
USENIX Association

Proceedings of the
14th Systems Administration Conference

(LISA 2000)

New Orleans, Louisiana, USA
December 3– 8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

ND: A Comprehensive Network
Administration and Analysis Tool

Ellen L. Mitchell, Eric Nelson, & David K. Hess – Texas A&M University

ABSTRACT

ND is a software tool developed by the Computing and Information Services Network Group
at Texas A&M University (TAMU) to aid in the engineering and operation of the campus network.
This tool was developed in response to the tremendous growth of the TAMU campus network over
the last ten years. ND is designed to provide high-level application functionality while retaining
the power and flexibility of a low level tool. It integrates remote network device analysis (via
SNMP) with network defining databases (via SQL). ND is written in Python [1] and contains
custom modules for interaction with SNMP and MySQL [2].

Introduction

ND is a tool that was developed to aid in the
operation and, more importantly, the engineering of
the TAMU campus network. With a network of more
than 25,000 nodes and over 1000 network devices, a
tool was required that could scale to a high level and
provide useful functionality without the need to
repeatedly develop special purpose scripting based
solutions.

One of the major design goals of ND was to have
a command line interface (CLI) syntax that was acces-
sible remotely via Telnet/SSH. This is a very impor-
tant feature because this type of remote access is the
lowest common denominator that can usually be found
on almost any host or network device in the field. It
requires neither a graphical interface nor the installa-
tion of special software. In addition, the CLI syntax
provides a common command structure independent
of different vendors’ software implementations due to
the use of standard SNMP MIBs.

Another design goal was to integrate ND into the
Unix environment in order to leverage and adopt some
of the features of Unix that have given it the ability to
scale. This integration also made it simple to use a
number of freely available support tools and technolo-
gies such as Python, SNMP and SQL. The resulting
synergies have resulted in a very powerful and useful
tool.

This paper presents a background section on net-
work management applications that explains why ND
needed to be developed, a design section covering the
architecture of ND, a section on how ND is used, and
finally a section discussing what the resulting benefits
have been.

Background

A quick search of the World Wide Web reveals
that there are a remarkable number of packages avail-
able both commercially and as open source that pur-
port to perform ‘‘network management’’. This leads

one to ask, ‘‘Why build yet another network manage-
ment tool?’’

Network management applications have evolved
into four major categories: event management, perfor-
mance management, policy management and finally
‘‘generic’’ network management. Event management
applications are based on the monitoring and manag-
ing of network events such as the reception of SNMP
traps and up/down state information based on ICMP
echo request/replies (ping). Two tools in this category
are Big Brother [3] and Micromuse’s Netcool/
Omnibus [4] product. Performance management tools
collect, monitor, and present network performance
information (usually collected via SNMP). InfoVista
[5] and MRTG [6] are examples of tools in this cate-
gory.

Policy management mainly refers to proprietary
applications developed by network equipment vendors
that attempt to manage complex network equipment
functionality (such as quality of service and security)
via a policy abstraction. Cisco and 3Com are examples
of vendors that have developed tools of these types.
Finally, the category of ‘‘generic’’ network manage-
ment applications is the most recognizable one. Appli-
cations of this type tend to center around a Graphical
User Interface (GUI), which displays information
about network topology, network elements and status.
Commercial versions of these tools typically incorpo-
rate an element manager, which provides a GUI that
allows in-depth control of a network element. HP’s
OpenView [7] and Scotty/Tkined [8] are examples of
this type of application.

One of the weaknesses of network management
applications as a whole is that they tend to address
only the operational aspect of ‘‘network manage-
ment’’. Those who engineer networks tend to eschew
these applications for their work because of their con-
strictive nature; while GUIs are useful for displaying
complex information, they are typically implemented
in such a way that limits the ability of users to perform
complex operations on medium to large sets of

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 275

ND: A Comprehensive Network Administration and Analysis Tool Mitchell, Nelson, & Hess

network elements. They also do not take into account
nor provide support for the specific network manage-
ment practices that may be in use at a particular site
(naming conventions, addressing conventions, net-
work layouts, port numbering patterns, organizational
structure, etc.).

Module Family Description MIB

fms Proprietary3Com FMS Repeater MIBs
ost Alcatel Switching MIBs Proprietary

bridge Bridge MIB RFC 1286 [10]
fr Frame relay MIB RFC 1315 [11]

repeater Repeater MIB RFC 1516 [12]
rmon RMON MIB RFC 1271 [13]
snmp Basic SNMP Query RFC 1213 [14]
netdb n/aDatabase applications

Table 1: ND module families.

True to their nature, network engineers tend to
focus on network management tools rather than net-
work management applications as categorized above.
These tools are typically programming/scripting lan-
guages (Perl, Python, Expect, etc.), SNMP MIB
browsers, libraries and standalone tools (SNMP++,
UCD Snmp, etc), and databases (MySQL) The result
is that engineers build special purpose applications on
a case-by-case basis that bridge this gap between the
tools and the applications. This software tends to be
powerful and effective but special purpose and diffi-
cult to maintain and extend.

ND was developed to specifically address this
problem; it has been designed to be a powerful tool
built on SNMP MIB functionality and SQL databases
that provides a useful and friendly application inter-
face. While the Simple Network Management Execu-
tive [9] (SNMX) package provides a powerful script-
ing and SNMP tool structure and is thus closest in
nature to ND, ND is unique in the level of functional-
ity it provides in the form of a flexible tool.

ND Architecture

Python
ND is written in Python and contains custom

modules for interaction with MySQL and SNMP.
Python was chosen for its ease of programming and its
modular and object-oriented design. There are over 40
modules in ND (approximately 10,000 lines of code)
grouped into 8 families. Table 1 summarizes the mod-
ule families. The module families closely follow indi-
vidual MIBs (both standard and proprietary). Several
of the standard Python modules have been customized
while another has been newly written. Table 2 summa-
rizes the modified or created Python modules.

To assist in creating new modules, a Python class
was written from which all modules are sub-classed.
The parent class provides methods for parsing user
input, redirecting output to pipes or files, providing a

command-line history, and providing a mechanism for
methods common to all modules, e.g., help.

ND contains an extensive help system that is
available at two levels. First, at each ND prompt, a
question mark can be entered which will list all the
commands available in that module. Second, the help
command can be issued with a specific command
which will cause the syntax and description of
thecommand to be displayed.

Module Description
mysql Modified the initial connection

code to use MySQL conf files
readline Modified to allow for user defined

history files
snmp++ A new module that allows Python

access to the SNMP++ and UCD
SNMP libraries

Table 2: Modified/new python modules.

Databases
ND makes extensive use of SQL tables and uses

the MySQL server as a backend. Table 3 lists the
major categories of SQL tables. Originally, ND used
an early version of msql and db, which essentially had
the ability to store simple flat files. To ensure that the
database made sense from a higher network design
perspective, ND was designed to keep databases con-
sistent and free from typical types of errors as might
be prone with manual input. This includes sanity
checking of record relationships on the creation of
new records and automatic generation of record id
numbers (functionality that is now found in MySQL).

The Fiber Circuits and Twisted Pair Drops cate-
gories are the result of extensions that have been made
to ND over time. These are accessed via the equiva-
lent of small applications within ND that specialize in
the management of the campus network’s fiber optic
plant and twisted pair wiring plant. This functionality
was added to ND due to the CLI infrastructure ND
provided and due to the usefulness of sharing this
information with the rest of ND. Fundamentally, these
small applications provide support for the processes
used at TAMU related to plant management and
demonstrate the ability of ND to support site-specific
business practices.

276 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Mitchell, Nelson, & Hess ND: A Comprehensive Network Administration and Analysis Tool

Table Category Description
Support Various support data such as

campus buildings and depart-
ment descriptions.

Fiber Circuits Defines fiber circuits
Twisted Pair
Drops

Defines each installed drop on
campus.

Device Contains basic information
about backbone devices

Table 3: Database architecture.

SNMP
SNMP is a fundamental aspect of ND [15]. Since

Python contains no built-in support for SNMP, a new
module was created. Initially, a set of functions that
used the system method of the OS module was used to
interface (externally as child processes) with the UCD
SNMP [16] set of utilities. This proved inefficient and
more importantly, resulted in a security risk since
community strings would appear in the process table
as arguments.

A search for lower-level tools was initiated and
the SNMP++ [17] toolkit was discovered. This toolkit
provides a very efficient interface into the SNMP
GET, PUT and TABLE functions but it does not have
any provision for parsing MIBs. For this reason, the
interface to the UCD snmptranslate function was kept
but an OID translation cache was added as one of the
SQL tables. This cache all but eliminated the ineffi-
ciencies of using an external program.

It should be noted that the SNMP v1 protocol is
insecure [18] by its nature since authentication tokens
(community strings) are sent in plain text. Steps
should be taken to guard against others snooping traf-
fic on the network and discovering the community
strings, which may provide the ability to change the
configuration of a device. At TAMU, the campus net-
work has been engineered in order to prevent eaves-
dropping.

Performance Issues
Since Python is used primarily to implement the

user interface, the performance of ND is more closely
tied to the performance of the underlying SNMP and
MySQL toolkits rather than Python. It has turned out
that the load on the MySQL database server, even with
a network as large as TAMU’s, has not been shown to
be a problem.

The real bottleneck has turned out to be the net-
work devices response times to SNMP queries.
Depending on the CPU and memory of the network
device, it may take tens of milliseconds to respond to
an SNMP query. When large tables need to be tra-
versed (which must be done serially under SNMP v1),
this can result in a large delay before an ND command
completes.

Another performance related issue is how ND
reacts to poor network conditions. SNMP is a stateless

UDP protocol; reliable communications to a network
device must be ensured by the SNMP software. Typi-
cally, when SNMP responses fail to return to an
SNMP management agent, the agent will retransmit
the SNMP request. Under poor network conditions, it
is important to be able to control this behavior based
on the desires of the user and the severity of the net-
work conditions. ND provides timeout and retries
parameters that control how long it takes for an indi-
vidual SNMP request to timeout and how many time-
outs are allowed before communication with the
device is considered to have failed.

Command Structure

ND is a hierarchical, command-line interface
program. We made this choice so that shell scripts
could be written to automate complex and repetitive
tasks. Also, this tool is frequently used in the field
where the only available interface is a Telnet/SSH ses-
sion.

The hierarchical nature of ND follows a logical
progression that we have found assists in problem
tracking and security incident investigations. For
example, the FMS family contains six sub-modules:
address, ports, security, traps, users, and misc. Each of
these in turn contains between five and ten individual
commands. Similar structures exist for Alcatel,
RMON, and bridge MIBs.

The current position in the hierarchy is reflected
in the ND prompt. When first invoked, ND starts at
the root level. To navigate deeper into the hierarchy,
the user needs only type the name of a module avail-
able at that level. The quit command is used to leave a
module and to return to a higher point in the hierarchy.
The ‘..’ notation is used as a mechanism to reference
another module’s commands without leaving the cur-
rent module. When a hostname is required in a com-
mand, the ‘!’ notation can be utilized to reference the
host used in the previous command. This is very help-
ful when the command is related to the same host but
is different to the point that command line history edit-
ing is not very helpful.

The GNU readline toolkit, which provides com-
mand line editing and history, has been incorporated
into ND via the readline module found in Python. It
has been modified to generate user defined command
line history files, which allow the history to be persis-
tent between ND sessions.

There are a number of commands common to
most ND modules: list, show, set, add, delete, enable,
disable and help. These commands have basically the
same syntax but are tailored to the functionality of the
particular module. The commonality of the syntax
provides a user with a good base understanding of
how commands within any module work. They need
only use the help command to find the specific syntax.

One of the most powerful features of the com-
mand line interface is the ability to pipe output of any

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 277

ND: A Comprehensive Network Administration and Analysis Tool Mitchell, Nelson, & Hess

command to a Unix shell command or to a file. This is
accomplished by using the normal shell characters of
‘|’, ‘>’, and ‘>>’ at the end of an ND command. As an
indication of this level of integration, ND does not
have any output paging mechanism. The user is
responsible for piping the output of any command to
the paging program of their choice (e.g., more).

nd-fms-ports> show fms-device-1.domain.com 1 1,3-5,8 config
Unit Port Status EST filter Part. trap Link trap Link pulse DUD action
--
1 1 on mac enabled disabled enabled N/A
1 3 on mac enabled disabled enabled N/A
1 4 on mac enabled disabled enabled N/A
1 5 on mac enabled disabled enabled N/A
1 6 on mac enabled disabled enabled N/A
1 8 on mac enabled disabled enabled N/A

Figure 1: Verifying port configuration.

Using ND

All TAMU network operators and engineers use
ND. The types of tasks that each group performs are
quite different but ND is flexible enough for both.
These tasks include troubleshooting, administration,
monitoring, and maintenance.

Starting ND is as simple as typing nd. Before
presenting the top level prompt of nd>, ND will exe-
cute any commands found in ˜/.ndrc . Typically, some
top level set commands are executed in order to estab-
lish certain operating parameters that ND needs. The
set command allows you to specify the following:

sqluser user name to connect to MySQL server
sqlpass password to connect to MySQL server
sqlhost host where MySQL server is running
timeout number of seconds for SNMP timeouts
retries number of retries for SNMP queries
snmplimit maximum number of rows to return in

SNMP queries
read SNMP read community string
write SNMP write community string
rows maximum number of rows to output

before reprinting column headings
debug sets the internal debug level for

MySQL and SNMP
historyfile sets the file to use for the history file

between ND sessions
echo toggles ND echoing user commands

Another command commonly found in .ndrc
files is the attach command. The attach command
allows simple tags to be defined for long or complex
host names and also allows for community strings to
differ from the default. For example, hostnames of
networking equipment at TAMU follow a set pattern
but are often tedious to repeatedly type.

Once in ND, the user need only type the name of
a module to navigate deeper into the hierarchy and
quit to navigate back up the hierarchy. The prompt

will change to indicate which module the user is cur-
rently in. Within each module the help command pro-
vides module and command specific help. There is no
documentation or training material for ND other than
the internal help system.

As mentioned previously, the ND command line
interface is integrated with the Unix shell. Most com-
monly, users will need to take the output of commands
and pipe them to an output pager of their choice.
More experienced users will save the output to a file
or pass it into a grep command looking for a particular
pattern. Expert users will pass the output to awk or
possibly even an external Perl or shell script. In sup-
port of this functionality, the rows parameter can be set
such that no column headings are printed with a com-
mand’s output.

Rather than give an exhaustive explanation of all
ND modules and commands (which space will not
allow), it is more useful to show by example, how ND
is used at TAMU day-to-day. The following examples
show how ND is used in a variety of both operational
and engineering related situations.

The general format of common ND commands
is:
<command> <host> <unit> <port> <options>

The units and ports can be specified using a scalar,
list, or range notation.

Scenario 1: Ports 1, 3, 4, 5 and 8 of unit 1 of a
new 3COM FMS have recently been activated. Before
the users are informed that the ports are available, the
configuration of the ports must be verified. The com-
mand shown in Figure 1 would be used.

Scenario 2: Ports have become scarce inside one
building. It is suspected that some ports that are allo-
cated are not actually being used. Viewing only the
ports on unit 1 that have a total frame count greater
than zero would indicate which ports are actually
being used. The ND command and corresponding
output are shown in Figure 5.

Scenario 3: Several users have called and com-
plained that the network in their building has become
unresponsive. It is suspected that someone is using too
much bandwidth. By inspecting the frame counts for
all ports on a device and then sorting the output, the
ports using the most bandwidth are easily found. The
output for this example is in Figure 6.

278 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Mitchell, Nelson, & Hess ND: A Comprehensive Network Administration and Analysis Tool

RMON Stats Variable: Packets Received

3 4
+------------------------

1 | 302414796 0
2 | 0 34631342

Help: ?
Host: host.domain.com
Mode: absolute
Rate: 0.5/sec Sample: 57

Figure 2: Dynamically monitoring RMON variables
across all ports.

nd-fms-ports> show fms-device-1.domain.com 1 all counters | \
awk -- ’{if ($7 > 0) print $0}’

Uni Mult Bcast Tot Ucast Mcast Bcase Total
Unit Port Util frms frms frms frms octs octs octs Octets Colls Runts

1 2 0% 1286 0 11 1297 0 0 0 116943 2 0
1 3 0% 145846 0 5966 151811 0 0 0 20298744 209 0
1 6 0% 1638 0 764 2402 0 0 0 468142 0 0
1 7 0% 6697 0 1001 7698 0 0 0 531474 105 0
1 8 0% 16217 0 668 16885 0 0 0 1220390 16 0
1 10 0% 3268 0 18 3286 0 0 0 229193 1 0

Figure 5: Discovering which ports on a device are active.

nd-fms-ports> show fms-device-1.domain.com 1 1-10 counters | sort -k 4 -r -n

Uni Mult Bcast Tot Ucast Mcast Bcase Total
Unit Port Util frms frms frms frms octs octs octs Octets Colls Runts

1 3 0% 205380 0 8453 213833 0 0 0 31735634 666 0
1 8 0% 23148 0 951 24099 0 0 0 1726534 63 0
1 7 0% 9413 0 1415 10828 0 0 0 746284 395 0
1 10 0% 4627 0 18 4645 0 0 0 324124 13 0
1 6 0% 2518 0 1090 3608 0 0 0 679204 184 0
1 2 0% 1803 0 17 1820 0 0 0 164001 6 0
1 9 0% 0 0 0 0 0 0 0 0 0 0
1 5 0% 0 0 0 0 0 0 0 0 0 0
1 4 0% 0 0 0 0 0 0 0 0 0 0
1 1 0% 0 0 0 0 0 0 0 0 0 0

Figure 6: Finding which ports on a device are using the most bandwidth.

Scenario 4: A recent addition to ND has been
the ability to continuously monitor a specific MIB
variable across all units and ports of a network device.
Python includes a Curses module that allows for sim-
ple screen control. This has been utilized to display a
matrix of text where the columns represent slots or
units, and rows represent ports. Figure 2 contains a
single screen snapshot showing the RMON etherstats
variable for the number of packets received. ND will
query the device and update the screen every two sec-
onds.

Scenario 5: There are over 500 3COM FMS
type devices at TAMU. Our monitoring strategy is to
have statistics that are summarized on a weekly basis.
Clearing all the statistics on every FMS then becomes
necessary. ND was specifically designed to be

incorporated into shell scripts so that fairly complex
tasks can be accomplished easily. Figure 3 shows how
all the statistics on all FMS devices on campus can be
cleared at the same time.

(
echo "fms ports"
grep -v ’ˆ[#%]’ $FMSHOSTS |
while read host
do
echo "clear $host of all statistics"

done
echo "exit"

) | nd

Figure 3: Shell programming with ND.

Scenario 6: The characteristics of all ports and
units for a given device can be shown in a single table.
This can be very time consuming when logging
directly into a network device. Also, the device’s soft-
ware may not support tabular output of information.
The ND command and resulting output for this exam-
ple are shown in Figure 7.

Scenario 7: With over a thousand network
devices at TAMU, new devices are constantly being
added and old ones replaced. Using ND, a device can
easily be configured to a known state. Figure 4
demonstrates how a set of specific ports can be config-
ured easily using a shell script.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 279

ND: A Comprehensive Network Administration and Analysis Tool Mitchell, Nelson, & Hess

Scenario 8: A customer calls and wants to know

#!/bin/sh

Find out which ports to configure as secure

snmptable -mPRODUCTMIB -R $TARGET public -H \
mrmPortTable mrmPortCardIndex mrmPortIndex mrmPortInterfaceType |
grep ’twistedPair’ | sed -e ’s/ˆ *\([0-9]*\) *\([0-9]*\).*/\1 \2/’ |

(
echo set read commread
echo set write commwrite
echo fms security
while read PORT
do

echo set $TARGET $PORT addresses 1
echo set ! $PORT intrusion noAction
echo set ! $PORT ntk NTKWithBcastAndMcast
echo set ! $PORT mode continuousLearning

done
echo quit
echo exit
) | nd > /dev/null

Figure 4: Shell script for configuring a new device to a known state.

nd-fms-ports> show fms-device-1.domain.com 1 all diagnostics
Total Colls/ Runts/ Late

Unit Port frms Coll’s Runts frame frame Frags colls

1 1 0 0 0 - - 0 0
1 2 2700 12 0 0.44% 0.00% 0 0
1 3 273442 916 0 0.33% 0.00% 0 0
1 4 0 0 0 - - 0 0
1 5 0 0 0 - - 0 0
1 6 4656 283 0 6.08% 0.00% 0 0
1 7 13857 620 0 4.47% 0.00% 0 0
1 8 30582 93 0 0.30% 0.00% 0 0
1 9 0 0 0 - - 0 0
1 10 5947 23 0 0.39% 0.00% 0 0
1 11 815 8 0 0.98% 0.00% 0 0
1 12 8095 42 0 0.52% 0.00% 0 0
1 13 56349 2548 0 4.52% 0.00% 0 0
1 14 5 0 0 0.00% 0.00% 0 0
1 15 0 0 0 - - 0 0
1 16 1574 4 0 0.25% 0.00% 0 0
1 17 30788 48 0 0.16% 0.00% 0 0
1 18 1222 66 0 5.40% 0.00% 0 0
1 19 0 0 0 - - 0 0
1 20 790 0 0 0.00% 0.00% 0 0
1 21 21 0 0 0.00% 0.00% 0 0
1 22 0 0 0 - - 0 0
1 23 2805 40 0 1.43% 0.00% 0 0
1 24 0 0 0 - - 0 0
1 25 14047788 1032746 0 7.35% 0.00% 0 0
1 26 0 0 0 - - 0 0

Figure 7: Displaying diagnostics for all units and ports in one command.

the speed of the workstation connections in his office.
He provides the building and room number. The caller
also wants to know the location of the 100 MB

connections in the building. Figure 8 shows the com-
mands used to answer this query.

Scenario 9: A student in a residence hall has vio-
lated the acceptable use policy and is causing a

280 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Mitchell, Nelson, & Hess ND: A Comprehensive Network Administration and Analysis Tool

disruption. An engineer can disable the data ports to
the room and schedule a meeting with the owner to
discuss the problem. Figure 9 shows the commands
used to solve this problem.

nd-netdb-drops> show room BLDG 311 The building and room number are entered.

Drop number Type Room Length DB loss Dept. Media Connected to Unit Port

BLDG:1164 CAT5 311 106 0.0 DEPT 100BaseTX dev1-ost5-1 4 7
BLDG:1019 CAT5 311 0 0.0 10BaseTX dev2-fms2-1 3 6

nd-netdb-drops> show device dev1-ost5-1 One drop is 10MB, the other is 100MB. Check the 100MB

device and see in which rooms the drops are terminated.

Device Unit Port Drop number Type Room Length DB loss Dept. Media
--
dev1-ost5-1 4 1 BLDG:1136 CAT5 319 147 0.0 DEPT 100BaseTX
dev1-ost5-1 4 2 BLDG:1137 CAT5 312 157 0.0 DEPT 100BaseTX
dev1-ost5-1 4 3 BLDG:994 CAT5 011A 0 0.0 DEPT 100BaseTX
dev1-ost5-1 4 4 BLDG:1107 CAT5 011A 0 0.0 DEPT 100BaseTX
dev1-ost5-1 4 5 BLDG:1155 CAT5 107 91 0.0 DEPT 100BaseTX
dev1-ost5-1 4 6 BLDG:1064 CAT5 107 0 0.0 DEPT 100BaseTX

Figure 8: Helping a user Locate 100 MB ports.

Benefits

One of the most important benefits that has
resulted from the development and deployment of ND
is the availability of a command line interface that is
the same regardless of which type and make of net-
work equipment is being accessed. This has always
been the potential embodied in standard MIBs, though
most network management application software has
never taken advantage of it outside of an operational
setting. The result has been that it is easier to train
users. A module’s commands will be effective on
numerous devices regardless of the type and make of
the device.

Another benefit that engineers have expressed is
the ease of accessing ND and the simplicity of its
interface. ND can be invoked from any Telnet/SSH
session and is a system wide tool. No software needs
to be installed in a user’s account or on a workstation
in the office or in the field. Also, the online help and
commonality of the syntax between modules makes it
easy to remember commands and learn new modules
quickly. Command line history files and command
line editing also make it simple to look up recent com-
mands or use a previous command as the starting point
for a new one. The result is that engineers are very
efficient when using ND.

One of the seemingly mundane features but con-
sidered very valuable by the operators and engineers
at TAMU is the ability to view a condensed, full page
of statistics with a single command. This makes it
simple for operators and engineers to get a picture of
the overall health of a network device and quickly
identify a problem. Usually, this is an action that
would require a cumbersome series of queries when
using the vendor’s user interface.

The integration of the Fiber Circuits and Twisted
Pair Drops database functionality has proven to be
beneficial also. Leveraging the investment of learning
ND and tying the information back to ND commands
where appropriate not only saves human resources but
has made the databases more valuable than they would
otherwise be. In many environments, network
databases of these types are considered a burden and
are many times discarded because they have a differ-
ent user interface from other tools and because the
data is trapped in a separate system and not available
in other contexts.

Another important benefit of ND is its ability to
pipe output to a shell command or to a file. This fea-
ture gives users a powerful means of extending the
functionality of ND in the traditional Unix style.
Unlike many network management applications, the
designers of ND realized that they could not foresee
all the desires that operators and engineers would have
and made ND extensible in this way. This has saved
users from having to develop new special purpose
applications and again saved resources.

Conclusion

ND was designed to be a powerful network man-
agement tool and to provide user-friendly functionality
and extensibility. The Python language facilitates
maintainable modules and a flexible command-line
interface allowing the simple addition of new vendor-
specific and standard MIB functionality as the net-
work grows. The ND CLI eliminates the need for
operators and engineers to learn complex vendor-spe-
cific syntax by providing a new interface based on the
standard MIBs implemented by all vendors. Unix
authentication and authorization mechanisms provide
a basis for managing access to network devices inde-
pendently of the individual device’s authentication and
authorization mechanisms.

It is clear that this type of approach to network
management software is a powerful one. The

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 281

ND: A Comprehensive Network Administration and Analysis Tool Mitchell, Nelson, & Hess

development of ND began from the desire to build a
friendly application that was also a powerful tool. A
simple command line interface leveraging Unix was
key to accomplishing this. More importantly, ND
became a platform in which business practices could
be embodied. At the same time, this embodiment can
lead to weaknesses. Some business practices coded
into ND may not be adoptable in other environments.
They can even become a burden in TAMU’s environ-
ment when it makes sense to change a business prac-
tice but ND would require significant redevelopment
to support the change.

nd-ost-vports> show dev1-ost3-1 4 12 The engineer checks the status of the port before disabling.

Slot Port Status VLAN MAC Prot Encap Mode Timer
--

4 12 on 1 00:20:aa:bb:23:12 TRN default auto 60

nd-ost-vports> disable dev1-ost3-1 4 10 The engineer disables the port and is then

required to document this action.

Enter a comment to associate with this action: incident number 2000.143

nd-ost-vports> show dev1-ost3-1 4 10 Verify the status. Now a ‘*’ reflects a comment is

present for this port, and the status has changed to ‘off’.

Slot Port Status VLAN MAC Prot Encap Mode Timer
--
4 10 * off 1 00:20:aa:bb:23:12 TRN default auto 60

nd-ost-vports> show dev1-ost3-1 4 10 comment If the student telephones the Operations Center before anyone

can reach and discuss the problem with him, the Operations

Center can check the status and inform the student of the situation.

Id Host Unit Port Comment
--
46294 dev1-ost3-1.net.tamu.edu 4 10 incident number 607.689

nd-ost-vports> enable dev1-ost3-1 4 10 When the problem has been resolved, the port is re-activated.

Enter a comment to associate with this action: incident 607.689 resolved

nd-ost-vports> show dev1-ost3-1 4 10

Slot Port Status VLAN MAC Prot Encap Mode Timer
--
4 10 * on 1 00:20:aa:bb:23:12 TRN default auto 60

nd-ost-vports> show dev1-ost3-1 4 10 comment The comments are still assigned and can be retained, or

can be removed with the ‘comment delete’ command.

Id Host Unit Port Comment

46294 dev1-ost3-1.net.tamu.edu 4 10 incident number 607.689
46295 dev1-ost3-1.net.tamu.edu 4 10 incident 607.689 resolved

Timestamp and audit information can be viewed using the

‘comment info’ command:

ID: 1 IP Address: 192.168.1.1 User: Operator #1 at server
Device: dev1-fms-1 Unit: 1 Port: 6
Date: 1999-10-19 Comment: disabled port for usage violations

nd-ost-vports> comment delete 46294-46295 Delete the comments by comment ID number.

Figure 9: Turning off a student’s internet access.

In the final analysis, every networking organiza-
tion has a unique culture and a unique set of business
practices. That organization must choose software that
will support them in their mission. Tools that are too

low-level do not have interesting enough behavior for
operators and most network management applications
do not interest engineers because they are too restric-
tive or because they are not adaptable to the organiza-
tion’s business practices. Many times, the only per-
ceived alternatives to this problem are to build com-
pletely custom network management applications or to
change business practices. At TAMU, ND has suc-
cessfully proven that simply designing a better tool is
a viable alternative with many benefits.

Future Work

We are currently looking at integrating ND with
an event management package. The event manage-
ment package could trigger a lookup of a network
device at a specific event threshold, execute a set of

282 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Mitchell, Nelson, & Hess ND: A Comprehensive Network Administration and Analysis Tool

predetermined ND commands, and generate a report
for an operator to review and make a diagnosis. Addi-
tionally, while the Fiber Circuits and Twisted Pair
Ports databases have a good command structure for
querying them, it can be cumbersome populating the
databases with bulk data. Additional work needs to be
done on simplifying and bulletproofing this process.

Acknowledgments

We would like to thank the employees of the
Texas A&M Network Group (Installation, Engineer-
ing and Systems teams) and to the Operations Center
for being guinea pigs during the development phase
and for patiently providing feedback to us on ND.

Availability

It has always been our intention to release the
source code for ND. Extenuating circumstances pre-
vented us from having the source available at the time
of this writing; however, we expect to make it avail-
able at some time in the future.

Author Information

Ellen Mitchell obtained her Master’s of Com-
puter Science from Texas A&M University in 1994.
While at Texas A&M, she has been the Systems Man-
ager of the Computer Science Department and is
presently a Security Analyst in the campus Network
Group. She is involved in educating the campus user
community concerning computer security. She may be
reached by postal mail at Computing and Information
Services, Teague Building, College Station, TX,
77843-3142 or by e-mail at ellenm@net.tamu.edu.

Eric Nelson has just recently left Texas A&M
University where he was Systems Group manager of
the campus Network Group. He has been the ND
maintainer for the last several years and has developed
many of the network analyst tools currently in use at
TAMU. He received his Master’s of Computer Sci-
ence from Texas A&M University in 1987 and his
Bachelors of Science from Texas A&M University in
1985. He may be reached by email at eric@net.
tamu.edu.

David Hess was formerly the campus Network
Manager at Texas A&M University. He is the original
author of ND. David has extensive experience with
network engineering and network management. He
received his Master’s of Computer Science from
Texas A&M University in 1991. He recently left
TAMU to join a startup company. He may be reached
by e-mail at daveh@net.tamu.edu.

References

[1] Lutz, Mark ,‘‘Programming Python,’’ O’Reilly &
Assoc., http://python.org/ .

[2] Yarger, Randy Jay, George Reese, and Tim King,
‘‘MySQL and mSQL,’’ O’Reilly & Assoc.,
http://www.mysql.com/ .

[3] MacGuire, Sean, and Robert-Andre’ Croteau,
‘‘Big Brother is Still Watching,’’ SANS confer-
ence, Baltimore, Maryland, http://bb4.com/ ,
May 1999.

[4] Micromuse, Inc., ‘‘Netcool Suite Functionality
and Benefits,’’ http://www.micromuse.com/prod-
ucts/ overview.html .

[5] InfoVista, ‘‘The Challenge of Service Level
Management,’’ InfoVista Marketing, http://www.
infovista.com/products/frproducts.html , 2000,

[6] MRTG, http://ee-staff.ethz.ch/˜oetiker/webtools/
mrtg/mrtg.html .

[7] HP OpenView, http://www.openview.hp.com/ .
[8] Schönwälder, J., and H. Langendörfer, ‘‘How to

Keep Track of Your Network Configuration,’’
Proceedings, 7th Conference on Large Installa-
tion System Administration (LISA VII), Mon-
terey, California, http://wwwhome.cs.utwente.nl/
˜schoenw/scotty/ , November 1993.

[9] Davison, Jeff, ‘‘Network Management Automa-
tion Using ACE Automated Console Expert,’’
Diversified Data Resources, Inc., http://www.
ddri.com/Products/ace-snmx.html/ .

[10] Decker, E., P. Langille, A. Rijsinghani, and K.
McCloghrie, ‘‘RFC1286: Definitions of Man-
aged Objects for Bridges.’’

[11] Brown, C., F. Baker, and C. Carvalho,
‘‘RFC1315: Management Information Base for
Frame Relay DTEs.’’

[12] McMaster, D., and K. McCloghrie, ‘‘RFC1516:
Definitions of Managed Objects for IEEE 802.3
Repeater Devices.’’

[13] Waldbusser, S., ‘‘RFC1271: Remote Network
Monitoring Management Information Base.’’

[14] McCloghrie, K., and M. Rose, ‘‘RFC1213: Man-
agement Information Base for for Network Man-
agement of TCP/IP-based internets: MIB-II.’’

[15] Stallings, William, ‘‘SNMP SNMPv2 and
RMON,’’ Addison Wesley.

[16] UCD SNMP, http://ucd-snmp.ucdavis.edu/ .
[17] Mellquist, Peter Erik, ‘‘SNMP++ Specification,’’

Hewlett-Packard Company, http://rosegarden.external.
hp.com/snmp++/index.html .

[18] Galvin, J. M., K. McCloghrie, and J. R. Davin,
‘‘Secure Management of SNMP Networks,’’
Proceedings of the IFIP TC6/WG 6.6 Second
International Symposium on Integrated Network
Management, pp. 703-714, North-Holland, 1991.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 283

