USENIX Association

Proceedings of the
LISA 2001 15" Systems
Administration Conference

San Diego, Cdlifornia, USA
December 2—7, 2001

USENIX
SAGE

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Accessing Files on
Unmounted File Systems

Willem A. (Vlakkies) Schreiider — University of Colorado, Boulder

ABSTRACT

This paper describes a utility named ruf that reads files from an unmounted file system. The
files are accessed by reading disk structures directly so the program is peculiar to the specific file
system employed. The current implementation supports the *BSD FFS, SunOS/Solaris UFS, HP-
UX HFS, and Linux ext2fs file systems. All these file systems derive from the original FFS, but
have peculiar differences in their specific implementations.

The utility can read files from a damaged file system. Since the utility attempts to read only
those structures it requires, damaged areas of the disk can be avoided. Files can be accessed by
their inode number alone, bypassing damage to structures above it in the directory hierarchy.

The functions of the utility is available in a library named 1ibruf. The utility and library

is available under the BSD license.

Introduction

There are many important reasons for being able
to access unmounted file systems, the prime example
being a damaged disk. This paper describes a utility
that can be used to read a disk file without mounting
the file system. The utility behaves similar to the regu-
lar cat utility, and was originally named dog, but
was renamed to ruf for reading unmounted filesys-
tems to avoid a name conflict with an older utility.

In order to access an unmounted file system, the
utility must read the disk structures directly and per-
form all the tasks normally performed by the operating
system; this requires a detailed understanding of how
the file system is implemented. Implementing this util-
ity for a particular file system is an interesting aca-
demic exercise and a good way to learn about the file
system. The original work on this utility was in fact
done in Evi Nemeth’s system administration class.

Boot | Cylinder | Cylinder Cylinder
Block | Group 1 Group 2 Group m
1 k blocks | kblocks k blocks

Figure 1: File system layout.

Most Unix systems — including HP-UX, Solaris,
Linux and the BSD family — use a general purpose file
system derived from the Fast File System (FFS).
[McKusick, et al., 1984] While the Linux ext2fs
implementation differs considerably from the FFS, the
concepts it uses are basically the same.

Figure 1 shows the layout of the file system. The
file system, which may be all or part a physical disk,
consists of a boot block followed by a number of
equal sized entities called cylinder groups. The physi-
cal data blocks that make up a cylinder group are orga-
nized such that they can be read with minimal move-
ment of the disk heads, thus improving performance.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

In fact, the FFS is itself derived from the original Sys-
tem V File System (S5FS); the major difference
between the FFS and S5FS is that the SS5FS has a sin-
gle cylinder group. Cylinder groups are relatively
small, often tens of megabytes in size. Contemporary
file systems may therefore contain hundreds or thou-
sands of cylinder groups.

All disk drives organize data into fixed sized
physical blocks. The file system uses blocks that are
one or more physical disk blocks. The terminology of
the FFS is a bit confusing, in that a block consists of
several fragments or frags. A physical disk block may
therefore really correspond to a fragment and not to a
block. For example, a 4 kB block may consists of four
1 kB fragments. The block address actually refers to
the fragment address, so that in this example with four
fragments per block, the addresses of the blocks are 0,
4, 8, etc., so that each address readily decodes to the
correct block or fragment.

Super | Accounting Inode Data
Block | Information Table Blocks
1 k blocks I blocks | n blocks

Figure 2: Cylinder group layout.

The layout of a cylinder group is shown in Fig-
ure 2. The superblock contains many critical file sys-
tem parameters such as the block size, number of frag-
ments per block, and other information needed to
access the file system. Since these parameters are criti-
cal to the integrity of the data on the disk, several
backup copies of the superblock are spread over the
disk, potentially one per cylinder group.

Most information about a file is saved in a struc-
ture called an inode. This information includes the
file owner, permissions, times, size and so on. Inodes
are of fixed size and are numbered sequentially. Given

163

Accessing Files on Unmounted File Systems

the inode number, a somewhat complicated algorithm
gives the exact location of the inode on the disk.

The file contents are stored in data blocks. A list
of the data blocks associated with a file is stored in the
inode. Reading a file involves reading the inode,
extracting the list of data blocks, then reading the
actual data in the blocks.

The typical tree structured directory system is
implemented as a sequence of files. A directory is
nothing more than a special file that associates file
names with inode numbers. To read a file by its file
name, the root file that appears at a fixed inode num-
ber is read. Sub-directories appear as records in the
file with associated inodes. Marching the directory
tree requires reading sub-directories until the specific
file and the associated inode number are found.

Program Organization

The ruf program is organized into three sets of
functions. At the lowest level, there are the device
functions: These functions read bytes from the disk at
boundaries and in sizes appropriate for the device
being accessed. They also buffer data to improve per-
formance. While important to the operation of the pro-
gram, this paper simply asserts the ability to read arbi-
trary byte offsets on the disk using a 64 bit address.

The next set of functions are the file system
functions, where the majority of work is performed.
At this level, peculiarities such as disk, inode and
directory structures are resolved. The functions
fsmount and fsumount read the superblock and
perform memory management functions, analogous to
the mount and umount system calls. Alternate
superblocks may be read with appropriate command-
line parameters. The functions fsopen, fsread,
and fsclose are used to open, read and close a file
based on an inode number passed to fsopen. The
function fsscandir is implemented to read direc-
tory files using fsopen, fsread and fsclose.

The last set of functions take care of the walking
the directory structure, resolving symbolic links and
listing the file or directory. The function walkpath
takes a path and finds the corresponding inode number
by reading each of the directories in the path. Sym-
bolic links causes walkpath to be called recur-
sively. The function stream lists the contents of a
regular file to standard out, or performs a directory
listing looking like 1s -i1 to standard out. Finally, a
function ruf provides a convenient interface to all the
lower level functions.

The functions are implemented in a library
named 1ibruf. A simple main program calls func-
tions in 1ibruf, but the functionality may be readily
incorporated into other programs.

Porting 1ibruf to a new file system derived
from the FFS should only require specifying which
header files to include and definition of a few macros
in the files fs.h and fs.c.

164

Schreiider

The Superblock

The first step in accessing the file system is read-
ing the superblock. This is done through the function
fsmount, which returns a private structure that is
used in subsequent operations.

The primary superblock is stored near the begin-
ning of the file system. At the very beginning of the
file system is typically 1 kB of boot information. The
superblock is at a fixed offset from the beginning of
the file system, typically 1 kB. When using 1 kB
blocks, the boot information is contained in the first
block, and the superblock appears in the second block.
Larger blocks contain both the boot information and
superblock. Reading the primary superblock simply
requires seeking to the superblock offset and reading
the required number of bytes.

Reading an alternate superblock is somewhat of
a chicken and egg problem. The alternate superblocks
appear at the beginning of some subsequent cylinder
groups. However, in order to determine the cylinder
group size, the information in the superblock is
required. Fortunately, cylinder groups are not of arbi-
trary size. One of the important components of the
cylinder group is a set of bits indicating used blocks.
This set is stored as a single block. Since a 1 kB block
contains 8192 bits, the cylinder group for this block
size will often contain 8192 blocks.

In order to read an alternate superblock, it may
be necessary to try a few of the common block sizes in
order to find the superblock. The function sbfind
reads all the blocks on the disk and prints fragment
addresses where the superblock magic appears at the
correct offset. If the root superblock is readable, the
function sb1list can be used to read it and then test
all the appropriate locations and print the fragment
addresses where superblocks occur.

In older implementations, every cylinder group
contained a copy of the superblock. With the explo-
sive growth in disk sizes, the number of cylinder
groups have grown so large that newer implementa-
tions store only a dozen or so copies of the superblock.

Much of the superblock information is intended
to specify parameters that optimize disk performance
and facilitating writing to the file system. The number
of parameters required to read the file system is actu-
ally a very small subset of the values in the
superblock. The number of bytes per block, number of
bytes per fragment and number of fragments per block
are critical parameters. Furthermore, the number of
inodes per cylinder group is required to determine
which cylinder group contains the inode. Finally the
number of blocks per cylinder group determines the
cylinder group boundaries. These parameters are
saved as part of the private structure returned by
fsmount. This structure must be passed to all func-
tions that read the file system. When done, the pro-
gram should call fsumount. This function frees

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Schreiider

allocated memory and closes the device file used to
read the file system.

Locating the Inode

The most difficult part of reading a file is locat-
ing the appropriate inode. File systems directly
derived from the original FFS define convenient
macros to aid in this process. Others such as the ext2fs
do not.

All cylinder groups contain the same number of
inodes as defined in the superblock. Call this ipg for
inodes per group. The cylinder group of an inode for
the ext2fs is then (inode — 1)/ipg, while for the others
it is inode/ipg. The offset of the inode index within the
cylinder group is (inode — 1)%ipg for the ext2fs, and
inode%ipg for the others.

The inodes are stored sequentially in the cylinder
group, as shown in Figure 2, in the block labeled
“inode table.” In file systems other than the ext2fs,
the inode table starts at an offset defined by the cgimin
macro. This offset is actually stored in the superblock.

For the ext2fs, there is no convenient macro or
superblock parameter. Figure 3 illustrates the layout of
an ext2fs cylinder group in detail. In order to deter-
mine the offset of the inode table, the number of
blocks consumed by the other structures must be cal-
culated. The superblock is offset sboff bytes from the
start of each cylinder group, so if the offset superblock
does not fit into a single block, it consumes more than
one block. For a block size of bs, the superblock struc-
ture sb will therefore consume:

(sboff + sizeof(sb) — 1)/bs + 1 blocks.

A set of group descriptors, one for each cylinder
group, occupies the next £ data blocks. The number of
cylinder groups is calculated from the total number of
inodes on the disk inod count as inod count/ipg. The
number of blocks £ is therefore given by:
((inod_count/ipg — 1) * sizeof(ext2_group _desc)) +1

bs
where ext2_group desc is the group descriptor struc-
ture.

The next two data blocks are bitmaps for the data
blocks and inodes, respectively. Therefore, the block
offset at which the inode table is
((inod_count/ipg — 1) * sizeof(ext2_group_desc))

bs
boff + si b)—1
+ (sboff szzbeof(s)) 44
S

Once the offset of the inode table is found, the

offset of the inode of interest is simply the size of an

Accessing Files on Unmounted File Systems

inode times the number of intervening inodes. The
inode is read by seeking to the appropriate location
and reading the appropriate number of bytes, usually
128.

Reading the file

The inode contains all information about the file
except the file name and actual file data. This includes
the file attributes such as user and group identifiers,
permissions, times, file type and size. The fsopen
function locates and reads the inode and allocates a
private data structure for the file. This structure is
passed to subsequent calls which read the file. When
done with the file the fsclose function is used to
deallocate the structure.

Sequentially reading the file with fsread
requires reading the data blocks of the file in order.
The inode contains a list of (typically) the first twelve
data blocks known as direct blocks. For small files, all
data blocks can be addressed in this way.

There are typically three slots for indirect blocks.
These slots are used for single, double and triple indi-
rection. The single indirect block is a data block con-
taining a list of pointers to data blocks. The double
indirect block points to a data block containing point-
ers to indirect blocks. Each of these indirect blocks in
turn points to data blocks. For even bigger files, triple
indirection is used. Table 1 shows the maximum file
size that can be addressed using different block sizes.

Block Direct Single Double Triple
Size Indirect | Indirect | Indirect
512 6 kB 70 kB 8 MB 1GB
1024 12kB | 268 KB 64 MB 16 GB
2048 | 24kB IMB | 513MB | 256 GB
4096 | 48 kB 4 MB 4GB 4TB
8192 | 96kB 16 MB 32GB 64 TB

Table 1: Maximum file sizes by block size.

The purpose of using both fragments and blocks
is to optimize disk usage. For example, on HFS sys-
tems, the block size is typically 8 kB, consisting of
eight 1 kB fragments. The block addresses are there-
fore multiples of 8. Hence, for large files consisting of
mostly blocks, eight times fewer addresses are
required than if fragments were addressed, thus
decreasing the indirect block overhead. The very last
block of the data typically does not fill a data block.
Therefore the last data block address typically
addresses only a fragment or sequence of fragments.
The fragments are contiguous, so it is simply

Super Group Data Block
Block Descriptors Bitmap
1+ blocks k blocks 1 block

inode inode Data
Bitmap Table Blocks
1 block | nblocks | m blocks

Figure 3: ext2fs cylinder group layout.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

165

Accessing Files on Unmounted File Systems

necessary to read the number of bytes remaining in the
file from that fragment address in order to finish read-
ing the file.

Data block addresses are absolute, so that a file
may use blocks from more than one cylinder group if
necessary. A block address of zero has special mean-
ing. When this address appears in a direct or indirect
block, it implies a block with all zeroes. This mecha-
nism conveniently handles files with holes. In the read
functions, this address is conveniently handled by a
simple test that returns a data block with all zeroes
instead of performing an actual disk read.

In current implementations, the ext2fs has only
one fragment per block. Therefore, although it does
store fragment parameters in the superblock, frag-
ments and blocks are in fact the same.

Finding the File

A directory is simply a file with a defined struc-
ture. The original SS5FS allowed only file names of 14
characters, so that each directory entry could be stored
as a fixed-length record; file systems with this limita-
tion are rare today. A typical directory is made up of a
sequence of variable-length records; each record con-
sists of an inode number, record length, name length
and the name itself. Some file systems such as FFS
and later versions of the ext2fs also store the file type
in the directory record, duplicating the information
stored in the inode. A record with an inode of zero is a
placeholder and is skipped. The record length will
often be greater than necessary, as deleted directory
entries are subsumed by extending the previous direc-
tory entry.

The function fsscandir is used to read the
directory. The directory is identified by its inode num-
ber; when a directory entry to find is specified, the
inode number of that entry is returned. If no entry is
specified, a directory listing is produced instead.

File names, as stored in directories, do not con-
tain path information; instead, only the base file name
is stored. For example, in the /etc directory the file
letclpasswd will simply be named passwd.

All files are accessed through the root directory,
which is always at a known inode number. The func-
tion walkpath parses the path into its components,
and reads each directory in turn with fsscandir to
find the inode of the next entry in the path. This entry
is associated with an inode number, denoting the sub-
directory, symbolic link or the final file to be read.

When a file system is not mounted, the path
names are relative to the root of the file system. For
example, when the /usr tree is in a separate file system,
the file fusr/bin/gcc will appear as /bin/gec in this file
system.

Links and Devices

On UNIX systems, everything is a file. Devices
are represented as files with a special file type. The

166

Schreiider

kernel addresses these files using a major and minor
number stored in the inode, and there are no associ-
ated data blocks. The ruf program simply reports
these special files as device files.

Hard links exist when more than one entry to an
inode exists in the directory files. Hard links require
no special treatment when reading a file. Symbolic
links, also known as soft links, however, are special
files. Instead of containing actual file data, the sym-
bolic link references another file or directory. A sym-
bolic link may point to a file not on the disk in ques-
tion. When reading a directory tree, encountering a
symbolic link requires that the current leaf in the file
path be replaced by a new, arbitrary path. This is
achieved by recursively calling walkpath. The
explicit occurrence of the .. file name in each directory
allows resolution of the inodes in linear progression.

Symbolic links are a significant overhead in
resolving path names; to improve performance, short
symbolic links can be stored in the inode itself, where
the data blocks would be stored (since no data blocks
are needed). Typical file system implementations
allow symbolic links of up to 60 bytes to be stored this
way; symbolic links that exceed this length is stored in
a data block. Strangely, while both UFS and HFS sug-
gests that this can be done, all symbolic link names are
stored in a data block, regardless of the length of the
symbolic link.

Usage

The ruf utility behaves much like the regular
cat utility, except that it takes the device name as the
first argument before the file names. For example, on
an HP-UX system with the root system on c0t6d0, the
file /etc/fstab can be read using either

ruf /dev/dsk/c0t6d0 /etc/fstab
or
ruf /dev/rdsk/c0t6d0 /etc/fstab
Note that both the character and block devices can be

used. On a Linux system with /dev/hda8 containing
Ivar, the file /var/llog/imessages is read using

ruf /dev/hda8 /log/messages

Alternately a directory listing of the /var/log directory
can be obtained using

ruf /dev/hda8 /log
Assuming this listing shows messages to have inode
number 13294, the file can be read using

ruf /dev/hda8 13294
An integer file name is assumed to be an inode num-
ber.

This particular file systems uses 4 kB blocks.
The same file can be read using the alternate
superblock at fragment 98304 using

ruf -s98304:4096 /dev/hda8 /log/messages
or

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Schreiider

ruf -s98304:4096 /dev/hda8 13294

The values of important file system parameters such
as the block and frag size, blocks, fragments and
inodes per group and number of cylinder groups can
be read by omitting the file name, for example

ruf /dev/hda8

When the root superblock is readable, the fragments of
all the alternate superblock locations can be listed
using

ruf -1 /dev/hda8

If the root superblock is not readable, the entire disk
can be searched for potential superblocks using

ruf -f4096 /dev/hda8

Conclusions

The ruf utility is wuseful for accessing
unmounted file systems. It is also very instructive in
learning implementation details of various file sys-
tems. The functionality can be embedded in other pro-
grams through the 1ibruf library. All the software is
available under the BSD license at http://www.net-
perls.com/ruf.

About the Author

Vlakkies Schreiider holds a Ph.D in computa-
tional fluid dynamics and is currently a senior engi-
neer with Principia Mathematica where he works on
solving practical problems in fluid flows. He is also
working on a Ph.D in parallel systems at the Univer-
sity of Colorado, Boulder. Reach him at vlakkies@
colorado.edu.

Acknowledgments

I want to thank Evi Nemeth for putting me up to
this in the first place, and Adam Moskowitz for sug-
gesting many improvements to the paper.

References

Bach, M. J., The Design of the Unix Operating Sys-
tem, Prentice-Hall Software Series, Englewood
Cliffs, NJ, 1986.

Bovet, D. P., and M. Cesati, Understanding the Linux
Kernel, O’Reilly, Sebastopol, CA, 2001,

McKusick, M., W. Joy, S. Leffler, and R. Fabry, “A
Fast File System for UNIX,” ACM Transactions
on Computer Systems, Vol. 2, Num. 3, pp.
181-197, August, 1984.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Accessing Files on Unmounted File Systems

167

168 2001 LISA XV — December 2-7, 2001 — San Diego, CA

