USENIX Association

Proceedings of the 17" Large Installation
Systems Administration Conference

San Diego, CA, USA
October 26-31, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Preventing Wheel Reinvention: The psgconf
System Configuration Framework

Mark D. Roth — University of Illinois at Urbana-Champaign

ABSTRACT

Most existing Unix system configuration tools are designed monolithically. Each tool stores
configuration data in its own way, has its own mechanism for enforcing policy, has a fixed
repertoire of actions that can be performed to modify the system, and provides a specific strategy
for configuration management. As a result, most tools are useful only in environments that very
closely match the environment for which the tool was designed. This inflexibility results in a great
deal of duplication of effort in the system administration community.

In this paper, I present a new architecture for system configuration tools using a modular design.
I explain how this architecture allows a single tool to use different strategies for configuration
management, enforce different ideas of policy, and prevent duplication of effort. I also describe the
implementation of this architecture at my site and identify some areas for future research.

Introduction

Most Unix system configuration tools are com-
posed of several common types of components:

® Data Store: The data store is the repository from
which the tool reads the configuration data
explicitly supplied by the system administrator.
For example, ISConf [1] uses Makefiles, LCFG
[2] uses X resources-style source files, cfengine
[3] uses its own custom configuration file format,
TemplateTree 11 [4] uses template files that are
used to generate a cfengine configuration file,
Arusha [5] uses XML files, and Simon [6] stores
configuration data in an SQL database.

¢ Policy Rules: Policy is the programmatic manip-
ulation of configuration data. Unlike the explicit
configuration parameters read from the data
store, policy rules act implicitly to enforce
requirements imposed by the administrator. For
example, at some particular site, “enable anony-
mous FTP” might automatically mean to install
wu-ftpd, create the ftp user, add the appropriate
entry to inetd.conf, update TCP wrappers, etc.

e Actions: Actions are the mechanisms for manip-
ulating the system’s state. For example, cfengine
supplies specific file-editing actions like Appen-
difNoSuchLine, while almost all existing tools
allow you to execute arbitrary shell commands.

Despite these commonalities, most tools are very
different from one another in the way that they put
their components together to form a general strategy
for configuration management. For example, ISConf
takes the extreme approach of stepping through each
state in a machine’s configuration history in order to
get to the current/desired state; cfengine is designed to
converge from what a given file looks like now to
what you want it to look like; and Simon is designed
to generate individual configuration files from scratch.

2003 LISA XVII — October 26-31, 2003 — San Diego, CA

Unfortunately, most existing tools are designed
monolithically, which means that you cannot choose
the components or strategy independently. For exam-
ple, there’s no way to use cfengine’s convergence
strategy with Simon’s SQL data store. There’s also no
way to use Simon’s file generation strategy for some
configuration files and cfengine’s convergence strat-
egy for others.

This inflexibility results in a great deal of dupli-
cation of effort in the system administration commu-
nity, because the only way to change out a single com-
ponent or add support for a different strategy is to
write a whole new tool. The new tool may include
new components or support a different strategy, but a
great deal of time is also spent duplicating existing
components from other tools.

A New Approach: The psgconf System

Here at the University of Illinois at Urbana-
Champaign (UIUC), I’ve developed a tool called psg-
conf to address these problems. Instead of being a
monolithic tool with a fixed set of components, psg-
conf dynamically loads external modules that imple-
ment its components. This makes it very easy to add
or remove components as needed.

The psgconf system is written entirely in Perl,
and its components are nothing more than Perl
objects that provide the appropriate methods for
the component type. This means that writing a new
component for psgconf is as simple as writing a
Perl module that provides the component’s object
class.

Object Structure

Each of the next subsections describes an object
that is part of the psgconf system.

205

Preventing Wheel Reinvention: The psgconf System ...

The PSGConf Object

The central object in the psgconf system is pro-
vided by the PSGConf module. The PSGConf object is
extremely simple; its primary function is to coordinate
the activity of the other objects, which are where most
of the work is actually done.

Data Objects

Instead of storing configuration data in static vari-
ables, psgconf encapsulates data in Data objects. This
provides a great deal of flexibility in configuring the sys-
tem, because each Data object class can provide whatever
methods are appropriate for the encapsulated data.

All Data object classes should be derived from
the PSGConf::Data base class. The base class provides
several fundamental methods, such as set(), get(), and
unset(). However, new subclasses are free to override
these methods or to add whatever new methods are
appropriate for the type of data the class intends to
represent. The psgconf system includes several such
modules that provide useful Data object classes:

Data Object Class Description
PSGConf::Data::Boolean boolean data
PSGConf::Data::Hash hash table data
PSGConf;:Data::Integer integer data
PSGConf::Data::List list data
PSGConf::Data::String character string data
PSGConf::Data::Table table-oriented data

For example, the PSGConf::Data::String module
provides a Data object class for character-string data.
It provides several methods that are specially tailored
for manipulating string data: append(), which appends
its argument to the end of the string already contained
by the object; prepend(), which prepends its argument
to the beginning of the string already contained by the
object; and gsub(), which replaces substrings in the
string already contained by the object.

As each Data object is instantiated, it is regis-
tered with the central PSGConf object under a particu-
lar name, which can then be used to reference the
object. For example, there might be a PSG-
Conf::Data::String object called log_dir or a PSG-
Conf::Data::Boolean object called anon_ftp_enable.

DataStore Objects

In the psgconf framework, a system’s configura-
tion is expressed as a series of configuration statements

Roth

that manipulate the registered Data objects. Each state-
ment consists of the name of a Data object, a method to
call on that object, and a list of arguments to pass to that
method. The mechanism for reading these configuration
statements is provided by DataStore objects.

Each DataStore object provides a method called
read_config() that reads configuration statements from
some arbitrary source and executes the requested
method calls. It might read the statements from a local
configuration file using some particular syntax, or it
might use a network protocol to read the statements
from a remote configuration server (referred to as a
“gold server”). It does not matter to psgconf how the
statements are actually read, as long as the DataStore
module can read the statements and execute the
requested method calls.

For example, the PSGConf;:DataStore::ConfigFile
DataStore object reads configuration statements from
a local file using syntax that looks like this:

log _dir->set "/var/log";

This statement tells the DataStore object to look for a
Data object named log_dir and call that object’s set()
method with the string /var/log as its argument.

Action Objects

Action objects represent actions to be performed
on the system.

All Action object classes should be derived from
the PSGConf::Action base class, which provides several
support methods. However, new subclasses should
always define three important methods: check(), which
determines whether the action actually needs to be
performed or whether the system is already in compli-
ance; diff(), which displays details about the changes
that would be made to the system; and do(), which
actually performs the action.

The psgconf system includes many useful Action
classes. See Table 1 for several examples. Action
objects are processed in the order in which they are
registered. This is discussed in more detail below.

Control Objects
Control objects are the real workhorses of the

psgeonf system. They are responsible for directing the
overall process of configuring the system.

From their constructor, Control objects can
instantiate and register new Data objects. As men-
tioned above, each Data object is given a name as it is

Action Object Class

Description

PSGConf::Action::GenerateFile
PSGConf::Action::MkDir
PSGConf::Action::ModifyFile
PSGConf::Action::RunCommand
PSGConf::Action::Symlink
PSGConf::Action::TouchFile

programmatically generate a file

create a directory

programmatically modify an existing file
run an external command

create a symbolic link

create an empty file

Table 1: Examples of Action classes.

206

2003 LISA XVII - October 26-31, 2003 — San Diego, CA

Roth

registered. For example, the PSGConf::Control::AnonFTP
module registers the Data objects shown in Table 2.

Control objects can also provide any number of
policy methods, which perform programmatic manip-
ulation of Data objects. As with Data objects, the Con-
trol module’s constructor registers each policy method
under a particular name. Going back to the previous
example, the PSGConf::Control::AnonFTP module might
register the policy methods in Table 3. Note that just
because a policy method is registered does not neces-
sarily mean that it will be used. This is discussed in
more detail below.

Control objects also provide a method called
decide(), which is responsible for instantiating and reg-
istering new Action objects based on the final values
of the Data objects. For example, the PSGConf::Con-
trol::inetd module’s decide() method checks whether the
inetd Data object contains any entries, and if so it
instantiates a PSGConf::Action::GenerateFile object to
create the inetd.conf file.

The Big Picture

To illustrate how all of these object types fit
together, it is useful to enumerate the steps taken by
psgconf to configure the system.

Preventing Wheel Reinvention: The psgconf System ...

Step 1: Control and DataStore Module Instantiation

The PSGConf object starts by reading the /etc/psg-
conf_modules file, which can contain the following
types of entries:

DataStore module_name [args ...]
Control module_name [args ...]
Policy method_name

The DataStore entries specify a DataStore module to be
instantiated. Any additional arguments are passed to
the module’s constructor. Multiple DataStore entries
can be present, in which case the modules are
accessed in the order in which their entries appear in
the /etc/psgconf_modules file.

The Control entries specify a Control module to
be instantiated. As with DataStore entries, any addi-
tional arguments are passed to the module’s construc-
tor. Multiple Control entries can be (and usually are)
present, in which case the modules are accessed in the
order in which their entries appear in the /etc/psg-
conf_modules file. As mentioned above, the constructor
for each Control object can instantiate and register any
needed Data objects, as well as registering any policy
methods it provides.

The Policy entries specify the set of policy meth-
ods that will actually be invoked. The methods will be

Data Object Class

Description

anon_ftp_enable
anon_ftp_dir
anon_ftp_options

PSGConf;:Data::String
PSGConf::Data::Hash

PSGConf::Data::Boolean

whether or not to enable anonymous FTP
path to ftp root
options for ftpaccess file

Table 2: Data objects registered by the PSGConf::Control::AnonFTP module.

Policy Method

Description

anon_ftp_add_user
anon_ftp_add_inetd_entry
anon_ftp_add_package

if anon_ftp_enable is set, create ftp user
if anon_ftp_enable is set, add inetd.conf entry
if anon_ftp_enable is set, install wu-ftpd

Table 3: Policy methods registered by the PSGConf::Control::AnonFTP module.

PSGConf object

_> /etc/psgconf_modules

DataStor e object

new ()

Control object

P new()

‘ policy method registry “

(object-specific
policy methods)

Data object

‘ Data object registry T

new ()

Figure 1: Control and DataStore module instantiation.

2003 LISA XVII - October 26-31, 2003 — San Diego, CA

207

Preventing Wheel Reinvention: The psgconf System ...

invoked in the order in which their entries appear in
the /etc/psgconf_modules file. Note that as psgconf
reads each Policy entry, it will verify that the specified
policy method is actually registered. This means that it
is an error to specify a Policy entry for a policy method
before the Control entry for the Control module that
provides that policy method. By convention, this prob-
lem should be avoided by placing all Policy entries at
the end of the file.

Step 2: DataStore Processing

The PSGConf object loops through the list of
DataStore objects specified in the /etc/psgconf_modules
file and calls the read_config() method of each object.
The read_config() method accesses the data store and
reads configuration statements. Each configuration
statement results in calling a method of one of the
Data objects that was previously registered by the
Control modules.

Step 3: Policy Enforcement

The PSGConf object calls each of the policy
methods specified in the /etc/psgconf_modules file. The

Roth

policy methods programmatically manipulate Data
objects to enforce policy.

Step 4: Action Instantiation

The PSGConf object loops through the list of
Control objects specified in the /etc/psgconf_modules
file and calls the decide() method of each object. The
decide() method instantiates Action objects to perform
the appropriate actions based on the content of the
Data objects.

Note that the Action objects are processed in the
order in which they are registered. Because they are
registered by a Control object’s decide() method, this
means that the order of the Control objects in the
letclpsgeonf_modules file actually determines the order
of the Action objects instantiated by the various Con-
trol modules.

Step 5: Action Checking
The PSGConf object loops through the list of
Action objects and calls the check() method of each

object. The check() method checks to see if the action
actually needs to be performed.

DataStor e obj ect

PSGConf object]

read config()
I\

*

-

Data object registry }

Data object

(type-specific methods)

T

Figure 2: DataStore processing.

Control object

[PSGConf object

—

(object-specific
policy methods)

-

Data object

get ()

I

(type-specific methods)

Figure 3: Policy enforcement.

Control object

PSGConf object]

Action object registry

-

Action object

new ()

decide ()

Data obj ect

get ()

Figure 4: Action instantiation.

208

2003 LISA XVII - October 26-31, 2003 — San Diego, CA

Roth

For example, the PSGConf::Action::GenerateFile
module’s check() method will generate the new file and
compare it to the existing file; if the two files differ,
then the action needs to be performed.

Step 6: Action Implementation

For each Action object that needs to be per-
formed, the PSGConf object calls the object’s diff()
and/or do() method, depending on what options psg-
conf was invoked with.

The Action object’s diff() method prints the
details of the change that will be made to the system.
For example, the PSGConf::Action::GenerateFile mod-
ule’s diff() method invokes the diff(1) command to show
the differences between the existing file and the new
file, which was generated by the check() method in the
previous step.

The Action object’s do() method actually performs
the change on the system. For example, the PSG-
Conf::Action::GenerateFile module’s do() method replaces
the existing file with the newly generated version.

Step 7: Cleanup

The PSGConf object loops through the list of
Control objects and calls the cleanup() method of each
object, if present. The cleanup() method performs any
necessary cleanup tasks, such as restarting a daemon
after its configuration file has changed.

The Dual Role of Control Modules

In practice, Control modules are written to serve
one of two distinct roles: they can encapsulate the con-
figuration of a particular subsystem, or they can pro-
vide features that span multiple subsystems.

Most Control modules are designed to encapsu-

late the configuration of a specific subsystem. For
example, the PSGConf::Control::AnonFTP module

Preventing Wheel Reinvention: The psgconf System ...

provides all of the necessary Action objects for creat-
ing the anonymous FTP tree, generating the /etc/ftpac-
cess file, and so on. Essentially, it contains everything
necessary for configuring wu-ftpd.

Control modules can also be designed to provide
subsystem-independent features. For example, my
group uses a locally written Control module called
PSG::Control::ConnectionLog that configures TCP wrap-
pers to log connection information via syslog to a file
called connections. It does this via a policy method that
manipulates Data objects provided by the PSG-
Conf:;Control:;syslog and PSGConf;:Control;: TCPWrappers
modules. However, the PSG:Control::ConnectionLog
module does not register any Action objects of its
own, because it does not configure any subsystems
directly.

Although these two roles are often distinct, they
are both provided by the same type of module (Con-
trol modules) because there is a great deal of overlap
in the mechanisms they use. Both may need to provide
Data objects to make the relevant subsystem or feature
configurable, and both may need to provide policy
methods to manipulate Data objects provided by other
modules. Rather than duplicate all of this functionality
in two different module APIs, psgconf is able to han-
dle both roles through the same interface.

Ordering Policy Methods

The order in which policy methods are invoked
is important, because a given policy method may
depend on changes made by another policy method.

For example, the PSGConf::Control::AnonFTP mod-
ule provides a policy method called anon_ftp_add_tcpd
that adds an entry to the tcp_wrappers Data object for the
FTP server. In addition, my group’s locally written
PSG::Control::ConnectionLog module (described above)

Action object
[PSGConf object check ()
Figure 5: Action checking.
Action object

[PSGConf object

Figure 6: Action implementation.

diff() / do()

[PSGConf object

Control object

cleanup ()

Figure 7: Cleanup.

2003 LISA XVII — October 26-31, 2003 — San Diego, CA

209

Preventing Wheel Reinvention: The psgconf System ...

provides a policy method called connection_log_mod-
ify_tcpd. This policy method checks the syslog Data object
(provided by PSGConf::Control::syslog) for a logfile called
connections. If found, it adds a severity option to each
entry in the tcp_wrappers Data object so that wrapper
information is sent to the connections log.

When the connection_log_modify_tcpd method is
invoked, it adds the severity option for each entry that
it finds. However, if the entry for the FTP server is not
added until after the connection_log_modify_tcpd method
runs, then the severity option will not be added to that
entry. Therefore, the anon_ftp_add_tcpd policy method
must be invoked before the connection_log_modify_tcpd
policy method.

At first, I considered implementing a mechanism
that would automatically determine the order in which
to invoke the policy methods based on dependency
information encoded into the Control module by the
module’s author. However, the module’s author
doesn’t have any way of knowing what other modules
or policy methods the module will be used with, so
there’s no way to encode all of the dependencies into
the module. Only the administrator can do that,
because he’s the one choosing the Control modules
and policy methods.

As a result, psgconf allows the administrator to
set the order in which policy methods are invoked in
the /etc/psgconf_modules file.

A Note About Object-Orientation

Note that I chose to use object-oriented modules
for three main reasons. First, that’s the established
convention for writing new Perl modules. Second, the
object-oriented approach provides an easy way for
each object to maintain its own state. This is espe-
cially important for Data and Action objects, because
multiple independent objects are often instantiated
from each class. Finally, the object-oriented approach
makes it possible to create new modules as subclasses
of existing modules, which can make it easier to write
and maintain variations of existing modules.

Advantages of psgconf

The psgconf system is extremely flexible. Several
of its more noteworthy advantages are described here.

Flexible DataStore Mechanism

Because psgconf is not tied to a single DataStore
implementation, it can grow with its environment as the
environment’s needs change. For example, the only
existing DataStore implementation is the PSGConf::Data-
Store::ConfigFile module described above, which reads
configuration data from a local configuration file. In the
future, I plan to develop new data store modules to
access configuration data from a central gold server
using mechanisms like SQL queries or XML-RPC calls.
Using these new data store modules will be as simple as
updating the /etc/psgconf_modules file.

210

Roth

A Smorgasbord of Strategy

Because new Action classes can be created as
needed, psgconf is not limited to a specific strategy for
configuration management. For example, cfengine’s
convergence strategy can be implemented for certain
files using objects of the PSGConf::File::ModifyFile class,
while other files can be generated from scratch using
PSGConf::File::GenerateFile objects. Because Action
objects are processed in a specific order, even
ISConf’s history-recreation strategy can be imple-
mented, simply by adding a new Control module for
each state in the configuration history.

Separation of Config Data from File Formats

Because configuration data is represented in
Data objects and specific file formats are understood
by particular Action and Control objects, there is a
clean separation of code and data. This makes it very
easy to support platforms that each use a different file
format to represent the same data. For example, the
PSGConf::Control::PAM module provides a single Data
object to contain all of the PAM configuration data,
but it can instantiate Action objects to generate either
fetc/pam.conf or individual files in /etc/pam.d, as appro-
priate. Similarly, a module might instantiate Action
objects to generate either inetd.conf or xinetd configura-
tion files based on the same Data objects.

Future Directions

There is much potential for improvement in the
area of communication between package management
tools and configuration management tools. Currently,
using a psgconf Control module for something like
Apache may require the administrator to override a lot
of defaults, because the module does not know what
default paths or features were built into the Apache
package at compile time. If this information were
encoded into the Apache package in some standard
way, the psgconf module could query the package
manager to get this information.

There is currently no mechanism for asyn-
chronously notifying psgconf of changes in a central
data store. As new types of DataStore modules are
developed, this functionality will be implemented.

Although psgconf is publicly available, it has
never been announced in any major public forums,
and I am not aware of any other large sites using it. I
would very much like to get feedback from others who
are using it, so that any lingering features or assump-
tions that might be specific to my site can be elimi-
nated.

Ultimately, I would like to create a CPAN-style
site for distributing psgconf modules written by differ-
ent people. The goal of this site would be to allow sys-
tem administrators in different organizations to share
psgconf modules, thus avoiding the need to reimple-
ment a module that’s already been written.

2003 LISA XVII - October 26-31, 2003 — San Diego, CA

Roth

Conclusion

The psgconf framework’s modular architecture
provides a great deal of flexibility. Components can be
swapped out to meet changing needs, new platforms
can be supported without changing the configuration
data model, and different strategies can be combined
to manage system configuration in the most flexible
manner. Eventually, I hope that the ability to share
modules will help prevent wheel reinvention in the
entire system administration community.

Availability

The psgconf package can be downloaded from
its home site at http://www-dev.cites.uiuc.edu/psg-
conf/. It is distributed under a BSD-style license.

Acknowledgments

I would like to thank Paul Anderson, Alva Couch,
Daniel Hagerty, Luke Kanies, Adam Moskowitz, and
many others for providing frequent sanity checks as I
was developing the psgconf framework.

I would also like to thank Steve Traugott for
helping the system administration community think
about infrastructure in a whole new way.

Author Information

Mark Roth is the technical lead of the Production
Systems Group of the Campus Information Technolo-
gies and Educational Services department at the Uni-
versity of Illinois at Urbana-Champaign. Mark is the
author of several open-source software packages. He
can be contacted via email at roth@uiuc.edu, and his
web page is http://www.uiuc.edu/ph/www/roth .

References

[1] Traugott, Steve and Joel Huddleston, “Boot-
strapping an Infrastructure,” LISA XII Proceed-
ings, Boston, MA, pp. 181-196, 1998.

[2] Anderson, Paul, “Towards a High-Level
Machine Configuration System,” LISA VIII,
Berkeley, CA, pp. 19-26, 1994.

[3] Burgess, Mark, “Cfengine: A Site Configuration
Engine,” USENIX Computing Systems, Vol. 8§,
Num. 3, http://www.cfengine.org/, 1995.

[4] Oectiker, Tobias, “TemplateTree II: The Post-
Installation Setup Tool,” LISA XV Proceedingsk,
San Diego, CA, pp. 179-186, 2001.

[5] Holgate, Matt and Will Partain, “The Arusha
Project: A Framework for Collaborative Unix
System Administration,” LISA XV Proceedings,
San Diego, CA, pp. 187-198, 2001.

[6] Finke, Jon, “An Improved Approach for Gener-
ating Configuration Files from a Database,”
LISA X1V, New Orleans, LA, pp. 29-38, 2000.

Preventing Wheel Reinvention: The psgconf System ...

2003 LISA XVII - October 26-31, 2003 — San Diego, CA 211

212 2003 LISA XVII - October 26-31, 2003 — San Diego, CA

