USENIX Association

Proceedings of the
LISA 2001 15" Systems
Administration Conference

San Diego, Cdlifornia, USA
December 2—7, 2001

USENIX
SAGE

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Pelican DHCP Automated Self-
Registration System: Distributed
Registration and Centralized
Management

Robin Garner — Tufts University Network Operations

ABSTRACT

Pelican is an automated DHCP client self-registration tool. Unlike other popular self-
registration tools, the Pelican registration system runs on an independent server with no access to
the DHCP daemon’s lease data or configuration files. It derives MAC addresses by SNMP-
querying network devices and periodically generating and pushing updated configuration files to
all participating DHCP servers. This allows Pelican to scale more effectively than most other
existing automated registration systems. Pelican also tracks lease allocation on participating
DHCP servers, providing administrators with a central repository of data for simplified

administration and troubleshooting.

Introduction

Like most other higher education institutions,
Tufts University is experiencing an explosive prolifer-
ation of mobile computing devices. Nomadic comput-
ing, the ability to move devices around and between
campuses, is a self-evident requirement: people buy
mobile computing devices because they are “‘mobile”
and expect them to work more or less the same way
throughout the University.

The Dynamic Host Configuration Protocol, or
DHCEP [12], is widely used to enable mobile as well as
stationary computing. Some institutions enable
nomadic computing by allowing anonymous access to
their DHCP services but Tufts’ IT governing commit-
tees have forbidden anonymous access to our net-
works; all devices must be registered with the DHCP
server(s) in order to be granted a lease. We cannot
depend on our users to figure out their device’s MAC
address and type it into a form (“Is that an ‘O’ or a
zero ?””). Nor can we tell them they need to find a tech
support person to help them register: our pool of sup-
port staff is small relative to the size of our user popu-
lation and the proliferation of new technologies has
put many additional demands on their time. Thus auto-
mated self-registration for DHCP service is absolutely
necessary.

Given a fluctuating population of between 3,000
and 9,000 users, a network connectivity or registration
trouble-report rate as low as 1% on any given day is
still a substantial volume of calls. Support staff must
have easy, fast access to aggregated DHCP server and
registration system data (including robust logging) in
order to provide effective and efficient support for
self-registration services and nomadic computing.

Our Pelican DHCP registration tool advances the
automated self-registration concepts pioneered by

2001 LISA XV — December 2-7, 2001 — San Diego, CA

utilities like NetReg [1] and AutoReg [2] by decou-
pling the registration process from the operation of the
DHCP server. By functioning independently, the Peli-
can server can coalesce all registration information
and lease allocation data from many participating
DHCP servers into a central repository. This reposi-
tory can then be used to dynamically generate and dis-
tribute configuration files back to those servers. This
enables complex correlation and reporting facilities
that aid in troubleshooting and accounting.

Related Work

Before creating Pelican, we experimented with
many other similar utilities. In the commercial sphere,
we evaluated Cisco’s Network Registrar [3] and
Lucent’s QIP [4] products. Both aim to provide com-
prehensive, integrated DHCP and DNS services with
advanced administrative capabilities and their target
markets appear to be large corporate installation and
ISP’s. In 1998 when Pelican was being designed, nei-
ther supported automated, externally authenticated
self-registration and both were nefariously compli-
cated to operate. The lack of registration facilities
severely prejudiced us against both products long
before we got around to contemplating pricing, sup-
ported architectures, and migration issues.

The non-commercial options that we considered
included Southwestern’s NetReg [1] and R.LT.’s
AutoReg [2]. These utilities combine automatic self-
registration and DHCP system monitoring functional-
ity. The target market for both is institutions of higher-
education with large residential populations. Both are
based on the same fundamental design concepts:

e Named wildcarding.
e Discrimination between known and unknown
clients by the DHCP server and use of address

257

Pelican

pools to distinguish between registered and
unregistered devices.

¢ Co-location of the registration agent and the
DHCEP server on the same physical system.

¢ Direct parsing and manipulation of the DHCP
configuration and lease files by the auto-regis-
tration system.

e Assumption of the wuniversality of web
browsers; administrators expect that all regis-
trants have web browsers and use them fre-
quently.

e Use of a web-based registration form that
accepts username/password pairs and attempts
to authenticate to a remote service.

In our trial deployment of NetReg, we found it to
be stable and easy to use. It simplified the move-in
and registration process dramatically, with the unin-
tended consequence of putting half the residential sup-
port staff out of work.

The three main components of a NetReg architec-
ture are a DHCP daemon, an HTTP daemon serving the
NetReg scripts, and a specially configured nameserver
called a “fake-root nameserver.” A fake-root nameserver
is one which resolves all name-resolution queries to a

Garner

single address — the address of the NetReg system. This
has the effect of directing all network service requests
placed by unknown clients to NetReg. The DHCP dae-
mon and HTTP daemon must be co-located on a single
server while the nameserver can be located anywhere on
the network, as shown in Figure 1.

dhcpd named

architecture not
- significant

client client client

Figure 1: A typical NetReg architecture involves a
single DHCP [server, a DNS fake-root server, an
arbitrary network architecture, and clients.

jHF NetReg dhcpd.conf
fHE clients

host foo { hardware ethernet 00:00:00:aa:aa:aa; }
host bar { hardware ethernet 00:00:00:bb:bb:bb; }
host gub { hardware ethernet 00:00:00:cc:cc:cc; }

fHE subnets
shared-network music-library {
KNOWN clients

1

subnet 130.64.7.0 netmask 255.255.255.0

option routers 130.64.7.1;
pool {

option domain-name-servers 130.64.5.20;

max-lease-time 86400;
default-lease-time 86400;
range 130.64.7.10 130.64.7.240;
deny unknown clients;
}

}

J# UNKNOWN clients

subnet 10.0.7.0 netmask 255.255.255.0
option routers 10.0.7.1;
pool {

option domain-name-servers 10.0.5.2;

max-lease-time 120;
default-lease-time 120;
range 10.0.7.10 10.0.7.240;
allow unknown clients;
}

}

} # end music-library
end dhcpd.conf

Figure 2: An example NetReg dhepd.conf file.

258

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Garner

Each subnet declaration in the DHCP daemon’s
dhcpd.conf contains two different pools of addresses:
one for known clients and another for unknown
clients. A client is known if there is a “host” entry for
its MAC address in the dhcpd.conf file. The pool for
unknown clients specifies the fake-root nameserver
and a very short lease time (five minutes) while the
pool for known clients specifies the normal name-
server and a much longer lease time (24 hours). When
the DHCP daemon receives a request from a client, it
checks to see if the client is known or unknown and
allocates an address and nameserver from the appro-
priate pool.

Server A client
dhcpd
®

dhcp request

search dhcpd.conf
MAC not found,

client unknown named
fake-root

dhcp reply
fake config

client self-configures

user: http://www.yahoo.com

| dns query:
www.yahoo.com

dns response:
¢ NetReg IP

httpd
NetReg scripts
|

¢

http request ____ |
www.yahoo.com

| httpreply
NetReg

Mail http submit]
Server 4 uname / password

auth ok? |

auth ok!

client_IP =
HTTP_REMOTE_ADDR

Search dhcpd.leases for
client_IP to find client_MAC

Append client_MAC to
dhcpd.conf
http reply
Reg OK, reboot — N

: Client reboots

dhcpd

I___, dhcp request

search dhcpd.conf
MAC found, client known

dhcp offer
real config ———)
client self-configures

¢

Figure 3: NetReg transaction graph.

In our example configuration in Figure 2, the two
pools are drawn from different logical subnets, one a

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Pelican

normal publicly routable subnet and the other an
RFC1918 private non-routable subnet. Though this is
not necessary (both pools can be assigned from a sin-
gle, routable subnet) we have found that the use of pri-
vate addresses for unknown clients makes them dis-
tinctive and easily identifiable which greatly simpli-
fies troubleshooting. (Supporting two logical subnets
on a single LAN requires making a minor configura-
tion change on the routers: a secondary address must
be added to each interface, a feature supported by all
major vendors.)

A transaction diagram of a typical NetReg regis-
tration is shown in Figure 3, with some DHCP-spe-
cific steps omitted for clarity. When an unknown
client connects, it receives an IP address from the
unknown pool, 10.0.7.0/24, and the fake-root name-
server, 10.0.5.2. Any http connections initiated by the
client are referred by the fake-root nameserver to the
NetReg HTTP daemon, which displays a registration
form requesting proof of the user’s authenticity. Hav-
ing verified the user’s authentication, NetReg searches
the DHCP daemon’s dhcpd.leases file for the client’s
MAC address (keying on the IP address of the HTTP
“REMOTE _IP” wvariable) and appends it to the
dhcpd.conf file as a “host” statement. NetReg then
restarts the DHCP daemon and displays a web page
instructing the user to reboot the client. On reboot, or
after five minutes when its lease expires, the client
will request a new address from the DHCP daemon
and will be granted an address from the known pool,
130.64.7.0/24, and the normal nameserver,
130.64.5.20.

NetReg’s simplicity, however, severely limits its
scalability: it works very well in a single-server envi-
ronment but has no mechanism for sharing registration
information in a multi-server environment. Our DHCP
architecture spans three campuses and involves six
servers with overlapping service zones. If we
deployed NetReg, we would find that as our users
wandered between service zones, they would have to
register at each new server to which they connected.
Users and their support personnel would find this con-
fusing and inconvenient, particularly given the stun-
ning regularity with which our users forget their pass-
words. Tracking lease allocation for individual clients
would require querying each server individually and
collating responses into a useful format would be
tricky. These limitations are inherent to the design
decision that depends on direct access to the DHCP
server’s files; they apply not just to NetReg but to all
utilities that function in a similar fashion.

Design Specifications

Based in part on our experiences with NetReg
and QIP, we formulated the following criteria for a
successful automated self-registration system:
e Support for multiple, potentially independent,
external authorization and authentication mech-
anisms.

259

Pelican

¢ Support for more than one DHCP server.

e Maximum ease-of-use: user should need only a
web browser, a login ID, and a password on
one of the University’s authentication systems.

¢ Automatic prompting to register un-registered

devices. No education or tech support interven-
tion necessary.

Web-based administration interface.

Alternative supervised registration mechanism

(“proxy registration”) to support users, Vvisi-

tors, etc. who may not be included in the

known authorization scheme or who are unable
to authenticate for some reason.

Support for client data collection that includes

user affiliation (for trend analysis, cost account-

ing, selective culling, etc.), registration date,
and expiration date.

¢ Fasily customizable open-source implementa-
tion.

e Support for centralized DHCP server lease data
collection and aggregation.

¢ Support for automatic culling of registrations
after a configurable interval to prevent the
accumulation of stale data without making the
user responsible for “de-registering” devices
(which would never happen).

o Support for DHCP-style class designations.

e Robust logging.

We analyzed our environment to determine the
capacity we would need to accommodate:

e Between 3,000 and 9,000 active registrations at
any time during the year.

¢ An annual influx of roughly 4,500 new registra-
tions over the course of ten to fourteen days
each fall.

¢ Close to a million individual leases, assuming
24-hour lease allocations and a two week data
retention rate.

Achieving Scalability: Discovering MAC Addresses

Pelican achieves a degree of scalability impossi-
ble in a NetReg-style registration system by decou-
pling the registration process from the operation of the
DHCP system. This allows Pelican to operate in an
environment that may include multiple DHCP servers,
multiple registration servers, DHCP fail-over, and
load-balancing so that, in principle, Pelican can
accommodate any size of network and an arbitrarily
large client base (Figure 4).

Though a DHCP server’s lease file is the most
convenient repository of IP to MAC address associa-
tions, it is not the only one available. All network
devices maintain IP-MAC associations in their ARP
tables. Given an IP address, industry-standard SNMP
queries to network devices can be used to derive the
MAC address associated with the IP. Tufts’ network
employs routers from three major vendors, all of
which support and respond to these queries the same
way.

260

Garner

Because the SNMP queries are subnet-based,
Pelican must maintain the network address and mask
(130.64.7.0/24) of each subnet on which it operates in
a database table. This allows Pelican to operate on
non-classful subnets like /25’s or /18’s. Because regis-
tration on any particular subnet can be restricted based
on user class, the minimum and maximum addresses
of each unknown pool are also stored in the database,
along with the types of users, if any, that are allowed
to register on that subnet. This information is manu-
ally entered via web forms.

Pelican does nof need to know about the network
topology; it derives topological information dynami-
cally based on responses to SNMP queries. Pelican
must only be given the IP address of one SNMP-
enabled router (the “root router’”) which has routing
information for the rest of the network and all routers
must be able to respond to SNMP queries from the
Pelican server.

To resolve a client’s IP address to a MAC
address, Pelican determines the client’s subnet by
comparing its IP address to the Pelican database. It
then SNMP-queries the root router and asks if the
router has no route, an indirect route, or a direct route
to the subnet. A “no route” reply generates an error
log message and indicates either a network service
interruption or nefarious behavior. An “‘indirect”
response causes Pelican to request the next-hop
address on the route. In the manner of traceroute, Peli-
can follows next-hop addresses through routers until it
finds a router that reports back as having a “direct”
route, or until it exceeds a configurable maximum
number of hops. Pelican queries the router for the
interface associated with the route and then for the
MAC address associated with the IP address in the
interface’s ARP cache.

Pelican Components

Implementing Pelican required first making sev-
eral platform decisions about the software environ-
ment in which Pelican would execute.

All Pelican development and operation occurs on
UNIX systems here at Tufts, though I imagine that
there is no reason it could not be ported fairly easily to
a Microsoft platform. All our production servers are
Suns running Solaris (v.6 through 8, depending on the
system). All are meticulously patched and wrapped by
a nocturnal red-haired BOFH.

Pelican uses an SQL-based relational database
for data storage. We chose to write Pelican in PHP
rather than Perl, not for any important technical rea-
sons, but because we just generally prefer PHP. We
chose relatively standard servers: Apache’s httpd,
ISC’s dhepd, and ISC’s named. We briefly flirted with
an alternate web server but found that Apache was
more reliable. Incidental necessary utilities include
awk, ssh, snmp, wget, and cron.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Garner

Component Configuration

Pelican was designed as a series of different
components which can be run on separate physical
systems (Figure 4), but Pelican can also operate on a
single machine for small scale deployments and bud-
gets.

Pelican, like NetReg, requires a DHCP daemon,
an HTTP daemon, and a fake-root nameserver. Unlike
NetReg, each of these may run on separate machines.
Additionally, Pelican requires an MySQL database
which may also run on an independent machine.

Pelican

In Pelican, known clients are subcategorized into
administrator-defined classes. At Tufts, we assign
known clients to either the “student” or “staff”
classes based on the registrant’s entry in the univer-
sity’s LDAP system, but a default class can be speci-
fied as a configuration option.

Pelican’s dhcpd.conf file is similar to NetReg’s
in its use of address pools but there are two key differ-
ences. The first is that Pelican includes class specifica-
tions that instruct Pelican to match clients to classes
based on their MAC addresses. The second is that
known clients are identified in NetReg with “host”

fHF Pelican dhcpd.conf
jHt class definitions

class "staff" {
match hardware;

}

class "student" {
match hardware;

}
jHF clients

subclass "staff" 1:00:50:d0:29:3b:4e;
subclass "staff" 1:00:05:02:01:ea:20;
subclass "staff" 1:00:05:02:00:ff:b5;
subclass "student" 1:00:50:da:09:7f:f7;

jHE subnets
shared-network music-library {

J# KNOWN clients

subnet 130.64.7.0 netmask 255.255.255.0

option routers 130.64.7.1;

option domain-name-servers nameserver.university.edu,

max-lease-time 86400;
default-lease-time 86400;
pool {
range 130.64.7.200 130.64.7.250;
allow members of "staff";
allow members of "student";
}
}

Jf UNKNOWN clients

subnet 10.0.7.0 netmask 255.255.255.0 {

option routers 10.0.7.1;
pool {

option domain-name-servers regserver.university.edu;

max-lease-time 300;
default-lease-time 300;
range 10.0.7.11 10.0.7.250;
allow unknown clients;
deny known clients;
deny members of "staff";
deny members of "student";
}

}

} # end music-library
end dhcpd.conf

Figure 5: An example Pelican dhcpd.conf file.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

261

Pelican

statements, whereas in Pelican they are identified with
“subclass” statements (see Figure 5). MAC addresses
specified in subclass statements must have a “1:”
prepended onto them.

Network
routers must be
SNMP-queryable

client client client

Figure 4: A typical Pelican architecture.

Operation

Pelican has three different and distinct opera-
tional processes:
e Client registration.
¢ Configuration generation and distribution.
¢ Data collection.

These processes run independently and asyn-
chronously, as shown in Figure 6. A client is properly
registered only after processes 1 and 2 have completed
one cycle.

Client Registration

Figure 6 illustrates the transactions in a Pelican
registration. Unregistered clients making dhcp
requests are granted IP addresses from the unknown
pool and the fake-root nameserver. The fake-root
nameserver resolves all queries to the address of the
Pelican server. Clients connecting to the Pelican server
are presented with a form inviting them to enter their
username and password on any one of three email
servers. They are instructed to read the Acceptable
Use Policy and indicate their willingness to abide by it
by hitting ‘Submit’ and proceeding with registration.

After verifying that the given username and pass-
word correspond to a valid email or shell account, Pel-
ican extracts authorization information from the Uni-
versity LDAP system. The authorization information
is used to derive the user’s DHCP class (“‘student” or
“staff’’) and affiliation (department, school, etc.). Pel-
ican confirms that this class of user is permitted to
register on the client’s subnet by comparing the
client’s IP address to its dhcp pool database table.
Then the authentication and authorization data is MDS5
encrypted and passed back to the client as a cookie

262

Garner
dhcpd client
®
dhcp request— |
search dhcpd.conf
MAC not found
client unknown
dhcp reply
I\ fake config —) named
fake-root

client self-confiqures

user: http://www.yahoo.com

| dns query:
www.yahoo.com

httpd d i
Pelican scripts ns r(_esponse.
® Pelican IP

http request ___|
{—www.yahoo.com

http reply
Pelican
http submit |
LDAP ¢~ uname / password
user data ?—|
user data
mail auth

auth ok?— |

auth ok!
TN httpreply
data correct 2 N
http submit_____|
44— continue
client_IP = HTTP_ REMOTE_ADDR

mysqld

subnet?
subnet _|

router

route? —|
direct)
interface? ~|
ether 3 —)
MAC?— |
MAC
mysqld
duplicate? — |
no —)
reg ok? — |
reg: class —)
user class = reg class
add MAC — |
OK —)
! | httpreply
Reg OK, reboot —H
dump MACs —|

OK —

dhepd generate dhcpd.conf
Client

F push dhcpd.conf reboots
[J

dhecpd
restarts

dhcp request

search dhcpd.conf
MAC found
client known
dhcp offer
real config
client self-configures

Figure 6: Pelican transactions.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Garner

which is used both for session tracking and data stor-
age. The integrity of the cookies is checked at each
step of the registration process. The user is presented
with a web form displaying the registration data and
asking the user to confirm its accuracy by hitting ‘sub-
mit’ to continue the registration process.

Both the authentication and authorization mecha-
nisms are highly configurable: all variables set by the
authorization system can be replaced by default values
in an environment where an authorization system is
either unavailable or considered redundant.

After confirming authorization, authentication,
and accuracy, Pelican derives the MAC address of the
client and checks the database to ensure that it is not a
duplicate registration. The MAC is then inserted into
the database along with user’s login name, class, and
affiliation, and a timestamp and expiration date. The
default expiration date is 365 days. Frequently, large
areas or groups of clients are registered at the same
time (during a cutover, for instance). In order to avoid
the inconvenience of having them all expire at the
same time, a random number of days between one and
30 is added to each expiration date.

Having successfully added the client, Pelican
displays a page asking the user to wait ten minutes and
reboot their computer. The client is now registered.
Every few minutes, Pelican informs the DHCP servers
of all new registrations. On reboot, or after five min-
utes when its registration lease expires, the client
sends an address renewal request to the DHCP server.
The DHCP server now recognizes the client as a regis-
tered client and declines to renew the original lease.
Subsequently, the client requests a new address and is
granted a lease for a real, routable address.

In the event that a user is not able to self-register
(forgotten password, short-term visitor, etc.), Pelican
allows specific users to be designated as having
“proxy privileges”’: the right to register a computer on
behalf of someone else. In a proxy registration, the
proxy registrant may select an expiration interval: one
week, one month, three months, six months, or a year.

Operation

The DHCP servers must periodically be
informed of +all new registrations in order to distin-
guish registered from unregistered clients. Every few
minutes (every ten minutes at Tufts), a script is run
from cron that dumps the Pelican database into an
appropriately formatted DHCP class list. The class list
is combined with one or more DHCP server-specific
dhcpd.conf files and distributed via ssh to participat-
ing DHCP servers. The servers are subsequently
restarted.

Data Collection

Pelican collates lease information from many
different DHCP servers into its database to allow sim-
ple centralized searching. DHCP lease file format is

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Pelican

not inherently suitable to be read into a database, so
we wrote an awk script that reads the lease file and
converts each lease entry into a single line of comma-
delimited fields that include the FQDN of the dhcp
server, the MAC address of the client, start time, end
time, and the uid and name that the client supplied
when requesting the lease. This script is installed on
each DHCP server, along with an instance of Apache’s
httpd. The httpd is secured and configured to only
accept connections from the Pelican server and only
allow access to the lease-parsing script. Every few
minutes (again, every ten minutes at Tufts), the Peli-
can server’s crond runs a script that uses wget to con-
nect to the httpd on the DHCP server, activate the awk
script, and retrieve its output. The leases are read into
the database and can then be easily searched and cor-
related to individual MAC addresses.

Early in development we used Perl to parse the
lease file, but found that awk was substantially faster.

Miscellaneous

Automated client expiration prevents the accu-
mulation of stale data in the database. Every week a
cron-initiated script is run which deletes any client
whose registration has expired.

A web-based administrative interface allows
privileged users to view and search the contents of the
Pelican database.

Our DHCP servers are configured to grant
“real” address leases for 24 hours and ‘“‘registration”
leases for five minutes. Once the leases have been
gathered from the DHCP servers into the database,
entries for real addresses are maintained for two
weeks while entries for registration addresses are
purged after only three days. The purge script is run
from cron every night.

Performance

Pelican is ubiquitous at Tufts. It was designed to
co-exist with other DHCP infrastructures in order to
avoid the necessity of a forklift deployment. We were
able to deploy Pelican on a per-subnet or per-building
basis, depending on the preferences of front-line sup-
port staff.

Deployments

Most of the deployments occurred during the
summer or winter breaks when the user population
was lowest. Generally, this limited the potential num-
ber of registrants to a maximum of 500 at any given
time On average, each cutover brought in between 50
and 120 registrants. The vast majority of registrations
occurred between 9:00 am and 11:00 am. The highest
single-day volume of registrations was 334, with the
highest single-hour volume totaling 80 clients (10:00
am to 11:00 am, Jan 12). These numbers are more
reflective of human behavior than they are of system
performance: registration occurred at the users’ time

263

Pelican

and pace. Determining the maximum effective regis-
tration rate would require scripted testing which we
haven’t done yet, but we do see multiple registrations
per second fairly regularly.

During its first twelve months of operation at
Tufts, the entire Pelican apparatus (web server,
database, management scripts, user interface) ran on a
single multi-purpose Sparc10 with dual 60 Mhz pro-
cessors. In the middle of student move-in week this
past September, load jumped from a daily maximum
of 334 registrations to 546. While the Pelican system
wasn’t directly affected, the DNS fake-root had an
unintended consequence: our SparclO crashed twice
due to the load spike that resulted from the web server
trying to service all the automated http queries to
microsoft.com generated by machines that were con-
nected to the network but not yet registered. At one
point the httpd logged 11,000 bogus requests in fewer
than six hours of operation. This volume was gener-
ated by fewer than 500 clients, some of which queried
at one-second intervals. We were forced to do an
emergency migration, splitting parts of the Pelican
system between two different machines and allowing
the web service to be handled by an Ultra250 with
dual 300 Mhz processors. The database, scripting, and
administrative interface remained on the original
Sparc10. We have not experienced any further perfor-
mance issues.

During the interval between August 5th and
September 5th, we recorded 4,106 registrations on our
main campus: 1,418 staff and 2,684 students. Across
the three campuses, there are a total of 8,000 regis-
tered clients.

Naturally, Pelican performance is highly depen-
dent on the environment: SNMP performance is
affected by the architecture and load of the routers in
the network. SQI database transactions are affected by
the load and configuration of the server. Our SQL
server runs on a multi-purpose dual 60 Mhz processor
Sparc10. Our network is a heterogeneous collection of
Cisco and Foundry routers, some of which do no traf-
fic shaping/filtering and others of which are well
occupied in that respect. Packets-per-second loads on
the routers also vary widely. There are several wide-
area links running at speeds between 1.54 Mb and 10
Mb, multiple gigabit backbones, and LANs generally
operate at 100 Mb. Consequently, SNMP statistics
tracking the speed with which MAC addresses can be
determined are highly context dependent.

With this in mind, these are the statistics we’ve
collected:

SQL insertion speed:

High: 43ms
Low: 5ms
Median: 5ms
Avg: 6ms

High insertion lags correspond to times when the
insertion overlapped with a cron-initiated database
dump.

264

Garner

The number of routers traversed is not as signifi-
cant an indicator of performance as the cpu utilization
on those routers. At Tufts, the longest times for MAC
determination arise from registrations that traverse
two particular routers that are also heavily occupied
with filtering and policy enforcement. The shortest
times for MAC determination arise during registra-
tions traversing four other routers that do nothing
except move packets.

Average total time of execution for the script is
under 150 ms, most of which may be attributed to the
MAC determination process.

85% of the errors logged by Pelican are due to
browsers not having cookies enabled. Though Pelican
notifies users of the problem, it would appear that not
all users understand what it means to “‘enable cookie
support” or at least are not able to do so without assis-
tance. We logged 410 instances of disabled cookies
during 2891 registrations, most of which were cor-
rected by users after a single notification.

10% of the errors were duplicate registrations:
people who tried to register their client twice. This
may occur when a user fails to reboot their computer
after registering and waiting the recommended inter-
val or because the client fails to relinquish network
settings when it receives a new DHCP configuration
after registering.

The remaining 5% of errors (109 during three
weeks of operation) were an assortment that included
expired cookies, access denied by the central directory
for administrative reasons, and access denied based on
user class.

We have seen no evidence of users attempting to
tamper with the authentication and authorization data
in the cookies.

On average, with 8,000 operating clients and a
2-week retention, our lease table contains 550,000
entries. Retrieving 3600 records from this table based
on a partial-string comparison of an IP address
(“172.16.237.%") takes 7.5 seconds on a moderately
loaded Sparc10.

Operation and Impact

Getting Apache, MySQL, and PHP compiled
properly (with LDAP support if you want to do direc-
tory lookups is the most challenging aspect of
installing and maintaining Pelican. We note with dis-
tress that the process does not appear to be getting eas-
ier with time or new package revisions.

Nevertheless, Pelican has been running very reli-
ably at Tufts for thirteen months. Network administra-
tors love it: the number of static address requests has
dropped from eight per day to eight per week. Because
all lease and client data are stored in database tables,
we have the ability to cross-join against our ARP log
database to identify stolen IP addresses. The ability for
users to trivially move around campus has allowed us

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Garner

to enable more advanced network services, including
wireless installations.

It has been very well received by end-users as
well: they no longer need to get support assistance to
connect a new computer to the network and they can
travel easily in and between campuses.

Front-line support staff have found the transition
from static addressing to DHCP and class-based
access control challenging. Most have absorbed the
technical concepts reasonably quickly, though about
5% continue to have difficulty. Most seem to feel that
the additional challenge is mitigated by the reduced
burden of address requests. Some resent the loss of
control and security now that users can roam without
their explicit acquiescence.

Additionally, because the University has a dis-
tributed support infrastructure, it can be tricky to fig-
ure out who is responsible for providing support to
users when they are roaming: does support have geo-
graphical constraints? How does a support person
from one organization and area of campus become
familiar with the network landscape elsewhere in
order to assist a roaming user? Who, if anyone, pro-
vides support for public ports (where Pelican registra-
tion is not supported, but roaming for registered
clients is) ? How is support handled in areas where
students (who have a separate support infrastructure)
and staff commingle ? How do users identify public
ports? Though we anticipated some of these questions
when we initiated development, others caught us by
surprise. Our answers are still being developed. Ulti-
mately, by forcing us to reconsider our support model
and social landscape, Pelican’s impact on Tufts may
go far beyond its technical footprint.

Future Work

One of our design assumptions about Pelican
was that we would be interested in only a fairly mini-
mal set of data about each client: its MAC address, to
whom and by whom it was registered, when it was
registered, and when it would expire. Once deployed,
it quickly became clear that transactional information
about the client was also interesting: its [P address at
the time of registration, when it was re-registered,
when its user or responsible party was administra-
tively changed, and when it was deleted. Support for
retaining some of this information was quickly
glommed onto the existing schema, but a more effi-
cient schema would involved two separate tables: one
with the minimal client data necessary to construct a
dhcp configuration (MAC address and class), and a
second table that stored related information about the
client (who registered it, when, etc.). Future work will
explore the feasibility of the type of schema as well as
the possibility of abstracting the database calls in
order to support other database engines.

Also, during the initial development of Pelican
the decision was made to use cookies to store some of
the data necessary to complete registrations because

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Pelican

that required the least time to implement. We believe
that moving to server-side session tracking will give
us more flexibility and reduce our exposure to security
risks by hiding more operational details.

Related future work will tie Pelican in with our
ARP monitoring system to allow us to identify miscre-
ants who steal addresses without registering. If we get
really fancy, we may attempt to implement SNMP-set
statements to automatically disable switch ports or
block MAC address with selective filters.

Finally, we hope to see Tufts move to an inte-
grated, directory-based authentication/authorization
mechanism sometime this year — maybe even with
support for digital certificates. Pelican’s authentication
and authorization code is modular and will be modi-
fied as necessary to adapt to advances in related Uni-
versity systems.

Availability

The Pelican scripts, along with our notes on
compilation and installation, are available at http://
www.net.tufts.edu .

Acknowledgments

Pelican was produced by the author and Peter
Radcliffe with invaluable input from Marc Jimenez
and Keith Malvetti. All are members of the Tufts Uni-
versity Network Engineering team. Special thanks to
Alva Couch for his editing and advice and to Judi
Rennie and her team, who helped us troubleshoot
under pressure. Thanks also to Mark Mason for his
assistance and patience.

Author Information

Robin Garner has been working in the network-
ing field since 1988 and has been a Network Engineer
at Tufts University since 1998. Robin can be reached
via email at robin@net.tufts.edu or by U. S. mail at
Tufts University; 169 Holland St.; TAB 303;
Somerville, MA 02144

References

[1] Valian, Peter & Todd Watson, “NetReg: An
Automated DHCP Registration System,” Pro-
ceedings LISA XIII, Usenix Assoc., 1999.

[2] Campbell, Matt, “Automatic DHCP Registra-
tion,” http://www.rit.edu/"mrcsys/dhcp/dhcp98,
1998.

[3] “Cisco Network Registrar,” http://www.cisco.
com/warp/public/cc/pd/nemnsw/nerr/index.shtml .

[4] “Lucent QIP,” http://www.lucent.com/products/
solution/0,,CTID+2011-STID+10016-SOID+767-
LOCL+1,00.html

[5] Valian, Peter, ““NetReg 1.2,”” http://www.
southwestern.edu/ITS/netreg/, 1999, 2000.

[6] Graves, Rich, “Review of DHCP Registration
Systems,” http://www.unet.brandeis.edu/rcgraves/
dhcp.html, 1999.

265

Pelican

[7] Dromas, Ralph & Ted Lemon, The DHCP Hand-
book: Understanding, Deploying, and Managing
Automated Configuration Services, Macmillan
Technical Publishing, ISBN 1-57879-137-6, 1999.

[8] Ablitz, Paul & Cricket Liu, DNS and BIND,
Third Edition, O’Reilly & Associates, ISBN
1-56592-512-2. 1998.

[9] Langfeldt, Nicolai, The Concise Guide to DNS and
BIND, Que Corporation, ISBN 0-7897-2273-9,
2001.

[10] Stevens, Richard, TCP/IP Illustrated, Vol. 1,
Addison-Wesley, ISBN 0-201-63346-9, 1994.

[11] Beck, Robert, “Dealing With Public Ethernet
Jacks — Switches, Gateways, and Authentica-
tion,” Proceedings LISA XIII, Usenix Assoc.,
1999

[12] “Internet Software Consortium Dynamic Host
Configuration Protocol (DHCP),” http://www.
isc.org/products/DHCP/ .

266

Garner

2001 LISA XV — December 2-7, 2001 — San Diego, CA

