USENIX Association

Proceedings of the
LISA 2001 15" Systems
Administration Conference

San Diego, Cdlifornia, USA
December 2—7, 2001

USENIX
SAGE

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

GEORDI: A Handheld Tool For
Remote System Administration

Stephen Okay — Road Knight Mobility Labs
Gale Pedowitz — Protura Consulting, Inc.

ABSTRACT

This paper discusses the design and implementation of a tool for allowing technical staff to
perform diagnosis, triage and remediation of system problems from a commodity handheld device
(e.g., a PalmOS PDA) with a wireless network connection using industry standard encryption and
privilege management software. We argue that this model is equivalent to using a desktop or
laptop from a security aspect but is more convenient and efficient given its minimal resource
requirements, “‘instant-on” availability and usability from arbitrary locations.

We explore previous work in this area and posit that our solution offers significant
advantages because it adopts the stylus and forms-based usage model prevalent on many PDAs
rather than trying to overlay the classic command-line interface onto a system which was not

designed to use it.

Finally, consideration is given to how small mobile systems, like the one used in this tool,
will impact the task of system management in the future in terms of benefits and risks.

Introduction

The life of an on-call system administrator
(sysadmin) is an interrupt-driven endeavor. When not
beset by users or machines demanding his or her
instant attention, he or she is surrounded by an array
of pagers, PDAs, cell phones, and other messaging
systems, all eager to alert him or her to fresh disasters.
These seem to go off most frequently when the sysad-
min is within range of being alerted about a problem
but a significant distance from the nearest point from
which to affect a solution.

No longer limited to displaying just the same
numeric string much of the time, many of these
devices are sophisticated two-way, programmable
messaging systems with considerable memory and
CPU power. Sometimes they aren’t separate devices,
but software built into cell phones or PDAs. Despite
all these enhancements, the response to them is often
the same as it has always been: to walk, run or drive to
the nearest terminal to fix the problem. This is not
only irritating to on-duty staff, it’s wasteful and expen-
sive, especially when the problem is often something
as simple as “‘the $DAEMON died” or “$SERVER
needs to be rebooted.” In the current climate where
users and equipment are scattered across time zones
around the globe, the answer “I’ll be there as soon as I
can” is not an acceptable response.

The General External Operators’ Remediation
and Diagnostic Interface(GEORDI) offers an alterna-
tive to the scenario mentioned above. GEORDI pro-
vides a method for the diagnosis, triage and remedia-
tion of system problems from the sysadmin’s current
location. This is accomplished via a commodity PDA
and wireless TCP/IP connection. Using existing

2001 LISA XV — December 2-7, 2001 — San Diego, CA

industry-standard software such as ssh [Ylonen] and
sudo [Courtesan], GEORDI creates a secure connec-
tion to a remote host without requiring additional host
software. This approach minimizes the likelihood of
introducing new exploits simply through the use of
this access method. Interaction with GEORDI is
through the native handheld user interface rather than
the more traditional console/keyboard paradigm.

We chose to focus our research in addressing this
situation on the PalmOS family of PDAs. They hold a
commanding market share over other handheld
devices and offer mature development environments
across multiple platforms such as Metrowerks’ “Code
Warrior” for Microsoft Windows and Apple Macln-
tosh platforms, and the prc-tools GCC toolchain and
pilrc resource compiler for many UNIX systems. The
general architecture presented should be easily adapt-
able to other platforms since the software it is based
on is available under one or more open source
licenses.

An Itch to Scratch

Like many other tools for system administrators,
GEORDI came about as a result of the authors trying
to scratch an itch. For one, we found that we were still
traveling to sites or terminal rooms seeking out remote
access for problems that were often trivial to solve in
comparison to the effort expended to address such
issues. Frequently, we were tasked with driving to
work to restart a server or application whose death had
been broadcast to our pagers. While emergency main-
tenance has always been a part of a system administra-
tor’s job, we found it increasingly frustrating in light
of the growing sophistication of alert devices. Indeed,
it was becoming commonplace for system profession-
als to carry CPU power exceeding that of recent

219

GEORDI: A Handheld Tool For Remote System Administration

legacy desktops. While it would not be possible to
obviate every instance of on-site repair, we theorized
that many midnight treks to the server room could be
prevented with effective application of the devices we
always had with us.

The other facet of this was the desire to carry
one’s system environment with oneself and to be able
to copy it to new locations. Not every situation would
involve a fresh disaster; even during normal opera-
tions, it would be advantageous to take the current
state of a task in progress and move it to another sys-
tem or device. Desktop layouts, terminal window
states, and even programs and scripts in execution
should be portable across both large systems with
high-speed connectivity, and smaller, less connected
ones as well.

Finding significant areas of intersection between
these two efforts, we decided to work together on a
tool that could serve as a sort of remote “first aid kit.”
It would let a sysadmin collect data on system health
and activity, allowing him or her to make a decision if
a trip to the site was warranted or if an issue could be
addressed from his or her current location. This would
require research in the areas of UI design, connectivity
and security as well as investigations into the systems
architecture of small, mobile computing platforms.

The initial goals behind GEORDI then were:

e To provide a way to quickly examine and fix
system problems from arbitrary urban loca-
tions. It would be nice to restart your webserver
from the middle of the Gobi Desert, but that
kind of scenario is far more dependent on
industries and technologies not under our con-
trol. It is best to focus our energies on those
things more within our grasp.

¢ To do so using common, commercially avail-
able handheld systems such as PDAs, palmtops,
smart pagers, etc. With CPU speeds between
33-200 Mhz, 8-64 MB RAM and 16-bit color
displays, we now carry on our persons what
used to sit on our desks 5-10 years ago. Addi-
tionally, most IT departments are unlikely to
fund or otherwise be able to justify the pur-
chase of additional single-purpose gadgetry,
especially for a large staff.

e To do so in such way that poses no greater
security risks than already exist through current
remote access methods.

e To do so within the realm of current open
source software licenses so that others have the
chance to build on our work to suit their own
needs.

e To encourage research and debate on what
future tools for performing system admininis-
tration tasks should look like, with the focus on
a practical, needs-based Ul that’s as portable as
possible. Users and equipment are spreading
around the globe and we’re expected to keep up
with them. This can’t always be done from a 17

220

Okay & Pedowitz

inch display with a 600 Mhz CPU connected to
a T1 in the datacenter.

Applications and usage models

Desktops vs. Handhelds

The idea of remote access from handheld devices
is not entirely novel. Indeed, the presence of terminal
applications on small keyboard-based organizers can
be seen as far back as the early 1990s in the HP95LX
palmtop and Sharp Wizard/Zaurus. At the time of this
writing, there was even a terminal client and Lynx
web browser for the HP 48 calculator [Costar]. Hand-
held computers themselves go as far back as the early
1980s with the Sharp 2100N, marketed in the US as
the Tandy PC-1 Pocket Computer.

Many connectivity options exist for more recent
handhelds. Numerous VT100 [Hall], telnet [Ptelnet],
ssh [GoldbergSSH] and other tty-like clients are avail-
able for most modern PDAs, including the PalmOS
family of PDAs and PocketPC. The reasons for this
proliferation of terminal clients is rather obvious.
Now, as then, the world still largely runs on the com-
mand-line when it comes to systems and network
management. Graphical status tools may be ideal for
displaying status and performance; to actually affect
or control a system remotely from an arbitrary loca-
tion, however, the only reliable constant is a terminal.

While these applications present the sysadmin
with the familiar command line interface, any attempt
at sustained work will demonstrate that using these
tools on a handheld is quite different from using them
on a traditional system. The screen is smaller, and the
keyboard is often laid out differently, if there is one.
The API for the handheld may provide only limited
support for text display outside of native forms-based
support, resulting in emulation bugs or requiring term-
cap entries specific to each terminal application and
handheld used on the remote host. The PalmOS API,
for example, has no concept of an actual console and
all characters must be draw on the screen using bitmap
coordinates with one of the WinDrawChar() functions
[PalmOS]. Scrolling, placement and update are like-
wise left as an exercise to the individual application.

One approach to dealing with this is the one
taken by tools such as VNC [Richardson, et al.] that
provide a complete pixel-by-pixel replication of the
remote system’s screen environment. VNC also pro-
vides state-preservation that allows a user to move
mid-keystroke from, say, a Sparc desktop to a Win-
dows PC or Mac and pick up typing exactly where he
or she left off. Depending on feature support in the
client, these events can even be reflected back to the
remote system the user just left, providing a useful
means of remote support in a heterogeneous environ-
ment.

The chief problem here is largely one of band-
width. VNC was originally designed for use in an
environment where the primary network media is

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Okay & Pedowitz

ATM and the effort involved in shipping around
chunks of a 1024x768, 24-bit desktop image is com-
paratively small. This continues to work well over
wires at 10/100 Mbit speeds but begins to suffer per-
formance problems once the pipe drops below a T1.
The situation worsens when one considers that the
maximum speed for the PalmOS serial or IRDA port
is 57,600 bps. In informal tests with PalmVNC on a
33 Mhz Visor Platinum, we found approximately a 5-8
second delay between the time one initiated an action
on the Visor and the time that action was reflected
back to us on the screen. When the connection is
reduced to 19,200 bps, a speed reasonable to expect
from CDPD or micro-cel carriers, the delay shoots up
to 30-48 seconds. There are 802.11 modules available
for a number of different PDAs on the market, but
their short range limits their usefulness and can neces-
sitate a significant infrastructure investment to provide
coverage for a campus environment.

Numerous UNIX vendors and individuals at one
time or another have made some effort in non-CLI-
based administration interfaces, each meeting with
varying degrees of success. We chose to revisit those
tools we had encountered previously in our
careers,such as the Solaris AdminTool, IRIX System
Manager and AIX SMIT. While they were generally
focused only on administration of the local host they
ran on, each came pre-installed on new systems from
their respective vendors by default and each had a dif-
ferent approach to the idea of system admin shells.
The Solaris AdminTool focused primarily on the
novice user, providing a way for him or her to quickly
and easily perform user account management and
peripheral/device control. SGI’s System Manager
extended this somewhat further by building the tool
into the normal user desktop menubar and providing
greater detail on the status and configuration of
disk,network and other peripheral devices. SMIT dif-
fered significantly from the other administrative
shells. Overall, it was probably the most directly use-
ful to our work; its ability to record keystrokes as one
stepped through its menu-driven Ul and to convert
these into shell scripts provided some of the inspira-
tion for what later became GEORDIs Command
Builder.

In each tool, we also encountered a number of
deficiencies.

e Their proprietary nature and lack of support for
managing systems remotely limited their use-
fulness, even within the vendors’ product fami-
lies.

¢ They tended to do one or two things well, but
fell significantly short in other areas.

¢ Some tended to exhibit poor state/error control.
Pushing the button and not getting an error dia-
log didn’t always mean things worked. It was
often necessary to drop to a shell to confirm the
operation occurred as expected.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

GEORDI: A Handheld Tool For Remote System Administration

A subtle yet more crucial drawback in all of
these tools was that they were designed for large, gen-
eral purpose systems with a usage model that involves
sitting down and committing to several minutes (or
more) at console. It is almost expected that the user
won’t finish the task or find what he or she is looking
for without some digging, so the system is designed to
accommodate and, in some ways, encourage this.

Handheld systems in contrast follow a com-
pletely different usage model. They are used for sec-
onds at a time as people pick up the phone or dash
through the airport. They are tossed in the car and then
glanced at furtively for directions while we drive
down the road. If a handheld exhibits any sort of
“boot time” or forces the user to stop and focus on the
unit, rather than the data it contains, it has failed as a
useful device. Consequently, the data these devices
store is equally brief. IP addresses,dates, passwords,
error codes, building numbers and other similar scraps
of information fill their memory.

How this affects a system administrator’s ability
to efficiently do tasks on one of these devices is not
immediately apparent until the first time he or she
must scribble out something like

ps -aux | awk ’/luser/ \

{printf(‘‘killall %s0’, $9) }’ | sh
on a PDA terminal client using the stylus instead of a
real keyboard.

This is, as one might guess, far from optimal.
What can be done? As system administration fre-
quently requires the ability to interact with a system at
its lowest levels, access to the command line is criti-
cal, even if it is awkward and inconvenient to use in
some situations.

GEORDI Design

UI Design
Initial Efforts

The GEORDI Ul began life as something similar
to a desktop GUI, but with an emphasis on being
highly configurable and extensible. Menu items could
be moved around and re-ordered, so that the fre-
quently selected choices could reside on top. Com-
mands and scripts, represented graphically, could be
linked together by dropping them on or next to each
other. The primary focus here was on modularity and
configurability. We felt that we already had one or two
strikes against us from a industry cultural perspective
simply by virtue of the graphical nature of our tool.

This initial version was passed around the table
at local user group meetings, and the responses were
largely negative. The Ul was too confusing for the
available screen real estate and quickly led to users
being lost in a maze of icons, tear-off menus, drop-
down lists and the like. The one tool they did seem to
find and use consistently was the CLI popup, totally
defeating the purpose of the tool. In the drive for

221

GEORDI: A Handheld Tool For Remote System Administration

maximum configurability, we had inadvertently recre-
ated those tools we resented so much on the desktop.

In a number of ways, this turned out to be a
blessing in disguise. Writing a Palm app using almost
nothing but the Gadget resource involved some rather
heavy lifting in the code. As this was only the first
revision,things were bound to become worse. We still
felt we were on the right track with the “LEGO
Brick” model as most of the complaints seemed to
focus on screen size and performance issues.

Squeak

Squeak is a modern implementation of
Smalltalk-80 [Squeak], one of the original object-ori-
ented programming languages and the progenitor of
much of the OO programming movement in the
1980s. An implementation is available for the Compaq
iPAQ handheld. With a 200 Mhz StrongARM CPU,
32 MB of memory and a high-resolution color screen,
the iPAQ is a considerably more capable system than
the Palm. Squeak also boasts a much richer set of Ul
and data type primitives than PalmOS. Additionally,
Squeak’s VM architecture offers write-once portabil-
ity, and the prospect of having usable Geordi clients
for any of Squeak’s many supported architectures was
extremely attractive. A Squeak version of GEORDI
similar to the aforementioned “Brick™ architecture
was fashioned in short order, and a feature was added
where one could drop scripts as objects onto a small
TTY in the corner of the screen. Unfortunately, this
nascent effort was shelved just as quickly as the first
Palm implementation; serious bugs in Squeak’s graph-
ical interface manager made testing and debugging
impossible. These issues led to our decision to concen-
trate exclusively on the Palm implementation of
Geordi for this phase of our work."

A Forms-based Ul

We noticed? that many of the UNIX commands
used for reporting system status and configuration pro-
duce output in a row/column format. The PalmOS
API, coincidentally, provides extensive support for
row/column table forms with a callback handler mech-
anism allowing users to perform actions on the data in
those forms.

By wrapping the output inside PalmOS form ele-
ments rather than just writing it out to the screen, we
are able to attach event handlers to each table cell,
allowing a variety of actions or additional related
dialogs or forms to be displayed in response to each
tap. Through this we are able to provide a coherent
way to execute and display the results of commands
such as top(1), df(1), netstat(8), ifconfig(8), etc. In retro-
spect, this seems quite an obvious approach, but we

This has since been addressed and resolved as of August
2001. Returning to this platform is one goal of future work

2Actually, it’s more like we were knocked on the head with
this by our friend and colleague Jim Dennis. After testing
yet another version of the Palm GUI, Jim observed that he
“just want(ed) a ps table where I can tap on things and kill
them!”

222

Okay & Pedowitz

are not Ul experts and there is a cultural bias in our
profession that seems to say “If it doesn’t have a con-
sole mode, it can’t be powerful enough to be useful.”

|dizk| met |iface|grapt lag| i |build
dser PID SaMern S P U Cormrnand

foat 26 04 00 SusrdhingH1]
reat QT 02 00 Auerdsbinding
arooadile 6451 0.8 00 sch dart oo,
r 2rd 01 00 Jshindgetty .
ot 2F3 01 00 SebinSgetty

Figure 1: Process listing from remote host.

In Figure 1, we see a process listing from the
remote host. The buttons across the top of the screen
lead to similar forms, which provide access to other
common system tools like those mentioned above. To
send a signal to process 278, we tap on the PID col-
umn and are presented with the display in Figure 2.

|disk| net |iface|graph log | ci |build

PID #¥Mvlem %CPL Command

Y. 276,04 00 Ausk/bingsl)
_BO3Y 02 00 Ausrdsbingirg

User

IEesturtl
-

Cancel

Figure 2: Signaling process 278.

From this dialog, we can easily set the nice value
of the process or send it any valid UNIX signal. Simi-
larly, to see what PID 278 is running, we can tap on
the ps table column containing the command name to
see the full text of the command being executed under
that PID.

Finally, if necessary, we can pop up a text form
similar to the one in Figure 3 to enter a specific com-
mand.

This experience taught us an important lesson in

UI design and usability. Good tool design should flow
from both a specific need and philosophy where the
manifesto of the tool precedes its actual creation. The
most successful Uls are those which impart a “Zen of
..”” design on their applications. They fill an actual
need, not a marketing goal, and are consistent in form

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Okay & Pedowitz

and function. The success of the Mac and Palm are
very much tied up in this. We feel GEORDI follows
this because the forms and other UI elements it uses
are the same as those found in the DateBook or
PhoneBook. Even command-line tools share this to
some extent. -V usually will give a version number, -v
verbose output, -q quiet operation a single — to repre-
sent standard I/O and so on.

|disk| net |iface|gropH log| «li |build

adduser
lp_restart
webs tat 4

Figure 3: Text box for command.

Communications Issues

There are a number of communications issues
that present potential problems for using handheld
devices for remote system administration and monitor-
ing. Service availability is a major one. As of this
writing there are only a handful of wireless data carri-
ers, and even fewer whose networks provide IP con-
nectivity. Instead, most wireless carriers are based on
store-and-forward or other non-persistent, non-stateful
technologies. One example of this is the Palm.net ser-
vice for the Palm VII family of wireless PDAs, which
uses the BellSouth pager network. Under this “trans-
actional” model, data requests are sent from the
PalmVII to a proxy server which then converts them
into proper HTTP requests to retrieve the web page
requested by the Palm VII. A separate connection
returns the requested data to the PDA.

For those networks that do provide a PPP or
PPP-like service on their network, the picture is better,
but not by much. Connection speeds range between
9600 and 38,400 bps. For our work, we used the
OmniSky service, which is a CDPD network support-
ing connections up to 19,200 bps.3 There can be sig-
nificant delays on the order of 20-60 seconds, or more,
to establish a connection to a remote site and then the
same or longer during the lifetime of the connection.
Often, latency on the wireless part of the connection
can exceed the timeouts for a TCP/IP connection,
causing it to drop and forcing the user to restart his or
her session. This leads to the interesting result where a
simple network like Palm.net can end up providing a
better overall user experience. Since it does not

3We discount the Metricom Ricochet 128K service as its
future is undetermined at this time.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

GEORDI: A Handheld Tool For Remote System Administration

employ protocols which depend on a continuous con-
nection to function, it appears to the user to be more
robust.

The Bandwidth Basement

While networks like Palm.net may not allow for
protocols like ssh to be run over them, the bandwidth
available is still sufficient for our purposes. The Pal-
mOS Web Clipping Developer’s Guide recommends
that applications using the Palm.net service should
send no more than 70 bytes of payload data per query
and receive no more than 360 bytes per response
[PalmPQA]. This is after a 5-60% compression ratio
of the transmitted data, depending on whether images
or text are being sent. Similar restrictions exist for
devices like email pagers. At first glance, this might
seem too restrictive for our purposes. Closer inspec-
tion reveals these limitations to be rigid, but less con-
fining than we are initially led to believe.

== Max Command Quiputin bytes

E=Average| (50% compression)
==Min

FaA Spe

netstat —m

top

o] fR Y F—

—

I ‘\H|'I IIH‘ IIIH |l|||[|
0 100 200 300 400 50D ED0 700
Diagram 1: Transfer sizes.

Here we have a small group of common com-
mands a sysadmin might run to get a sense of the
overall health of his or her system and track down
potential problems. As can be seen from the graphic,
the general trend is that the number of bytes generated
by these commands is well within the guidelines rec-
ommended by Palm. Even in the maximal cases, none
of the data ever reaches even 1KB in size. This gives
us a good idea where the basement is in terms of mini-
mum acceptable bandwidth.# For faster links, e.g.,
9600 bps and above, response time should not be an
issue as long as we limit the duration of the connec-
tion to what’s required to get our work done.

4These results were achieved by sending the script

df -k|wc -ci;top -b -n 1

awk 'NR >6 && NR < 20 {print}’ |

wc -cinetstat -rn | we -c
to several email lists the authors belong to, each with signifi-
cant subscriber bases of systems professionals, running a va-
riety of Linux,*BSD and Solaris systems and compiling
mean, min and max stats on the returned results. No attempt
was made to filter out NFS mounts,loopbacks, virtual inter-
faces, etc. Since this data was purely text-based, we assumed
a 50% compression ratio

223

GEORDI: A Handheld Tool For Remote System Administration

GEORDI Security
GEORDI Security Basics

With a good idea of the parameters for the raw
communications space we were in, we turned our
attention to security. We knew that the capability to
form an encrypted, preferably authenticated, connec-
tion to the remote host would be critical to the success
and use of GEORDI. If we could not provide this
functionality, the tool would be largely useless save in
an academic context of how NOT to implement a
GEORDI-like tool. Control of access to privileged
commands was equally if not more important, as it is
much easier to gain physical control over a handheld
system than it is a laptop or desktop. Most privileged
remote access is allowed with the assumption that, in
addition to whatever electronic security is in effect,
the user will still have considerable physical control
over the access device. This is not nearly as certain a
proposition with handheld systems.

While the PalmOS was a constraint or hindrance
in some aspects of this project, there were side bene-
fits to these when it came to security. For a start, the
PalmOS is a single-threaded OS which does not pro-
vide a shell or user environment one can login to.
Limited system memory provides for a very limited
number (4 under PalmOS 3.5) of network sockets
which must be shared by inbound and outbound con-
nections. The Network Library supports the Berkeley
Sockets API, but only through a wrapper layer that is
opaque to client and server-side connections. To limit
the amount of information available about the systems
it contacts, GEORDI does not store usernames,
passphrases, keys, etc. in any permanent or temporary
databases on the Palm device. These are all held as
variables within the program segment itself and are
wiped when authentication timeouts occur or when the
program exits. This provides protection against them
being copied off the PDA through surreptitious beam-
ing [Kingpin] or transferred to another system as a
result of a sync operation.

A Daemon-Based Approach

We initially considered a daemon-based
approach, where a daemon on the server side would
manage client connections and provide both access
and privilege management facilities. A GEORDI
client would connect to the remote server, present
some sort of credentials in the form of a signature or
key and request authentication. Upon success, the
GEORDI client would be sent a “package” of capa-
bilities outlining what it could do and how long those
capabilities lasted.

A Capability would represent a command or
series of commands the client was authorized to per-
form. This would be sent back to the server along with
the Key when GEORDI wanted to perform an action
there. Upon success, the server would execute the
command for the GEORDI client and return the
results. The TTL indicated how many times the client

224

Okay & Pedowitz

could use that capability before it had to request
authorization again. Policy indicated whether the key
was timestamp or iteration-based. Finally, Server-side
Directives gave the server the ability to command and
control the client. If a client device was lost or kept
trying to perform operations beyond the scope of its
privileges, a server directive could be sent to disable
the GEORDI Client.

Server-side

Capability | Key [TTL |Policy | Directives

Figure 4: Capability packet diagram.

This was ultimately rejected for traffic as well as
security reasons. For one, the worst case of a senior-
level person needing access to a wide variety of com-
mands could lead to a situation where a storm of capa-
bility data would need to be loaded on a GEORDI
client at each startup. This might be acceptable on a
high-speed wired network, but over a slow wireless
link, it would result in significant startup delays. Addi-
tionally, this kind of system could expose detailed
information about available system tools and other
sensitive server configuration details in the capabili-
ties block if the encrypted session was ever compro-
mised. Finally, there was the ever-present danger of
attacks on the server daemon itself and possible
exploits therein. A general antagonistic attitude in the
security and systems community towards new dae-
mons cemented the cons of this approach in our
minds, and we decided to look elsewhere.

The ssh Approach

We had avoided an interactive solution using
something like ssh because of bandwidth concerns.
The size of data that would fly back and forth as keys
were exchanged and the CPU time needed to do the
necessary cryptographic computations was definitely a
concern when aiming for a timely connection. Having
seen just how much our other approach could con-
sume, we decided to have another look at it. Ian Gold-
berg, through the TGssh [GoldbergSSH] application,
demonstrated that is was possible to implement a
functional SSH client on a handheld system — specifi-
cally the Palm Pilot Professional — with a rich variety
of encryption algorithms such as 3DES, IDEA, RSA,
Blowfish, and others. Our implementation hardware
was a more advanced Handspring Visor Prism, so it
was encouraging to see that ssh had been implemented
on such an early model Palm. Tests of TGssh over a
serial link and IRDA at speeds between 19,200 and
38,400 proved that such an application was quite
usable from a communications standpoint.

At the same time, we were invited to speak at
BayLISAS5 on our work up to that point. We performed
an informal survey of the audience and found that the

Sthe local LISA chapter for the San Francisco Bay Area

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Okay & Pedowitz

majority considered password-based ssh to be an
acceptable tool for performing remote administration;
of that majority, about half admitted to regularly ssh-
ing in as root. While this certainly does not reflect the
most strict and secure remote access procedures, it
does provide insight into the where most place them-
selves along the security/convenience spectrum.

The choice of ssh as an access method also pro-
vided additional benefits with regard to user logging
and access to privileged commands. Once logged in,
we can make use of any access or privilege control
mechanisms already on the system. SSU [Thorpe]
held some initial attraction for its use of distinct pass-
words for privileged operations, per-user command
configuration, tight coupling to ssh and account-less
login. In the end, we felt that sudo was more suited to
our purposes. Since our access of systems is solely
from the outside by users of potentially varying
authority and responsibility, we had to assume a stance
of trusting users as little as possible. Since we were
already vulnerable to whatever bugs or holes exist in
ssh, the ability in sudo to do more detailed logging and
run commands as a user other than root tipped the bal-
ance in its favor.

General Security Issues with Handheld Systems

Despite the measures we have employed in the
security of GEORDI itself, systems like GEORDI
introduce some unique threats to the area of system
and network security simply by virtue of the devices
they run on. The most prominent of these revolve
around the mobility and size of the device that runs
GEORDI. The worst case scenario is loss of control or
removal of a PDA from the hands of an authorized
user. Hardware-based authentication proves only that
the device is trusted and known to the system and says
nothing about the person using it. Precautions must be
taken to guard against Bob grabbing Alice’s PDA and
running off with it. A simple physical tether like the
“The Bond” [Force] would help.

Should this still somehow occur, Alice would
quickly call the office to have her server passphrase or
keys repudiated. A more forward thinking sysadmin
would have also installed a screen-locking program
such as “LockMe!” [Witte], “JotLoc” or “Grid-
Lock™ [GridLock] which locks out the device itself
after a certain period of time. Access is regained
through the entry of a certain passphrase, as in the
case of LockMe! or through the reproduction of a cer-
tain pattern as used by GridLock. These are analogous
to screen-saver lockouts in the desktop world but are
more effective on the Palm. Zero-length boot time and
lack of access to the underlying OS contribute to this.

The device can be reset, but the reset process is a
physical, multi-step operation; it is accomplished by
depressing the pinhole reset switch at the back of the
device and subsequently depressing one of the scroll
buttons. A simple soft reset does not flush alarms or
pending system events, so it should also not disable

2001 LISA XV — December 2-7, 2001 — San Diego, CA

GEORDI: A Handheld Tool For Remote System Administration

the lockout program. It is possible for the device to be
put into a debug mode, under which access via the
serial port is possible, but this has to be explicitly
enabled via a Grafitti [Grafitti] stroke during normal
operation prior to the reset action. As with any secu-
rity-related tool or application, it is advisable to test
several applications before making a selection for pro-
duction use. A battery of tests to ensure the utility
secures the correct resources and works properly on
the model and OS version of the PDA you are using is
highly recommended.

Other problems occur as a function of the wire-
less communications technology itself. Encryption
only over the wireless part of the trip from the client to
the remote host, proprietary protocols and software,
and weak or flawed encryption are all common prob-
lems when dealing with wireless networks. The latter
two are greater issues which affect both corporate
wireless LANs and mobile devices.

We attempt to minimize exposure of the remote
system by implementing a timeout of three minutes
per connection, after which the user is forced back to
the initial login screen to re-authenticate. GEORDI
originally operated in a connection-per-command
mode to force constant key regeneration, but the over-
head of 30 seconds-1 minute per connection over the
OmniSky significantly reduced the usability of the
tool.

We recognize that there are just some things that
can’t be done on a system the size of PDA. There will
be some cases where GEORDI will not be able to pro-
vide the necessary remediation capability needed to
fix a particular problem. Some of these may involve
network outages, or require the use of a tool or com-
mand whose input or output GEORDI is unable to
properly represent. Currently, GEORDI does not pro-
vide support for access to systems which are inside
complex network topologies involving multiple fire-
walls, DMZs and the like. This could most likely be
overcome with some sort of “chat script” system or
additional prompting during the connection phase for
a user to input a one-time password or additional key.
There may also be policy-based reasons within an
organization which would preclude the use of some-
thing like GEORDI.

Implementation Details
Client Implementation

The handheld device itself is a Handspring Visor
Prism, although we use the standard PalmOS 3.5 API,
ignoring model-specific features such as color. The
wireless device is a Novatel Minstrel S CDPD modem
using the Expedite chipset (used for many devices in
the “Minstrel” family) with connectivity provided by
OmniSky.6

Systems constraints within the PalmOS architec-
ture preclude the assignment of a static name to any

6See www.omnisky.com for more info

225

GEORDI: A Handheld Tool For Remote System Administration

particular device. This holds true for built-in devices
such as the onboard serial and IRDA port as well as
modules such as the Minstrel. Devices are instead
identified at the API level by the service they provide
and must be polled each time an application wishes to
begin using them.

Functionally, this works out well; An application
need only make a request for access to the PPP service
to make a connection out to the net. We have success-
fully used this to connect to target hosts via the
OmniSky as well as over the built-in IRDA port. Con-
nections on other PalmOS handhelds using other net-
work devices should therefore work similarly.

Security is handled in two parts. Transaction
security is provided by the GEORDI client via the
encrypted ssh connection. General device security is
provided by the PalmOS security application, although
@Stake security services [Kingpin] has warned of a
vulnerability in this that allows it to be easily cracked.
We have therefore augmented our implementation
with a third-party application which restricts the use of
the handheld itself as mentioned above. A full survey
of available solutions is beyond the scope of this
paper, but we found the GridLock and JotLoc
[PDABusiness] applications suited to the task. Given
the wide range of PalmOS PDAs available for sale,

Okay & Pedowitz

test-driving the available offerings is recommended
before settling on a particular application for your own
use.

Server Implementation

GEORDI is designed to take advantage of exist-
ing user management/access facilities as much as pos-
sible, thereby freeing the administrator from having to
worry about Yet Another Set Of Configuration Files.
If an administrator is already happy with a host’s ssh
and sudo configuration, he or she has all that is
required to allow GEORDI-equipped handheld users
to access the system. If not, it will be necessary to set
up ssh and sudo first. Below is an extract of the more
important aspects of the sshd config and sudoers files
we used in our development and testing efforts.

One thing to note about the sudoers file is that
we create a separate User_Alias called GEORDI. It is
reasonably easy to embed usernames into the forms
that make up the GEORDI UI; therefore a responsible
party could make and install GEORDI on a group of
corporate handhelds and hand them out to their sys-
tems staff. Forcing users to login in under specific
accounts lets us exploit the features of sudo more fully
than would be possible with ordinary user accounts.
Taking this to it’s logical conclusion, one could go so
far as to set up a chroot jail area and populate it only

[...]

User_Alias
User_Alias
User_Alias

Runas_Alias

Cmnd_Alias

Cmnd_Alias
Cmnd_Alias
Cmnd_Alias
Cmnd_Alias
Cmnd_Alias
Cmnd_Alias
Cmnd_Alias

Cmnd_Alias
Cmnd_Alias
Cmnd_Alias
[...]

Cmnd_Alias

Cmnd_Alias

Host_Alias
Host_Alias
Host_Alias

root and
root
%wheel

PRIMARY

LOCALSTAFF
GEORDI

226

PRIMARY=armadilo
LOCALSTAFF=benfell,star,torin, gerbil,rmadillo,kylosohr
GEORDI=geordi, geordi2,eastbldg,westbldg,oncall

OP=root,operator

DUMPS=/usr/etc/dump, /usr/etc/rdump,/usr/etc/restore, \
/usr/etc/rrestore, /usr/bin/mt
KILL=/bin/kill
PROC=/usr/bin/nice,/usr/bin/renice
PRINTING=/usr/etc/lpc,/usr/ucb/lprm
SHUTDOWN=/usr/etc/shutdown
HALT=/usr/etc/halt,/usr/etc/fasthalt
REBOOT=/sbin/reboot, /usr/etc/fastboot
SHELLS=/usr/bin/sh,/usr/bin/csh,/usr/bin/ksh,\
/usr/local/bin/tcsh, /usr/ucb/rsh
SU=/usr/bin/su
VIPW=/usr/etc/vipw,/etc/vipw, /bin/passwd, /usr/sbin/visudo
INSTALL=/usr/bin/dpkg

MODS=/sbin/1lsmod, /sbin/insmod,/sbin/rmmod
VOL=/bin/mount, /bin/umount, /usr/bin/eject

RKLABS=miyazaki,otomo,shirow, gainax,ghibli
AREA66=gecko,iguana,chameleon,komodo,basilisk, tokay,gila
GEORDI=AREA66

users in group wheel can run anything on any machine as any user

ALL=(ALL) ALL
ALL=(ALL) ALL

ALL=ALL

ALL=PASSWD:DUMPS,KILL,PROC,MODS, VOL
AREA66=NOPASSWD:KILL,PROC,VOL,REBOOT

Listing 1: sudoers file.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Okay & Pedowitz

with those commands and devices that those in the
GEORDI group needed to use to do their jobs.

[...]

ServerKeyBits 1024
LoginGraceTime 180
KeyRegenerationInterval 600
PermitRootLogin no
IgnoreRhosts yes
StrictModes yes
X1lForwarding no

KeepAlive yes
SyslogFacility AUTH
LogLevel INFO
RhostsAuthentication no
RhostsRSAAuthentication no
RSAAuthentication yes
PasswordAuthentication no
PermitEmptyPasswords no
SkeyAuthentication no

[...]

Listing 2: sshd_config file.

GEORDI in action

At base, GEORDI is a forms-based Ul wrapper
for an RSA/DSA-authenticated ssh connection to a
remote host running sudo. The actual over-the-wire
commands sent by GEORDI to the remote host are the
equivalent of “ssh user@host.subdomain.domain sudo
$SOME_COMMAND STRING.” There is a built-in
three minute usage window for each GEORDI session,
during which the ssh connection remains up. This cor-
responds to the maximum inactivity time allowed by a
PalmOS handheld before it is automatically powered
off. Even if this timeout is disabled, GEORDI will
return to the main authentication screen after the three
minute period and drop its current connection (if any)
to the remote host.

On startup, GEORDI reads in a database of
approximately 60 UNIX commands. These are a mix-
ture of navigational, network, device and user access
commands which exist under most UNIX variants and
which are not specific to a particular device or OS dis-
tribution. At the same time, GEORDI also loads
scripts or commands created in previous sessions by
the user with the Command Builder. GEORDI itself
can be run without these databases, but the Command
Builder feature is disabled if they are missing. It is
assumed that the user will have their PATH and other
environment variables configured properly in order to
use these commands. Not every flavor of UNIX stores
its commands in the same directories and providing
any sort of pathing information violates the GEORDI
security model.

Currently, GEORDI requires that the user type in
the FQDN or IP address of the remote host at the start
of each session. A username and certificate passphrase
is also required to attempt connection. This passphrase
is intended for an ssh daemon using RSA/DSA certifi-
cates on the remote host. We have tried to make the

2001 LISA XV — December 2-7, 2001 — San Diego, CA

GEORDI: A Handheld Tool For Remote System Administration

code as modular as possible, with the expectation that
users may need to accommodate something like a
SecurID challenge/response system or legacy SSH
servers.

If the user authenticates successfully, he or she is
presented with a screen similar to that shown in Figure
1. From there the listed processes can be manipulated
as necessary by tapping on the appropriate control. In
addition to the controls and scripts provided on this
screen, a user can construct his or her own custom
commands through the Command Builder by tapping
the ““‘Build” button.

GEQRL
General External Operators
Rernediation and Diagnos tic
Interface
Host/IP: 1234567382 ..
Username: armadile .

Fassphrase;

HHH

(BT INEEEENINENANY

T R

Figure 5: Login page.

GeordizCommand Builder

Mawv Command Track

| 4 B [e.ie-:t |m-:|unt |rnt |'

Symbol Track

Adrnin|
ek - HARNBEEEE]

Cption Track

\[FANCIR0RGE : [

Figure 6: Command builder.

It is here that the aforementioned command bes-
tiary is put to use. New commands or scripts are con-
structed by tapping on the button containing the
desired keyword followed by any additional symbol
characters or options in the button rows below the
command row. Different sets of keywords are
accessed by tapping on the “Nav,” “Net,” “Admin,”
or “Stat” commands. Keywords like adduser, mount,
df, and the like are organized under “Admin,” netstat,
ifconfig, route, etc. under “Net” and so on. The option
list changes to display only those options for the high-
lighted command. Saved scripts appear on the drop-
down list shown on the main screen.

227

GEORDI: A Handheld Tool For Remote System Administration

Configuring the Command Builder

In the version presented here, the Command
Builder acquires its data from a companion loader pro-
gram called GDBI, for GEORDI DataBase Installer.
This should be run once for each new GEORDI instal-
lation on a particular handheld and then deleted. This
approach was taken due to resource constraints in the
PalmOS. The program itself is written in C and is eas-
ily modified.

The GDBI tool creates a PalmOS record
database called “TrkDB” which contains the actual
commands shown in the Command Builder as well as
metadata on that command’s relationship to others in
the database. This was done to allow for an eventual
feature where commands could be repositioned or re-
ordered according to use frequency or user preference.
The basic layout of the Builder is a series of “Tracks”
with commands at the top, followed by regex and
punctuation characters in the center with command-
relevant option characters along the bottom track.
Command sections can be changed along the Com-
mand track by tapping on one of the ‘“Nav,”
“Admin,” or “Net” buttons off to the left.

Individual records in the TrkDB database have
the format in Listing 3.

We expect to have a number of tools available in
the near future that will simplify this process down to
a CSV-delimited text file suitable for conversion into a
PalmOS database, easily installed on the Palm.

What’s to stop someone from creating a ““script
kiddie” command database and using GEORDI to
wreak havoc? Indeed, not much. However, the condi-
tions under which this kind of attack would succeed
are the same as those involved in most other access
exploits. Adherence to best practices security mea-
sures such as keeping OS and WKS patches current,
disabling deprecated or insecure services, and exercis-
ing good user account hygiene are the best defenses
against this sort of attack. Additionally, while the
GEORDI Ul makes a good interface for basic triage
and remediation of system problems, it’s a lousy inter-
face to crack with and is one use case where the
attacker would certainly be better off with something
like a laptop.

Okay & Pedowitz

Tools Used

The GEORDI client was built using the PalmOS
3.5 API, pre-tools 2.0 GCC cross-compiler, pilrc 2.7
form description language and Guikachu form
designer. These all freely available for downloading
off the net at the following respective locations. You
will need the first three to build or work on GEORDI.
Guikachu is nice to have for forms design.
e PalmOS API and related documentation:
http://www.palmos.com/dev
¢ pre-tools: http://sourceforge.net/projects/prc-tools/
e pilre: http://www.pilrc.com or http://www.ardiri.
com/palm/pilrc
e Guikachu: http://cactus.rulez.org/projects/
guikachu/

Outstanding Issues and Future Work

GEORDI in its current form is not perfect, but
we feel it represents a reasonable attempt at a remote
system administration tool for handhelds. One imme-
diate missing feature is the ability to access systems
which require staging across firewalls or DMZs. Addi-
tionally, GEORDI is not yet capable of authentication
via hardware related tokens or access paradigms
which require some sort of human-entered one-time-
password to gain access.

The GUI is a good effort for a device like the
Palm with a limited forms-based API. Other systems
and devices offer a range of features and functionality
and we will probably pursue some of our original Ul
goals on platforms such as the Compaq iPAQ or one
of the embedded Linux platforms. In the other direction,
we have received interest from colleagues in porting
GEORDI to even smaller platforms such as the RIM
Blackberry.

There is work to do in the realm of security and
authentication, since widespread use of handhelds,
wireless networking, wearables and the like challenge
the basic notions of what a host is and force us to
reevaluate our threat models. The advent of removable
media on handheld devices like the Handera 330,
Palm m50x and Sony Clie offers some interesting pos-
sibilities in regards to the use of hardware tokens or
keys to control operation. A number of commercial
security software vendors, such as RSA, have either

typedef struct |
int BuildID; /* Command ID */
int LeftID; /* ID of the Build command to the left of BuildID */
int RightID; A " " " " right of BuildID */
int trackpos; /* position w/in the Command Track */
int track; /* Track this command is on */
int section; /* Section(Nav,Net,Admin) that this command is in */
UIntl6 CmdTxtLen; /* Length of the command text */
UIntl6é FlagTxtLen;/* Length of the option text */
Char* CmdText; /* pointer to the command text itself */
Char* FlagText; /* pointer to the flag/option text */

} BuildCmdObject;

Listing 3: TrkDB database record format.

228

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Okay & Pedowitz

fielded or announced a port of their technology to the
Palm and other handheld platforms.

We welcome any and all contributions and com-
ments on this work. We are particularly interested in
hearing from those who might see an application for
GEORDI on a organizational or enterprise-level scale.

Conclusions

The current array of handheld devices used to
alert sysadmins to problems are capable of assisting
with solutions as well. We have stated that failure to
exploit these resources will leave us at a disadvantage
as staff and machines become more mobile and global
in scope and location. We have introduced GEORDI, a
PDA-based system using existing best-practice remote
access and privilege management software, as a first-
order example of using handheld systems to aid in the
diagnosis, triage and remediation of system problems.
We have looked at other remote access applications
and administration tools, noting that tools which con-
form to look and feel specifications for the target plat-
form are generally more efficient than those that
impose an external one. The implementation of
GEORDI as presented meets many of the needs of
today’s mobile sysadmin, and will be developed fur-
ther as interest increases.

Availability

Further information on GEORDI as well as the
software can be found at http://www.geordi.org.
GEORDI is made available under the GNU General
Public License.

Acknowledgements

This work would have been a much paler effort
if it had not been for the assistance of a small mob of
individuals. Many dedicated colleagues offered criti-
cism and review of GEORDI at all stages, from initial
conception through implementation and this paper.

We are particularly grateful to:

e Jim Dennis, Heather Stern, Dave Benfell, Ken
Parker, and David M. Zendzian for testing,
evaluation and inspiration with the GEORDI
prototype(s).

e Craig Latta for his encouragement and insight

throughout the life of the GEORDI project, par-

ticularly with regards to the Squeak effort.

Ian Goldberg for graciously answering all of

our(sometimes silly) questions about TGssh

and pilotSSLeay.

Strata Rose Chalup, Cindy Fry, Darren Stalder

for helping whip the initial extended abstract

into shape.

William Annis and Ozan Yigit, our shepherds,

for readings, edits, commentary, and sticking

with us right up to the very end of the process.

Author Information

Stephen Okay is a UNIX geek-of-all trades, first
exposed to UNIX in 1986 when working as a student

2001 LISA XV — December 2-7, 2001 — San Diego, CA

GEORDI: A Handheld Tool For Remote System Administration

consultant at George Mason University, where he
obtained his B.A. 1989. Since then he has performed
systems support and programming at MITRE’s Center
for Advanced Aviation System Development, worked
on the SRCSS anti-terrorism mission planning proto-
type for the Sydney Olympics and did a brief stint at
Pacific Data Images as a technical director on the ani-
mated feature Shrek. He currently consults on mobile
computing projects as RoadKnight Mobility Labs. He
live in San Francisco, California and can be reached at
armadilo@daft.com .

Gale Pedowitz is a developer and UNIX system
manager, having worked in such halcyon environs as
Sony US Research Labs, TenSquare, and eBreviate.
Her research interests include dynamic object systems,
human-computer interaction, and network security in
the context of system administration. A native of New
York City, she currently resides in Portola Valley, Cal-
ifornia and can be reached at gep@ungeek.com.

References

[Ylonen] Ylonen, T., T. Kivinen, M. Saarinen, T.
Rinne, S. Lehtinen. “ssh Protocol Architecture,”
IETF Internet-Draft draft-ietf-secsh-architecture-
07.txt, http://'www 1 ietf.org/ids.by.wg/secsh.html .

[Courtesan] Courtesan Consulting, “sudo,” http://www.
courtesan.com/sudo/history.html .

[Hall] Hall, B., MarkSpace Softworks, “Online 1.6,”
http://www.markspace.com

[Ptelnet] de Andrade, M. M., “ptelnet,” http://netpage.
em.com.br/mmand/ptelnet.htm .

[GoldbergSSH] Goldberg, 1., “TopGun ssh (TGssh),”
http://www.isaac.cs.berkeley.edu/pilot/ .

[PalmOS] Bey, C., E. Freeman, D. Mulder, J. Ostrem,
“The PalmOS SDK Reference, Document Num-
ber 3003-002,” p. 33,769, Palm Computing, Inc.,
5400 Bayfront Plaza, Santa Clara, CA. 95052.

[Minenko] Minenko, V., Harakan Software, “PalmVNC,”
http://www.harakan.btinternet.co.uk/PalmVNC/ .

[Richardson, et al.] Richardson, T., Q. Stafford-Fraser,
K. R. Wood, and A. Hopper, “Virtual Network
Computing,” [EEE Internet Computing, Vol. 2,
No. 1, pp. 33-38, Jan/Feb, 1998.

[Squeak] Ingalls, D., T. Kaehler, J. Maloney, S. Wal-
lace, A. Kay, “Back to the future: The Story of
Squeak, a Practical Smalltalk Written in Itself,”
Proceedings of the 1997 ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems,
Languages and Applications, Vol. 32, Num. 10,
October, pp. 318-326, 1997.

[PalmPQA] Brook, James, Scot Stennis, “Web Clip-
ping Developer’s Guide, Document Number
3009-002,” p. 28, Palm Computing, Inc. 5400
Bayfront Plaza, Santa Clara, CA, 95052.

[Kingpin] kingpin@atstake.com, “PalmOS Password
Retrieval and Decoding,” @stake Security Advi-
sory (A092600-1).

[Force] Force Technology, “The Bond: Latch for Palm
Connected Organizers,” http://www.force.com .

229

GEORDI: A Handheld Tool For Remote System Administration Okay & Pedowitz

[Witte] Witte, R., “LockMe!” http://wwwipd.ira.uka.
de/witte/pilot/lockme/ .

[Thorpe] Thorpe, C., “SSU:Extending ssh for Secure
Root Administration,” Proceedings of the Twelfth
Systems Administration Conference (LISA 98), pp
27-33, Boston, MA, December 6-11, 1998.

[GridLock] PDABusiness Inc., “JotLoc,” “Grid-
Lock,http:// www.pdabusiness.com .

[PilotSSLeay] Goldberg, 1., “PilotSSLeay 2.01:SSL
for Palm Pilots,” http://www.isaac.cs.berkeley.edu/
pilot/.

[Stylus] Perlin, K., “Quikwriting: Continuous Stylus-
based Text Entry,” Technical Note to the Four-
teenth Annual ACM Symposium on User Inter-
face Software and Technology, November 1-4,
1998 (UIST 98), San Francisco, CA.

[Grafitti] Blinkenstorfer, C. H., “Grafitti,” Pen Com-
puting, pp. 30-31, January, 1995.

[Costar] Bezemer, J. A., “VT52bis,” http://panic.ct.
tudelft.nl/"costar/hp48 .

230

2001 LISA XV — December 2-7, 2001 — San Diego, CA

