
B-trees, Shadowing, and
Clones

Ohad Rodeh

B-trees, Shadowing, and Clones – p.1/51

Talk outline
Preface
Basics of getting b-trees to work with shadowing
Performance results
Algorithms for cloning (writable-snapshots)

B-trees, Shadowing, and Clones – p.2/51

Introduction
The talk is about a free technique useful for
file-systems like ZFS and WAFL
It is appropriate for this forum due to the talked about
port of ZFS to Linux
The ideas described here were used in a research
prototype of an object-disk.
A b-tree was used for the OSD catalog (directory), an
extent-tree was used for objects (files).

B-trees, Shadowing, and Clones – p.3/51

Shadowing
Some file-systems use shadowing: WAFL, ZFS, . . .
Basic idea:
1. File-system is a tree of fixed-sized pages
2. Never overwrite a page
For every command:
1. Write a short logical log entry
2. Perform the operation on pages written off to the

side
3. Perform a checkpoint once in a while

B-trees, Shadowing, and Clones – p.4/51

Shadowing II
In case of crash: revert to previous stable checkpoint
and replay the log
Shadowing is used for: Snapshots, crash-recovery,
write-batching, RAID

B-trees, Shadowing, and Clones – p.5/51

Shadowing III
Important optimizations
1. Once a page is shadowed, it does not need to be

shadowed again until the next checkpoint
2. Batch dirty-pages and write them sequentially to

disk

B-trees, Shadowing, and Clones – p.6/51

Snapshots
Taking snapshots is easy with shadowing
In order to create a snapshot:
1. The file-system allows more than a single root
2. A checkpoint is taken but not erased

B-trees, Shadowing, and Clones – p.7/51

B-trees
B-trees are used by many file-systems to represent
files and directories: XFS, JFS, ReiserFS, SAN.FS
They guarantee logarithmic-time key-search, insert,
remove
The main questions:
1. Can we use B-trees to represent files and directories in

conjunction with shadowing?

2. Can we get good concurrency?

3. Can we supports lots of clones efficiently?

B-trees, Shadowing, and Clones – p.8/51

Challenges
Challenge to multi-threading: changes propagate up to
the root. The root is a contention point.
In a regular b-tree the leaves can be linked to their
neighbors.

Not possible in conjunction with shadowing
Throws out a lot of the existing b-tree literature

3 15

3 6 10 15 20

3 4 6 7 8 10 11 15 16 20 25

3 15

3 6 10 15 20

3 4 6 7 8 10 11 15 16 20 25

B-trees, Shadowing, and Clones – p.9/51

Write-in-place b-tree
Used by DB2 and SAN.FS
Updates b-trees in place; no shadowing
Uses a bottom up update procedure

B-trees, Shadowing, and Clones – p.10/51

Write-in-place
example

Insert-element
1. Walk down the tree until reaching the leaf L
2. If there is room: insert in L
3. If there isn’t, split and propagate upward
Note: tree nodes contain between 2 and 5 elements

3 25

3 6 9 15 20 25 30

3 4 6 7 10 11 15 16 20 23 26 27 30 35 40

3 25

3 6 9 15 20 25 30

3 4 6 7 8 10 11 15 16 20 23 26 27 30 35 40

B-trees, Shadowing, and Clones – p.11/51

Alternate shadowing
approach

Used in many databases, for example, Microsoft SQL
server.
Pages have virtual addresses
There is a table that maps virtual addresses to physical
addresses
In order to modify page P at address L1

1. Copy P to another physical address L2

2. Modify the mapping table, P → L2

3. Modify the page at the L2

B-trees, Shadowing, and Clones – p.12/51

Alternate shadowing
approach II

Pros
Avoids the ripple effect of shadowing
Uses b-link trees, very good concurrency

Cons
Requires an additional persistent data structure
Performance of accessing the map is crucial to
good behavior

B-trees, Shadowing, and Clones – p.13/51

Requirements from
shadowed b-tree

The b-tree has to:
1. Have good concurrency
2. Work well with shadowing
3. Use deadlock avoidance
4. Have guarantied bounds on space and memory

usage per operation
Tree has to be balanced

B-trees, Shadowing, and Clones – p.14/51

The solution:
insert-key

Top-down
Lock-coupling for concurrency
Proactive split
Shadowing on the way down
Insert element 8
1. Causes a split to node [3,6,9,15,20]
2. Inserts into [6,7]

3 25

3 6 9 15 20 25 30

3 4 6 7 10 11 15 16 20 23 26 27 30 35 40

3 15 25

3 6 9 15 20 25 30

3 4 6 7 8 10 11 15 16 20 23 26 27 30 35 40

B-trees, Shadowing, and Clones – p.15/51

Remove-key
Top-down
Lock-coupling for concurrency
Proactive merge/shuffle
Shadowing on the way down
Example: remove element 10

3 15

3 6 15 20

3 4 6 7 8 10 11 15 16 20 25 30

3 6 15 20

3 4 6 7 8 10 11 15 16 20 25 30

3 6 15 20

3 4 6 7 8 11 15 16 20 25 30

B-trees, Shadowing, and Clones – p.16/51

Analysis for
Insert/Remove-key

Always hold two/three locks
At most three pages held at any time
Modify a single path in the tree

B-trees, Shadowing, and Clones – p.17/51

Pros/Cons
Cons:

Effectively lose two keys per node due to proactive
split/merge policy
Need loose bounds on number of entries per node
(b . . . 3b)

Pros:
No deadlocks, no need for deadlock
detection/avoidance
Relatively simple algorithms, adaptable for
controllers

B-trees, Shadowing, and Clones – p.18/51

Cloning
To clone a b-tree means to create a writable copy of it
that allows all operations: lookup, insert, remove, and
delete.
A cloning algorithm has several desirable properties

B-trees, Shadowing, and Clones – p.19/51

Cloning properties
Assume p is a b-tree and q is a clone of p, then:
1. Space efficiency: p and q should, as much as

possible, share common pages
2. Speed: creating q from p should take little time and

overhead
3. Number of clones: it should be possible to clone p

many times
4. Clones as first class citizens: it should be possible

to clone q

B-trees, Shadowing, and Clones – p.20/51

Cloning, a naive
solution

A trivial algorithm for cloning a tree is copying it
wholesale.
This does not have the above four properties.

B-trees, Shadowing, and Clones – p.21/51

WAFL free-space
There are deficiencies in the classic WAFL free space
A bit is used to represent each clone
With a map of 32-bits per data block we get 32 clones
To support 256 clones, 32 bytes are needed per
data-block.
In order to clone a volume or delete a clone we need to
make a pass on the entire free-space

B-trees, Shadowing, and Clones – p.22/51

Challenges
How do we support a million clones without a huge free-space
map?

How do we avoid making a pass on the entire free-space?

B-trees, Shadowing, and Clones – p.23/51

Main idea
Modify the free space so it will keep a reference count
(ref-count) per block
Ref-count records how many times a page is pointed to
A zero ref-count means that a block is free
Essentially, instead of copying a tree, the ref-counts of
all its nodes are incremented by one
This means that all nodes belong to two trees instead
of one; they are all shared
Instead of making a pass on the entire tree and
incrementing the counters during the clone operation,
this is done in a lazy fashion. B-trees, Shadowing, and Clones – p.24/51

Cloning a tree
1. Copy the root-node of p into a new root
2. Increment the free-space counters for each of the

children of the root by one

P,1

B,1 C,1

D,1 E,1 G,1 H,1

P,1 Q,1

B,2 C,2

D,1 E,1 G,1 H,1

B-trees, Shadowing, and Clones – p.25/51

Mark-dirty, without
clones

Before modifying page N, it is “marked-dirty”
1. Informs the run-time system that N is about to be

modified
2. Gives it a chance to shadow the page if necessary
If ref-count == 1: page can be modified in place
If ref-count > 1, and N is relocated from address a1 to
address a2

1. the ref-count for a1 is decremented
2. the ref-count for a2 is made 1
3. The ref-count of N’s children is incremented by 1

B-trees, Shadowing, and Clones – p.26/51

Example, insert-key
into leaf H,tree q

P,1 Q,1

B,2 C,2

D,1 E,1 G,1 H,1

P,1 Q,1

B,2 C,2

D,1 E,1 G,1 H,1

(I) Initial trees, Tp and Tq (II) Shadow Q

P,1 Q,1

B,2 C,1 C’,1

D,1 E,1 G,2 H,2

P,1 Q,1

B,2 C,1 C’,1

D,1E,1 G,2H,1 H’,1

(III) shadow C (IV) shadow H

B-trees, Shadowing, and Clones – p.27/51

Deleting a tree
ref-count(N) > 1: Decrement the ref-count and stop
downward traversal. The node is shared with other
trees.
ref-count(N) == 1 : It belongs only to q. Continue
downward traversal and on the way back up
de-allocate N.

B-trees, Shadowing, and Clones – p.28/51

Delete example
P,1 Q,1

B,1 C,2 X,1

D,1 E,1 G,1 Y,2 Z,1

P,1

B,1 C,1

D,1 E,1 G,1 Y,1

(I) Initial trees Tp and Tq (II) After deleting Tq

B-trees, Shadowing, and Clones – p.29/51

Comparison to WAFL
free-space

Clone:
Ref-counts: increase ref-counts for children of root
WAFL: make a pass on the entire free-space and
set bits

Delete clone p

Ref-counts: traverse the nodes that belong only to p

and decrement ref-counters
WAFL: make a pass on the entire free-space and
set snapshot bit to zero

B-trees, Shadowing, and Clones – p.30/51

Comparison to WAFL
free-space

During normal runtime
Ref-counts: additional cost of incrementing
ref-counts while performing modifications
WAFL: none

Space taken by free-space map
Ref-counts: two bytes per block allow 64K clones
WAFL: two bytes allow 16 clones

B-trees, Shadowing, and Clones – p.31/51

Resource and
performance analysis

The addition of ref-counts does not add b-tree node
accesses. Worst-case estimate on memory-pages and
disk-blocks used per operation is unchanged
Concurrency remains unaffected by ref-counts
Sharing on any node that requires modification is
quickly broken and each clone gets its own version

B-trees, Shadowing, and Clones – p.32/51

FS counters
The number of free-space accesses increases.
Potential of significantly impacting performance.
Several observations make this unlikely:
1. Once sharing is broken for a page and it belong to a

single tree, there are no additional ref-count costs
associated with it.

2. The vast majority of b-tree pages are leaves.
Leaves have no children and therefore do not incur
additional overhead.

B-trees, Shadowing, and Clones – p.33/51

FS counters II
The experimental test-bed uses in-memory free-space
maps
1. Precludes serious investigation of this issue
2. Remains for future work

B-trees, Shadowing, and Clones – p.34/51

Summary
The b-trees described here:

Are recoverable
Have good concurrency
Are efficient
Have good bounds on resource usage
Have a good cloning strategy

B-trees, Shadowing, and Clones – p.35/51

Backup slides

B-trees, Shadowing, and Clones – p.36/51

Performance
In theory, top-down b-trees have a bottle-neck at the
top
In practice, this does not happen because the top
nodes are cached
In the experiments
1. Entries are 16bytes: key=8bytes, data=8bytes
2. A 4KB node contains 70-235 entries

B-trees, Shadowing, and Clones – p.37/51

Test-bed
Single machine connected to a DS4500 through
Fiber-Channel.
Machine: dual-CPU Xeon 2.4Ghz with 2GB of memory.
Operating System Linux-2.6.9
The b-tree on a virtual LUN
The LUN is a RAID1 in a 2+2 configuration
Strip width is 64K, full stripe=512KB
Read and write caching is turned off

B-trees, Shadowing, and Clones – p.38/51

Basic disk
performance

IO-size=4KB
Disk-area=1GB

#threads op. time per op.(ms) ops per second

10 read N/A 1217
write N/A 640
R+W N/A 408

1 read 3.9 256
write 16.8 59
R+W 16.9 59

B-trees, Shadowing, and Clones – p.39/51

Test methodology
The ratio of cache-size to number of b-tree pages
1. Is fixed at initialization time
2. This ratio is called the in-memory percentage
Various trees were used, with the same results. The
experiments reported here are for tree T235 .

B-trees, Shadowing, and Clones – p.40/51

Tree T235

Maximal fanout: 235
Legal #entries: 78 .. 235
Contains 9.5 million keys and 65500 nodes
1. 65000 leaves
2. 500 index-nodes
Tree depth is: 4
Average node capacity 150 keys

B-trees, Shadowing, and Clones – p.41/51

Test methodology II
Create a large tree using random operations
For each test
1. Clone the tree
2. Age the clone by doing 1000 random

insert-key/remove-key operations
3. Perform 10

4 – 10
8 measurements against the clone

with random keys
4. Delete the clone
Perform each measurement 5 times, and average.
The standard deviation was less than 1% in all tests.

B-trees, Shadowing, and Clones – p.42/51

Latency
measurements

Four operations whose latency was measured:
lookup-key, insert-key, remove-key, append-key.
Latency measured in milliseconds

Lookup Insert Remove Append

3.43 16.76 16.46 0.007

B-trees, Shadowing, and Clones – p.43/51

Different in-memory
ratios

Workload: 100% lookup workload

% in-memory 1 thread 10 threads ideal

100 14237 19805 ∞

50 391 1842 2434
25 321 1508 1622
10 268 1290 1352
5 254 1210 1281
2 250 1145 1241

B-trees, Shadowing, and Clones – p.44/51

Throughput
Four workloads were used:
1. Search-100: 100% lookup
2. Search-80: 80% lookup, 10% insert, 10% remove
3. Modify: 20% lookup, 40% insert, 40% remove
4. Insert: 100% insert
Metric: operations per second
Since there isn’t much difference between 2% in
memory and 50%, the rest of the experiments were
done using 5%.
Allows putting all index nodes in memory.

B-trees, Shadowing, and Clones – p.45/51

Throughput II
Tree #threads Src-100 Src-80 Modify Insert

T235 10 1227 748 455 400
1 272 144 75 62

Ideal 1281 429

B-trees, Shadowing, and Clones – p.46/51

Workload with some
locality

Workload: randomly choose a key
With 80% probably read the next 100 keys after it
With 10% probability, insert/overwrite the next 100
keys
With 10% probability, remove the next 100 keys

#threads semi-local

10 16634
1 3848

B-trees, Shadowing, and Clones – p.47/51

Clone performance
Two clones are made of base tree T235

Aging is performed
1. 12000 operations are performed
2. 6000 against each clone

Src-100 Src-80 Modify Insert

2 clones 1221 663 393 343
base 1227 748 455 400

B-trees, Shadowing, and Clones – p.48/51

Clone performance at
100% in-memory

Src-100 Src-80 Modify Insert

2 threads 20395 18524 16907 16505
1 thread 13910 12670 11452 11112

B-trees, Shadowing, and Clones – p.49/51

Performance of
checkpointing

A checkpoint is taken during the throughput test
Performance degrades
1. A dirty page has to be destaged prior to being

modified
2. Caching of dirty-pages is effected

B-trees, Shadowing, and Clones – p.50/51

Performance of
checkpointing II

Tree T235 Src-100 Src-80 Modify Insert

checkpoint 1205 689 403 353
base 1227 748 455 400

B-trees, Shadowing, and Clones – p.51/51

	Talk outline
	Introduction
	Shadowing
	Shadowing II
	Shadowing III
	Snapshots
	B-trees
	Challenges
	Write-in-place b-tree
	Write-in-place example
	Alternate shadowing approach
	Alternate shadowing approach II
	Requirements from shadowed b-tree
	The solution: insert-key
	Remove-key
	Analysis for Insert/Remove-key
	Pros/Cons
	Cloning
	Cloning properties
	Cloning, a naive solution
	WAFL free-space
	Challenges
	Main idea
	Cloning a tree
	Mark-dirty, without clones
	Example, insert-key into leaf H,tree q
	Deleting a tree
	Delete example
	Comparison to WAFL free-space
	Comparison to WAFL free-space
	Resource and performance analysis
	FS counters
	FS counters II
	Summary
	Backup slides
	Performance
	Test-bed
	Basic disk performance
	Test methodology
	Tree T_{235}
	Test methodology II
	Latency measurements
	Different in-memory ratios
	Throughput
	Throughput II
	Workload with some locality
	Clone performance
	Clone performance at 100% in-memory
	Performance of checkpointing
	Performance of checkpointing II

