language

SensorWare supports Tcl syntax and the following 41
Tcl commands: append, array, break, case, catch, concat,
continue, error, eval, expr, for, foreach, format, global, if, incr,
info, join, lappend, lindex, linsert, list, llength, lrange, lreplace,
lsearch, lsort, proc, regexp, regsub, rename, return, scan, set,
split, string, trace, unset, uplevel, upvar, while.

There are 11 other commands defined by SensorWare
that essentially abstract the node's run-time environment.
They are:

spawn [-[f] [d] [p] [m] [rc] [rs] [ru]] [<node_list>] <code>
[<variable_list>]

replicate [-[f] [d] [p] [m] [rc] [rs] [ru]] [<node_list>]
[<variables_list>]

migrate [-[f] [d] [p] [m] [rc] [rs] [ru]] [<node_list>]
[<variables_list>]

send (<node_id>|*)[:<script_name>[:<user_id>[:<app_id>]]]
<message>

setTimer <timer_name> <value>

disposeTimer <timer_name>

query <device_name> [var_arg...]

act <device_name> [var_arg...]

createEventID <device_name> <eventID> [var_arg...]

disposeEventID <device_name> <eventID>

wait <event_name>...

Legend: [] indicates optional, < > indicates a variable
(either a Tcl variable or an SensorWare variable such as an
eventID or a timer name), the suffix "_list" in variable
names indicates that the variable is a list (i.e., zero or more
elements). The symbol "var_arg ..." indicates variable
arguments. The modifier "..." indicates a list of arguments
of the preceding argument type.

There are 6 reserved Tcl variable names. These are:
parent, neighbors, event_name, event_data, msg_sender,
msg_body.

There are 7 reserved words used as arguments in
some commands. By reserving words for commonly used
features we compact the scripts further. These are:
anyRadioPck, anyTimer, add_user, sensor, value, radio, timer.

