
USENIX Association

Proceedings of the
LISA 2001 15th Systems

Administration Conference

San Diego, California, USA
December 2–7, 2001

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Lexis EXam Invigilation System
Mike Wyer and Susan Eisenbach – Imperial College

ABSTRACT

Computers have made their way into the classroom and lecture hall. Overhead projectors,
blackboards, and whiteboards are being displaced by smartboards and computer based multimedia
presentations. Students with laptops are a common sight and many courses have their lecture notes
on the web. Students are studying programming, web-site design, computer graphics, and many
other practical disciplines, yet these courses are still being assessed with traditional pen and paper
examinations.

When the Computing Department of Imperial College decided that their programming
courses would be assessed with a computer-based paperless exam using our standard Linux [8]
workstations, we were asked to make the labs secure enough to take an official exam. Here we
present the issues and technologies involved in securing Linux for this purpose, and the software
we developed to administer our examinations.

Introduction

People learn to program by sitting in front of a
machine and typing. However, formal programming
examinations are usually hand written on paper. So the
skill being tested is not the same as the one being
learned.

At Imperial College, we have had years of expe-
rience in running low-priority, low-security program-
ming tests on the standard lab systems. These tests
consist of a few simple programming questions, with
the students expected to code their answers within the
allotted time, submitting via an automated email-based
system. Given the small amount of credit available
and suitable vigilance on the part of the test coordina-
tor, it was felt that these tests did not warrant addi-
tional security measures on the workstations.

Students and staff preferred the computer based
tests to traditional written papers – the students felt
much more comfortable programming in an editor
with the chance to run their code, and the staff were
able to compile and run the submitted code directly,
which reduced the burden of checking the syntax and
the correct solutions of the given problem by hand. In
addition, the perennial problem of reading handwriting
was removed.

Our regulations are such that one of the neces-
sary conditions for passing the programming course is
that a student must pass the final examination. With
the popularity of the programming tests, we were
asked to investigate the feasibility of running exami-
nations securely on the lab systems. We were given
the task of configuring our lab machines in such a way
that students could safely take an official University of
London examination on them.

At the time, our computing labs consisted of over
200 PCs, ranging from 233 MHz Pentiums to 800
MHz Athlons, all running RedHat Linux [11].

Requirements

Although most people are familiar with the secu-
rity arrangements which accompany an official exami-
nation, they are not often encountered in a systems
administration context.

These requirements are taken from the specifica-
tion document discussed and agreed by the Academic
Committee in the Computing Department of Imperial
College.

Aims

Provide:
• familiar lab-like environment during exams,
• all resources necessary to complete exam,
• secure environment for completing exam,
• secure means of collecting exam answers.

Ensure:
• no access to unauthorized data,
• no access to other users on network,
• no distraction or interference from other users

on network.

Further Details

Some exams may involve providing students
with templates, stub code fragments, or other data.
Likewise, the student will be required to create or
modify files as part of the exam. The students will not
have access to shared network volumes, so any files
needed for the exam will need to be provided by the
software examination system. Some standard applica-
tions need to be available.

Each completed exam submission must be
securely stored and associated with the right candidate
number. Exam submissions must not be accessible to
anyone except the authorized agents of the University.

As with any other examination, students will
only be allowed access to permitted resources. In addi-
tion to the usual physical precautions of a written
exam (no books, paper, phones, radios, tattoos, etc.),

2001 LISA XV – December 2-7, 2001 – San Diego, CA 199

Wyer and Eisenbach Lexis EXam Invigilation System

the student should not have access to unauthorized
data. All access must be removed from:

1. data previously stored on hard disk in a
writable area,

2. data on removable media (floppy or zip disk),
3. data on network device (home directory, bit-

bucket)
4. communication via network.

It is also important to make sure that other users on the
network do not interfere with the student during the
exam, the on-line equivalent of the noisy mob in the
corridor outside an examination.

Investigation

Development time was limited, so it was impor-
tant to investigate currently available solutions. Sev-
eral commercial products exist, for example WebCT
[17] and Blackboard [2], but they are windows based
and only offer support for traditional style exams.
Indeed, a paper by Braun and Crable [3] strongly sug-
gests in-house development as an alternative to the
existing tools.

Although no existing package provided all the
facilities we needed, there was a good chance that
some of the individual tasks could be covered by one
of the many security tools, packages, and utilities
available for Linux [8] . The project to build a system
to help administer examinations was dubbed Lexis,
Lab EXam Invigilation System.

Network Access

A way of severely restricting the network was
needed, and the most obvious and effective method
would be to simply disconnect the network during any
exam. Our network topology and hardware are such
that this is a fairly straightforward option. The target
machines would then be required to function correctly
without any network. This raised several concerns
about reliability, synchronization, and monitoring.

What would happen if a machine had a fatal
problem during the exam, say a hard disk head crash?
How long would it take to recover any data, if it was
possible at all? These issues encouraged us to look at
other solutions to the problem. Leaving the network
connected also introduces problems. There were still
reliability issues, cheating might be easier and the
whole exam could be open to external attack.

It was vital that the worst-case failure of any of
the constituent systems would not invalidate the exam.
In order for Lexis to be a success, the safety, security,
and reliability of pen and paper had to be matched.

We investigated Linux kernel level firewalling as
an alternative to complete network disconnection.
Linux 2.2 was the stable kernel at the time, so the
ipchains interface, was evaluated [6] . The evaluation
proved to be very positive, since ipchains provided us
with a mechanism for filtering IP packets so that we
could implement our firewall.

Using ipchains would give us precise control
over the network traffic to and from each workstation
involved in the exam. While this is not a novel idea to
anyone who has been using ipchains, the key factor is
that using ipchains provides an easy way to achieve
temporary network security while still allowing cer-
tain connections. The ‘‘certain connections’’ we had in
mind were specifically OpenSSH [14] connections to
a central server. For brevity, we refer to OpenSSH as
ssh.

Most firewalling schemes are permanent; with
Lexis, the rules are in place for a few hours. Not only
do the rules have to be automatically applied, they
have to be removed as well. While the techniques
involved are straightforward, the implementation must
be fast and absolutely reliable.

System Security

We needed a strategy to prevent cheating –
access to unauthorized data, tools, or other users.

Many UNIX systems use the chroot system call
to restrict processes to a limited ‘‘sandbox’’ environ-
ment. This works very well for daemons which have a
specific function and whose resource requirements
(libraries, device files) are known in advance. In order
to provide a similar setup for an exam, we would be
forced to replicate a large percentage of the existing
filesystem so that candidates would have access to the
X Window System, window managers, all the editors
and compilers needed for the exam, and so on.

Not only would all this file copying take a long
time, it would take up more disk space than was avail-
able, and it it is not obvious that security would have
actually been improved.

A similar strategy would be to dedicate a parti-
tion on the disk to Lexis, and dual-boot to specially
configured OS and filesystem. As before disk space
would be limited, and this approach has other draw-
backs: we would have to provide compatible versions
of the programming languages needed for the exam,
along with having to provide a file transfer, security,
and monitoring system. Although the security aspect
would be simpler, we would still have to manage
installation of up to three operating systems on the
machine (Linux, Windows, and LexisOS, whatever
that turned out to be).

We also considered creating a root filesystem
image on the network which all the clients could
mount, but this brought several more problems: using
NFS (version 2) is not a good way to increase security,
and where would the candidate’s files be stored? If we
wanted to use the local disk, we would still be stuck
with the problem of sanitizing the filesystem and pre-
venting the use of data or programs stored on that
disk.

It seemed that no matter which approach we took
we would need to come up with a simple, practical,
and general way to secure Linux in a systematic

200 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Lexis EXam Invigilation System Wyer and Eisenbach

fashion. And if we could do that, then why not just run
the exam from our newly-secured Linux environment
which already had all the tools and configuration nec-
essary to run lab software?

We started to analyze the types of activity that
would be considered ‘‘cheating.’’ It turns out that
many of the activities which constitute illegal
behaviour by students are privileged operations on the
system. Operations such as mounting disks and creat-
ing trusted network sockets require either root access
or set-uid root file permissions. By remounting the
root filesystem without set-uid bits active, we elimi-
nate the danger from setuid binaries. This cuts the risk
from existing exploits of setuid code, and provides
protection from trojans (e.g., a suid shell installed
before the exam).

A useful side effect of this operation is that some
system binaries that are installed setuid root (notably
man and ssh) are also disabled. This would prevent the
student logged into the machine from using the ssh
client to attack the only open network channel (the ssh
link to the Lexis server).

Reliability

One of the key concerns of the academics
involved in the development of Lexis was that of relia-
bility: what would happen if a PC crashed during the
exam? While we could think of many analogous situa-
tions for a traditional paper-based exam which would
be equally catastrophic, we wanted to show that a PC-
based solution could improve upon the security and
reliability of pen and paper.

To provide some protection from hardware fail-
ure, we decided that all client machines would dump
the exam answers to a central server on a regular
basis. This would provide flexibility to cope with any
situation that might arise – if the candidate acciden-
tally deleted important files, we would be able to
restore them (at the request of the examiner); if a can-
didate disagreed with the marking of the exam and
claimed that Lexis was responsible, we would be able
to provide a detailed history of that candidate’s work
during the exam; if a machine failed, we would be
able to restore the last dump to a different machine
and let the candidate continue with minimal disrup-
tion. The main aim was to be able to support any deci-
sion made by the examiners.

It was also important to disable rebooting out of
the provided secure environment. This, along with our
other constraints was solved by our high level design
decision to use of runlevel 4.

Runlevel 4

Runlevels are a standard feature of SysV-style
init. Runlevels 0, 1, and 6 are reserved, and levels 2, 3,
and 5 have (thanks to LSB[9]) fairly standard defini-
tions across distributions. Runlevel 4 is available for
use on many Linux systems. By using a runlevel
specifically for lexis, we can use init [5] to handle

transitions into and out of exam state, as well as pro-
viding a secure boot when an exam is in progress.

To start an exam, we create a new set of config
files for the system, then change to runlevel 4. On
changing runlevel, init stops services from the last run-
level and starts services for the new runlevel. We cre-
ate a Lexis service that only runs in runlevel 4 that
carries out any changes that need to be done on start-
ing an exam or booting during an exam, including sig-
nalling the server that the workstation is ready for use
and turning on the firewall rules.

This approach places most of the management
burden on standard system processes, rather than on
bespoke Lexis code. Unfortunately, the init supplied
with RedHat 6.2 proved extremely unreliable during
initial testing, often changing runlevel without running
stop or start scripts. This meant that a large amount of
the functionality of init (stopping services, restarting
them) would have to be replicated in Lexis to ensure
reliability.1

Exam files

To make the dumping of exam answers easier,
we decided to restrict the candidates to a specific area
of their local disk. /exam would be used to contain all
the exam files and be the working area of the candi-
date. We only expect one candidate to use each
machine, but any candidate could conceivably sit at
any machine. We settled on the idea of a common
home directory since this would mean we would only
have to create the files needed for the exam once, and
we would create special Lexis accounts that would
only be valid for the duration of the exam. All the
Lexis accounts would be in a ‘lexis’ group which
would have access to /exam .

Special Lexis accounts would be necessary for
several reasons:

• Our site uses Kerberos [7] , which relies on net-
work access for authentication, so candidates
would not be able to log in during the exam.

• According to University Examination regula-
tions, candidates must only be identified by a
candidate number. Using normal logins would
compromise the candidates’ confidentiality.

On our systems, this would necessitate disabling
kerberos access, and providing new local Lexis
accounts with appropriate passwords. Since physical
access to the machines would be controlled by the
usual exam invigilators, and we would need some way
of associating candidate number with submitted files,
we decided to make the username and password the
candidate number. This would provide a double check
at login that the candidate was using the right candi-
date number, and that all files owned by the candidate
would be tagged with their candidate number.

1We have discovered to our cost that it is much easier for
us to re-implement rather than trying to get Red Hat Soft-
ware Inc. [11] to fix their product or accept patches from us.

2001 LISA XV – December 2-7, 2001 – San Diego, CA 201

Wyer and Eisenbach Lexis EXam Invigilation System

Design

We decided on a client/server architecture, where
the workstations that the candidates will use are the
clients, and a central machine which monitors the exam
and stores submitted answers from the candidates is
the server. The overall structure of a Lexis session is
summarized in Figure 1, showing how each client is
individually firewalled to the server, and the points at
which various illegal activities are stopped.

Server

Lexis
Cheat

ipchains
Client

Attack

Figure 1: Lexis architecture.

The Lexis protocol is very simple. All communi-
cation is in ASCII over an ssh link. All commands
consist of a single line (terminated with a single new-
line). When the client is invoked by the server, the
server sends its version number. If the client version
matches, the client returns ‘ok’. If the client and server
versions do not match, or the client is not being run as
the root user, an error is returned instead. For all sub-
sequent commands, the client will return ‘ok’ if the
call succeeds (after any expected output) or an error
message if it fails. All error messages include the host-
name of the client.

File transfer is accomplished using base64
encoding to make binary data safe to send over the
ASCII link and MD5 checksumming [18] to ensure
data integrity. This ensures the clients get the files
they are supposed to from the server, and to make sure
that the server receives valid dumps from the client.

Lexis Client
The main goal of the client software was to keep

it safe and simple. The client files would have to be
distributed to the clients ahead of time, and it would
be extremely difficult (or even impossible) to make
changes to the client during an exam. So the client
software would have to provide the capability to cope
with any situation that might occur during an exam.

We made the decision to use ssh to connect the
server to the client. This would provide a simple
STDIN/STDOUT communications channel between
the server and client, as well as the means to get full
remote shell access on the client from the server, to fix
any problems remotely.

There would be just one program that communi-
cated with the server (with others to accomplish spe-
cific tasks as necessary), and it would receive commands

from the server and respond to them. At no point
should the client be sending unsolicited data to the
server. This meant that there would be no need to
compromise the server by trying to enable the server
to trust the clients.

Lexis Server
With the server, we wanted a straightforward

system to manage connections with the clients, send
and receive files, and respond to commands from the
administrator. Since the clients would have limited
functionality, most of the data processing would be
done on the server, such as working out who had
logged into which machine.

Software

Our client-server approach has the individual
workstations as clients, with one or more central
servers to communicate with the clients. The client
software consists of three programs: lexis_startup,
which is called by init [5] when switching to runlevel 4
(either at the start of an exam or on booting during an
exam); lexis_active which is called by sshd [14] when a
connection is made by the server; and lexis_warning,
which is a simple X program that warns existing users
that an exam is about to start. The Lexis session is
managed on the server by a single process,
lexis_server. The dump files stored on the server can
be queried using the lexis_who and lexis_extract scripts.

Create Network Port
Create ssh link to clients
Send user list and files

Start warning
Start exam

Dump

Stop exam

Register port connections
Reconnect to client

Send file

Read config
lexis_server

Last dump
Dump /exam

Install file

Clear /exam
Restore config

init 5

Dump /exam

Connect to server port
Prepare system

Restore system

init 4
Write config

Call lexis_warning

Read config from server

lexis_startup

lexis_active

lexis_active

lexis_startup

Figure 2: Main Lexis components.

The interactions between the main scripts –
lexis_server, lexis_active and lexis_startup – are shown in
Figure 2.

lexis_active
Most of the client-side code is in lexis_active,

such as the file transfer mechanism, authentication
setup, ipchains configuration, and runlevel control. It is

202 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Lexis EXam Invigilation System Wyer and Eisenbach

a straightforward perl [10] script which reads com-
mands on stdin and produces output on stdout, and
contains just over 400 lines of real code. It is designed
to be invoked as a root process at the remote end of an
ssh connection, and will abort if the calling uid is not
zero. The commands are summarized in Figure 3.

Command Description

init Clear /exam and make the machine ready for use in an exam.

add server Add the given IP address to the firewall rules and the list of hosts to contact when booting.

delete server Remove the give IP address from firewall rules and the list of hosts to contact when booting.

port Connect to the given port on the servers when booting.

rootpw Set the root password for the current session.

user Add the given username as a candidate.

users Add the given list of whitespace separated usernames as candidates.

file Transfer the given file to the client. If the filename is a relative path, transfer to /exam, other-
wise treat as an absolute path. Unpack gzipped tar files.

gen_passwd Use current user list and root password to generate new /etc/passwd and /etc/shadow files. In-
stall new PAM configuration files. Keep a backup of original configuration.

restore_passwd Restore original /etc/passwd, /etc/shadow, and PAM files.

warn Run lexis_warning for the given number of seconds.

kill Kill all processes with uid > 100. Unmount any network filesystems.

start Write out firewall configuration. Write out server and port settings. Change to runlevel 4.
Exit.

dump Return a gzipped tar file of /exam.

ok Return ‘‘ok’’.

quit Restore original configuration. Clear /exam. Change to runlevel 5. Exit.

Figure 3: lexis_active commands.

Figure 4: Lexis logo.

lexis_startup
One-off operations at the start and end of the

exam are performed by lexis_startup, which is a SysV-
style initscript. It is called by init when changing to
runlevel 4 or when booting in runlevel 4. In either
case, lexis_startup remounts the root filesystem with
SUID bits turned off, clears tmp directories, shuts
down non-Lexis services, redirects any remote syslog-
ging to a local file (we don’t want the system to lock
up trying to contact a host its own firewall rules are
blocking), opens a connection to the Lexis server, and
updates the X display manager (gdm or kdm).

Terminating Lexis changes out of runlevel 4, re-
mounts the root filesystem with suid bits set, re-
enables remote syslogging, and restores the X setup.

The display manager update is very simple, but
necessary: we install a new logo to make it obvious
the machine is ready for taking an exam, and restart X
since it’s /tmp/ lock-file has been removed, and it will
automatically log out any existing users. The logo we
use (Figure 4) is an adaptation of the classic Linux
mascot, Tux, and shows him behind bars. The writing
on his chest is ‘‘IC Outside,’’ a logo we apply to the
systems we build in Imperial College Computing
Department.

There is scope for more paranoia in
lexis_startup. The original idea was to recurse through
the entire directory structure looking for world- or
group-writable directories and clearing them. This
strategy proved unworkable when we found that a

2001 LISA XV – December 2-7, 2001 – San Diego, CA 203

Wyer and Eisenbach Lexis EXam Invigilation System

number of standard tools (xemacs for example) use
writable directories for storing site packages, or simi-
larly update-able files. While individual cases (like
xemacs) can be fixed on a site-wide basis, it would be
incredibly risky to include code to remove or hide
such directories automatically.

For the time being, we make the assumption that
/tmp and /var/tmp are the only world-writable local
directories. If Lexis starts being used at a large number
of sites, then more advanced techniques may become
necessary.

The current lexis_startup is implemented in
about 100 lines of perl.

<!-- DTD for LEXIS server config file -->

<!ELEMENT config (server*,file*,users,(machine|machine-range)+)>
<!ATTLIST config dump-dir CDATA #REQUIRED>
<!ATTLIST config dump-interval CDATA #REQUIRED>
<!ATTLIST config port CDATA #REQUIRED>
<!ATTLIST config rootpw CDATA #REQUIRED>
<!ATTLIST config start CDATA #REQUIRED>
<!ATTLIST config stop CDATA #REQUIRED>
<!ATTLIST config debug (0|1) "0">

<!ELEMENT server EMPTY>
<!ATTLIST server address CDATA #REQUIRED>

<!ELEMENT file EMPTY>
<!ATTLIST file name CDATA #REQUIRED>

<!ELEMENT users (#PCDATA)>

<!ELEMENT machine EMPTY>
<!ATTLIST machine name CDATA #REQUIRED>

<!ELEMENT machine-range EMPTY>
<!ATTLIST machine-range base CDATA #REQUIRED>
<!ATTLIST machine-range first CDATA #REQUIRED>
<!ATTLIST machine-range last CDATA #REQUIRED>

Figure 5: DTD for lexis_server config file.

lexis_warning

To warn any existing users that an exam is about
to start we use lexis_warning, which is a simple Perl-
Tk script that connects to the local X server. It turns
the root window to a given colour (red by default) and
pops up a small window containing a warning about
the impending exam. The popup beeps in an irritating
fashion every second until the current user acknowl-
edges it. It is mainly intended for use when a Lexis
session is scheduled during a normal lab period – it’s
not necessary when the rooms have been cleared and
checked for a full official examination.

lexis_server

The Lexis server process is the heart of the Lexis
system. It deals with data from a number of sources:
there is a main config file, a network port for listening
for new Lexis clients, the connections to Lexis clients,
and also interactive input from the operator. The sys-
tem is designed to enable one operator to manage
many Lexis clients at the same time from the same
server process.

The server is configured using XML. The DTD
is shown in Figure 5, and Figure 6 shows an example
config file.

The main config tag contains attributes describ-
ing where to store dump files and how often they
should be taken, which port to listen on for booting
Lexis clients.

While the config file defines ‘‘start’’ and ‘‘stop’’
times, they are for information only, as Lexis does not
yet start and end exams automatically. It is technically
feasible to trigger these events, but development time
was tight, and the staff in charge of the exam were
more comfortable retaining control over the start and
end time of the exam in case of special circumstances.

Implementing auto start and finish would entail
putting more critical code onto the client, which is
something we wanted to avoid while the system devel-
ops. Also, the overhead of 200 machines all trying to
dump to the server at precisely the same moment
could cause problems on the server, and we didn’t
want to risk losing any candidate’s work.

The rest of the config file contains a list of files
to transfer to the clients, the list of candidate names,
and a description of the hostnames of the client
machines. The clients machines can be specified indi-
vidually by name, or using a shortcut for ranges of
machines. The example file would add the following
machines as clients: lab25, dynamic01, dynamic02,
. . ., dynamic28 .

Multiple server processes can communicate with
the same client machine; each connection will spawn
its own lexis_active process. We have used this tech-
nique with a modified lexis_server to create a separate
dumping process in case of any problems or long-run-
ning jobs on the main server process.

204 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Lexis EXam Invigilation System Wyer and Eisenbach

Required perl modules: Term::ReadKey, File-
Handle, File::Copy, DirHandle, MIME::Base64, MD5,
IPC::Open2, IO::Socket, IO::Select, Net::DNS,
XML::Simple

<?xml version="1.0" ?>
<!DOCTYPE config SYSTEM "lexis.dtd">

<config
dump-dir="/var/lexis/"
dump-interval="1 minute"
port="334"
rootpw="testpw"
start="15/3/2001 12:00"
stop="15/3/2001 13:00"
debug="1"
>

<file name=".cshrc" />
<file name="data_structures.c" />
<file name="logic.pl" />
<file name="skeleton.tgz" />

<users>
mw foo bar
CAND001 CAND002 CAND003
</users>

<machine-range base="dynamic" first="01" last="28" />
<machine name="lab25" />
</config>

Figure 6: Config file for lexis_server.

lexis_who
In order to find out which candidates had logged

into which machines, we developed lexis_who, which
is a simple perl script that queries the dump files
stored on the server. It uses the files created on login
to determine the user of the machine, for example
.xsession-errors.
lexis_extract

Once the exam was over, we needed a way to
extract specific files from the dumps, so that the
answers to the various questions could be sent to the
right marker. We wrote lexis_extract to achieve this,
and to provide a framework for any other processing
Lexis users might want to perform on the dumps.
There are perl and ruby [12] versions of lexis_extract,
with different default tasks. The ruby version is much
more powerful than the perl version, and at 120 lines
is twice as long.

Installation and Minimum Requirements
The minimum requirements for the Lexis client

code are OpenSSH 2, Perl (with MD5 and
MIME::Base64 modules), ipchains, and SysV style
init. The processing requirements on the client are
minimal; Lexis is designed to keep out of the way of
the candidate as much as possible, so the greatest load
on the system is likely to be any compilers the candi-
date is using. The Lexis client code is written in Perl,
so it is possible for sites to customize the code to their
specific requirements. Likewise, if other Operating
Systems provide firewall rules in a similar way to

ipchains, then Lexis can be ported to that OS (espe-
cially other UNIX variants). Lexis is not designed for
Windows systems.

The Lexis client install consists of lexis_active
and lexis_warning in /usr/local/bin, lexis_startup installed
as a runlevel 4 startup script (and all other services
removed from runlevel 4), a ‘lexis’ system group for
ownership of /exam, and finally all clients will need
the SSH2 public key the server will be using to con-
tact them.

The use of lexis_warning is optional, and can
either be omitted, or replaced with a suitable equiva-
lent for the site in question. If you choose to use
lexis_warning, the perl Tk module will also be needed.
The Lexis client code can be easily made into an RPM
or other package format. In which case, some addi-
tional security can be obtained by changing
lexis_server to run
rpm -V lexis-clien && \

/usr/local/bin/lexis_active

on the remote client machine.

The requirements for the Lexis server are some-
what stricter. The current lexis_server maintains a con-
stant ssh connection for every client machine, there is
also the overhead of MD5 and base64 on all client
dumps, along with any processing of the dump files
that needs to be done during the exam. We used an
Athlon 800 with 512 MB of RAM to manage an exam
with 160 client machines, but the machine was run-
ning very low on resources (we had to increase the
file-max limit several times at the start of the exam to
enable all the connections to succeed).

The main limitation is one of time – the server
was originally written as a single thread, so as the

2001 LISA XV – December 2-7, 2001 – San Diego, CA 205

Wyer and Eisenbach Lexis EXam Invigilation System

number of client machines increases the time to com-
plete each stage of the exam process rises signifi-
cantly. With 120 client machines, every second that a
client takes to complete a task equates to two minutes
for the lab as a whole. 30 seconds is not an unreason-
able time for a client machine to transfer all the files it
needs, generate MD5 encrypted passwords for 100
users, shut down all non-essential system processes,
change runlevel, and restart X. Unfortunately that
means it would take an hour for the whole lab to
startup. The current version of the server has some
very simplistic multi-threading capabilities (call fork()
for groups of 5 client requests), but it can still take a
while for the whole set of client machines to complete
intensive tasks. The initial startup is far and away the
longest Lexis process; dumps and file transfers com-
plete in a matter of seconds for the whole lab.

Security

First and foremost, Lexis is a security product.
Its sole function is to provide a safe environment for
taking exams. Its success is measured by how success-
ful it is in that area: i.e., how secure is Lexis?

Client

If a candidate obtained root privileges, they
would be able to circumvent or disable all the restric-
tions enforced by Lexis. For example, they would be
able to drop firewall rules, connect to other hosts on
the network, and access stored files via NFS.

Root privileges could be gained by a number of
means: using the root password, rebooting the
machine to single user mode, using a boot floppy, or
installing a Trojan horse on the client machine before
the exam. Lexis takes a number of approaches to pre-
vent successful exploitation of any of these tech-
niques.

The root password is unique to each Lexis exam,
and is only stored on the local machine in an MD5
encrypted form. Any rebooting of the machine will
generate a warning on the server when the ssh connec-
tion is dropped. The local LILO configuration is pro-
tected with a password to prevent booting in single
user mode. The boot sequence can be re-ordered in the
PC BIOS to prevent booting from floppy (although
this cannot be easily automated).

Making use of a Trojan horse would require root
access prior to exam, although even if this were done,
set-uid binaries would not be effective. The greatest
risk from an approach such as this would be to hide
unauthorized information on the machine. The candi-
date would have to do this to all machines that might
be used for the test in order for it to work. A tool such
as tripwire [16] might be useful for checking system
integrity if this sort of exploit were a concern.

In general, a large effort is required to subvert
Lexis; easy attacks are already blocked, risky attacks
such as rebooting would be easily visible to exam

invigilators or the Lexis administrator during an exam,
and other attacks require previous root access to the
workstation, which could also be detected.

Server

The security of the server is of paramount con-
cern; the root user on the Lexis server can get root
access to any Lexis client. They would also have full
access to the dumps. Lexis does not provide specific
security for the server, as the setup will vary greatly
depending on available tools, site policy, security
awareness of academics involved in the exam, and
also the general setup of the network (DNS servers,
NFS servers if needed, and so on).

Lexis depends on DNS resolution for the forward
and reverse lookup of client hostnames. This could be
provided on the server, and so the server could then be
firewalled exclusively to the Lexis clients. The
approach we took was to use ipchains to restrict the
server to the local network (not just the Lexis clients),
and close all ports except ssh, while restricting ssh
access to the minimum subset of users who needed
access to the server for the exam.

The possible attacks we have considered are:
security compromise by client, Denial of Service by
client to prevent other candidates finishing exam,
DOS from outside, security compromise from outside
to tamper with stored dumps. None of these are easily
solved by a simple toolkit approach – each Lexis
server will have different security requirements
depending on the importance of the exam, the environ-
ment, other uses of the machine, means of transferring
submitted exam answers to markers.

The server is a much more traditional security
problem than the Lexis client, as it needs to be secure
before, during, and after exam. There is the usual
compromise between ease and speed of use against
security risks. The policy on each site must be the
responsibility of the examiner, but a good basis is min-
imal services, firewalled to Lexis clients only during
exam, encrypted dumps, restricted logins to exam per-
sonnel only. Lexis does not yet support encrypted
dumps, but the feature would be simple to add,
whether a symmetric key is set by the exam coordina-
tor at the start of the session, or alternatively encrypt-
ing each dump for the users who are going to mark it
(this depends on a reliable Public Key Infrastructure).

Lexis in Use

Lexis was developed in order to satisfy a require-
ment from the Department’s Academic Committee
that the First Year (freshman) undergraduate program-
ming exam would be taken on lab machines. That
requirement gave us a strict deadline for completion of
development and testing of Lexis. The system would
only be used if the examiners had been satisfied,
through a demonstration, that it fulfilled their require-
ments.

206 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Lexis EXam Invigilation System Wyer and Eisenbach

While we were confident that the techniques
used by Lexis were secure and met the needs of the
examiners, we had no way of knowing how well the
system would scale, how it would perform under load,
and how it would cope with unexpected failures.

Early testing revealed a number of problems with
the communication between server and client. Client
crashes would cause a fatal error on the server when it
tried to read from the filehandle connected to the
client. Server crashes would leave zombie lexis_active
processes running on the clients. These problems were
successfully resolved by simplifying the client code
and extending the server. We made the client block on
input, so when the channel died, it would simply exit.
The server was made much more resilient, trapping
the PIPE signal, and removing clients from the active
connection list at the first problem.

Unfortunately, these changes meant we had to
sacrifice some functionality on the client; we had
hoped to be able to asynchronously notify the server
on significant events (login, logout, reboot, attempted
network access, syslog messages), but there was no
way to achieve this with the simpler client.

First Test
The first proper test of Lexis was supposed to be

a normal programming test, much like the many that
had been taken before, only this time with Lexis pro-
viding security. Unfortunately, a known bug in the lab
software occurred during a demonstration of Lexis to
the test coordinator. Even though the problem was
completely unrelated to Lexis, the coordinator didn’t
feel confident enough to run the actual test with Lexis.
There was a great deal of disappointment all round,
and there was still the problem of successfully demon-
strating a full Lexis test before the main exam two
weeks later.

The day before the main exam, a number of stu-
dents were due to sit another programming test. This
would be the final chance for Lexis to prove itself
before the big exam, and was run with the largest
number of clients tried so far.

At this stage, the server was still using a single
thread of execution, processing each client sequen-
tially. It was painfully slow, but it was also reliable,
coping with all the failure cases the Teaching Associ-
ates could think up – rebooting the client, unplugging
a client completely and asking for the files to be
restored elsewhere, deleting files and asking for the
originals to be restored. Likewise, the system proved
resilient against the security attacks they attempted –
all unauthorized network packets were blocked. They
tried sending mail, and although the command suc-
ceeded, the messages were only queued on the client
machine, and could not be sent on until the firewall
rules were lifted.

The test coordinator emailed us to say:
‘‘Thanks very much. Lets hope it goes as smoothly

tomorrow as it did today.’’

However, the speed issue was critical. With
about 40 machines taking part in the programming
test, it had taken over 30 minutes to get them all into
an exam state. With 160 machines scheduled for use
the following day, we could not afford a two hour wait
for the system to start. Given that the system was basi-
cally reliable, and a complete rewrite was out of the
question given the time restrictions, we needed to find
a simple way to speed up Lexis operations.

The solution we settled on at the time was to use
a very simple fork()-based approach: each request
going to more than one client machine would be bro-
ken down into batches of five (selectable at runtime)
and a new process forked to execute each batch. While
this would increase our resource requirements, it
increased the responsiveness of the system by an order
of magnitude without compromising the security or
reliability of the already-tested code.

First Lexis Exam: 21st March 2001

The computer labs were cleared the night before
the main exam, and we started Lexis before the stu-
dents arrived. While we had considered having a sepa-
rate server for each area of the labs (this exam used
four of the five rooms we had available), in the end we
were able to coordinate and run the entire exam from
one server. There were 160 machines, and 110 candi-
dates.

The exam got underway with very few problems.
One student had difficulty accessing files immediately
after logging in, but transferred to a spare machine
straight away. The problem turned out to be a cor-
rupted filesystem from a prior hardware fault that no-
one had bothered reporting.

A short time later we received a number of
reports of exam files being corrupted. Specifically, a
library file provided by Lexis in /exam and vital to the
exam was being over-written with binary data. This
caused a minor panic among the exam administrators
who had a number of distressed candidates unable to
continue their work. It was very simple to send out
fresh copies of the file in question to all the affected
clients. That enabled the candidates to continue while
we analyzed the cause.

Again, the problem was not actually caused by
Lexis. An urgent investigation revealed that the library
was being overwritten by graphics data, specifically a
screen shot of the file manager. It turned out that one
of the common keystroke combinations in the editor
used by the candidates caused the file manager to
dump a screen shot of the current window into the
selected file. Once that was sorted out, the exam con-
tinued in a routine fashion.

We used lexis_who to print out a list of which
candidates were using which machine, which was then
checked off against the list prepared by the examiner.
This revealed several machines where earlier errors
had caused the server to drop the connection to the

2001 LISA XV – December 2-7, 2001 – San Diego, CA 207

Wyer and Eisenbach Lexis EXam Invigilation System

client. We had assumed this would make the machine
unusable for the client, but Lexis clients proved to be
more robust than we thought, and the candidates were
still using the machines. We added them back into the
client list and they responded and started dumping
again.

In response to this problem, lexis_server has been
amended to check for dropped clients that should be
active.

Automatic dumps were happening every five
minutes for over three hours. In total we took 6600
dumps, totalling over 60 MB of data.

We received no complaints from the students,
and those we spoke to after the exam were greatly in
favour of Lexis exams over paper-based exams, espe-
cially for programming.

Conclusions

According to the BBC, on the 2nd of April 2001,
students sat the first paperless exam in the UK in a
pilot scheme in Northern Ireland [1]. In fact, we beat
them to it by several weeks. Our system, Lexis, was
used to administer a first year programming exam on
21st March 2001 which comprised 110 students with
access to 160 Linux workstations and lasted for three
hours. At the end of which, the labs were restored to
general access use.

We believe that Lexis is the first general tool for
managing on-line paperless exams on the Linux plat-
form. Lexis enables computing skills to be securely
examined in an environment that provides the same
tools that the candidates are used to. Lexis can be used
for any type of exam, from a multiple choice quiz to a
full essay paper, although it is especially suited to situ-
ations where computers are a normal tool for the task
in question.

Lexis is not designed to completely automate the
process of University examinations – it won’t start and
stop exams by itself, won’t grant extra time for late-
comers, it can’t mark the answers, and it certainly
can’t write the questions. What it can do is provide a
secure framework for managing minimum privilege
access to a local network of Linux workstations, while
automatically backing up files at regular intervals.
These facilities can be put to a number of uses, not
limited to exams or tests.

One application that has been discussed with us
is that of kiosk systems: a series of Linux workstations
available for public use in an insecure environment.
Lexis could be used to restrict user activity on the
kiosk machines, while also restricting network access
to securely maintained proxy servers for access to
email or the web. This approach would significantly
cut down the potential for abuse of the systems. The
big advantage Lexis has over other approaches is that
it works with very little modification to a standard
installation. It doesn’t require kernel patches or
reboots.

Lexis was developed by system administration
personnel to support an academic decision. The aca-
demics wanted a computer-based examination system
for reasons of convenience, progress, and to satisfy
student requests. The project progressed with the aca-
demics requesting features and suggesting failure sce-
narios, and the systems group suggesting pros and
cons of various strategies and providing a system
security perspective. Unusually for this type of collab-
oration, the academics were happy to accept the secu-
rity restrictions, and the developers were able to pro-
vide all the requested features.

What does the future hold for Lexis? We have
just completed another programming test with Lexis,
and the coming academic year promises many more.
We have also ported Lexis from our old RedHat setup
to a new standard SuSE install. It took just one day to
adapt Lexis to support SuSE-specific tools and config-
uration – the same code now runs on both platforms.
Other Universities in the UK have expressed an inter-
est in Lexis, and we would like to see it in use at other
sites.

Availability

Lexis is released under the GNU Public License,
and can be downloaded from http://www.doc.
ic.ac.uk/˜mw/lexis/ .

Acknowledgments

Throughout the development of Lexis, the
encouragement and support from other members of
the department has been fantastic. Special thanks to
Duncan White for help administering the main exam,
Peter Cutler for his patience and understanding during
testing, and all the students and staff who have taken
part in Lexis exams.

The insight and guidance provided by Ozan Yigit
have been invaluable while writing this paper, and we
thank him for the care and interest he has shown in
this project.

The Authors

Mike Wyer is a recent graduate of Imperial Col-
lege who currently works as a Systems Administrator
in the Department of Computing. He has had a long-
term interest in examinations and computers, having
worked on exam registration in a final-year group pro-
ject. Reach him electronically at mw@doc.ic.ac.uk .

Susan Eisenbach is a Reader in the Department
of Computing where she is Director of Studies,
responsible for the teaching programme. Her research
interests include programming languages for dis-
tributed computing.

References

[1] BBC News, news.bbc.co.uk/hi/english/education/
newsid_1258000/1258446.stm .

[2] Blackboard, http://www.blackboard.com .

208 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Lexis EXam Invigilation System Wyer and Eisenbach

[3] Braun, Crable, ‘‘Administering Exams Electroni-
cally: Issues, Techniques, and Assessment,’’ http://
www.isworld.org/ais.ac.98/proceedings/track26/
braun.pdf .

[4] Computing Support Group web pages, http://
www.doc.ic.ac.uk/csg/ .

[5] ‘‘init(8), Standard Sys V Root Process, ftp://sunsite.
unc.edu/pub/Linux/system/daemons/init/sysvinit-
2.78.tar.gz .

[6] Linux IP Firewalling Chains HOWTO, http://
netfilter.filewatcher.org/ipchains/ .

[7] MIT Kerberos, http://www.mit.edu/kerberos/ .
[8] Linux, Linus Torvalds, http://www.linux.org .
[9] Linux Standard Base, http://www.linuxbase.org/

spec/gLSB/gLSB/runlevels.html .
[10] Larry Wall, et al., Perl, http://www.perl.com .
[11] RedHat Software, http://www.redhat.com .
[12] Ruby, http://www.ruby-lang.org .
[13] Campen, San Diego State University, http://coe.

sdsu.edu/eet/Articles/Paperless/start.htm .
[14] OpenSSH, http://www.openssh.com .
[15] SuSE, http://www.suse.com .
[16] TripWire, http://sourceforge.net/projects/tripwire .
[17] WebCT, http//www.webct.com .
[18] ‘‘What are MD2, MD4, and MD5?’’ http://www.

rsasecurity.com/rsalabs/faq/3-6-6.html .

2001 LISA XV – December 2-7, 2001 – San Diego, CA 209

210 2001 LISA XV – December 2-7, 2001 – San Diego, CA

