
Data
Structures
from the
Future:
Bloom Filters,
Distributed
Hash Tables,
and More!
Tom Limoncelli,
Google NYC

tlim@google.com

1Thursday, November 11, 2010

Why am I here?

I have no idea.

2Thursday, November 11, 2010

Why are you here?

I have 3 theories...

3Thursday, November 11, 2010

Why are you here?

1. You thought this was
the Dreamworks talk.

4Thursday, November 11, 2010

Why are you here?

2. You’re still drunk from
last night.

5Thursday, November 11, 2010

Why are you here?

3. You can’t manage what
you don’t understand.

6Thursday, November 11, 2010

Overview

1. Hashes & Caches

2. Bloom Filters

3. Distributed Hash Tables (DHTs)

4. Key/Value Stores (NoSQL)

5. Google Bigtable

7Thursday, November 11, 2010

Disclaimer #1

There will be hand-waving.

The Presence of Slides

!=

“Being Prepared”

8Thursday, November 11, 2010

Disclaimer #2

 You could learn most of
this from Wikipedia.
Really. Did I mention
they’re talking about

Shrek in the other room?

9Thursday, November 11, 2010

Disclaimer #3

 My LISA 2008 talk also
conflicted with a talk from

Dreamworks.

10Thursday, November 11, 2010

To understand this talk, you
must understand:
! ! Hashes
! ! Caches

11Thursday, November 11, 2010

Hashes

12Thursday, November 11, 2010

What is a Hash?

A fixed-size summary of a large
amount of data.

13Thursday, November 11, 2010

Checksum

Simple checksum:

Sum the byte values. Take the last digit of the total.

Pros: Easy. Cons: Change order, same checksum.

Improvement: Cyclic Redundancy Check

Detects change in order.

14Thursday, November 11, 2010

Hash

“Cryptographically Unique”

Difficult to generate 2 files with the same MD5 hash

Even more difficult to make a “valid second file”:

The second file is a valid example of the same
format. (i.e. both are HTML files)

15Thursday, November 11, 2010

How do crypto hashes
work?

“It works because of math.”
Matt Blaze, Ph.D

16Thursday, November 11, 2010

Reversible/Irreversible
Functions

[] + 105 = 205

[] mod 10 = 4

17Thursday, November 11, 2010

Some common hashes

MD4

MD5

SHA1

SHA2

AES-Hash

18Thursday, November 11, 2010

Hashes

19Thursday, November 11, 2010

Caches

20Thursday, November 11, 2010

What is a Cache?

Using a small/expensive/fast thing to make
a big/cheap/slow thing faster.

21Thursday, November 11, 2010

Database

Big, Slow, Cheap

User
Cache

Fast but
expensive.

22Thursday, November 11, 2010

Metric used to grade?

The “hit rate”: hits / total queries

How to tune?

Add additional storage

Smallest increment: Result size.

23Thursday, November 11, 2010

Suppose cache is X times faster

...but Y times more expensive

Balance cost of cache vs. savings you can get:

Web cache achieves 30% hit rate, costs $/MB

33% of cachable traffic costs $/MB from ISP.

What about non-cachable traffic?

What about query size?

24Thursday, November 11, 2010

Value of next increment
is less than the previous:

10 units of cache
achieves 30% hit rate

+10 units, hit rate
goes to 32%

+10 more units, hit
rate goes to 33% 0

25

50

75

100

10 20 30

$/unit # units

25Thursday, November 11, 2010

Data

Big, Slow, Cheap

User
Cache

Fast but
expensive.

26Thursday, November 11, 2010

Data

Big, Slow, Cheap

NYC

Cache

Fast but
expensive.

CHI

LAX

Cache

Cache

Cache

27Thursday, November 11, 2010

Simple
Cache

NCACHE Intelligent

Add new
data?

Ok Not found Ok

Delete data? Stale Stale Ok

Modify data? Stale Stale Ok

28Thursday, November 11, 2010

Caches

29Thursday, November 11, 2010

Bloom Filters

30Thursday, November 11, 2010

What is a Bloom Filter?

Knowing when NOT to waste time seeking out data.

Invented in Burton Howard Bloom in 2070

31Thursday, November 11, 2010

What is a Bloom Filter?

Knowing when NOT to waste time seeking out data.

Invented in Burton Howard Bloom in 1970

32Thursday, November 11, 2010

I invented Bloom Filters
when I was 10 years old.

33Thursday, November 11, 2010

34Thursday, November 11, 2010

Data

Big, Slow, Cheap

User
Bloom

(Or, precocious
10 year old)

35Thursday, November 11, 2010

Using the last 3 bits of hash:

000
001
010
011
100
101
110
111

Olson 000100001111
Polk 000000000011
Smith 001011101110
Singh 001000011110

36Thursday, November 11, 2010

Using the last 3 bits of hash:

000
001
010
011
100
101
110
111

Olson 000100001111
Polk 000000000011
Smith 001011101110
Singh 001000011110

Lakey 111110000000
Baird 001011011111
Camp 001101001010
Johns 010100010100
Burd 111000001101
Bloom 110111000011

37Thursday, November 11, 2010

1000
1001
1010
1011
1100
1101
1110
1111

Using the last 4 bits of hash:

0000
0001
0010
0011
0100
0101
0110
0111

Olson 000100001111
Polk 000000000011
Smith 001011101110
Singh 001000011110

Lakey 111110000000
Baird 001011011111
Camp 001101001010
Johns 010100010100
Burd 111000001101
Bloom 110111000011 7/16 = 44%

38Thursday, November 11, 2010

bits of
hash

Entries Bytes <25% 1’s

3 2^3 8 1 2

4 2^4 16 2 4

5 2^5 32 4 8

6 2^6 64 8 16

7 2^7 128 16 32

8 2^8 256 32 64

20 2^8 1048576 131072 262144

24 2^32 16777216 2M 4.1 Million

32 2^64 4294967296 512M 1 Billion

39Thursday, November 11, 2010

When to use? Sparse Data

When to tune: When more than x% are “1”

Pitfall: To resize, must rescan all keys.

Minimum Increment doubles memory usage:

Each increment is MORE USEFUL than the previous.

But exponentially MORE EXPENSIVE!

40Thursday, November 11, 2010

Databases: Accelerate lookups of indices.

Simulations: Often having, big, sparse databases.

Routers: Speeds up route table lookups.

Bloom Filter sample uses

41Thursday, November 11, 2010

Distributed Bloom Filters?

42Thursday, November 11, 2010

Data

NYC

BF
CHI

LAX

BF

BF

BF

43Thursday, November 11, 2010

What if your Bloom Filter is
out of date?

New data added: BAD. Clients may not see it.

Data changed: Ok

Data deleted: Ok, but not as efficient.

44Thursday, November 11, 2010

How to perform updates?

Master calculates bitmap once.

Sends it to all clients

For a 20-bit table, that’s 130K. Smaller than most GIFs!

Reasonable for daily, hourly, updates.

45Thursday, November 11, 2010

46Thursday, November 11, 2010

Big Bloom Filters often use
96, 120 or 160 bits!

47Thursday, November 11, 2010

Bloom Filters

48Thursday, November 11, 2010

Hash Tables

49Thursday, November 11, 2010

What is a Hash Table?

It’s like an array.

But the index can be anything “hashable”.

50Thursday, November 11, 2010

Hash tables
Perl hash:

$thing{’b’} = 123;

$thing{‘key2’} = ”value2”;

print $thing{‘key2’};

Python Dictionary or “dict”:

thing = {}

thing[‘b’] = 123

thing[‘key2’] = “value2”

print thing[‘key2’]

51Thursday, November 11, 2010

hash(‘cow’) = 78f825

hash(‘bee’) = 92eb5f

Bucket Data

78f825 (“cow”, “moo”)

92eb5f (“bee”, “buzz”) , (‘sheep’, ‘baah’)

hash(‘sheep’) = 92eb5f

52Thursday, November 11, 2010

Hash Tables

53Thursday, November 11, 2010

Distributed Hash Tables
(DHTs)

54Thursday, November 11, 2010

What is a DHT?

A hash table so big you have
to spread it over multiple of
machines.

55Thursday, November 11, 2010

Wouldn’t an infinitely large
hash table be awesome?

56Thursday, November 11, 2010

Web server

lookup(url) -> page contents

‘index.html’ -> ‘<html><head>...’

‘/images/smile.png’ -> 0x4d4d2a...

57Thursday, November 11, 2010

Virtual Web server

lookup(vhost/url) -> page contents

‘cnn.com/index.html’ -> ‘<html><he...’

‘time.com/images/smile.png’ -> 0x4d...

58Thursday, November 11, 2010

Virtual FTP server

lookup(host:path/file) -> file contents

‘ftp.gnu.org:public/gcc.tgz’

‘ftp.usenix.org:public/usenix.bib’

59Thursday, November 11, 2010

NFS server

lookup(host:path/file) -> file contents

‘srv1:home/tlim/Documents/foo.txt’
-> file contents

‘srv2:home/tlim/TODO.txt‘
-> file contents

60Thursday, November 11, 2010

Usenet (remember usenet?)

lookup(group:groupname:artnumber)
-> article

lookup(‘group:comp.sci.math:987765’)

lookup(id:message-id) -> pointer

lookup(‘id:foo-12345@uunet’) ->
‘group:comp.sci.math:987765’

61Thursday, November 11, 2010

IMAP

lookup(‘server:user:folder:NNNN’)

 -> email message

62Thursday, November 11, 2010

Our DVD Collection

hash(disc image) -> disc image

How do I find a particular disk?

Keep a lookup table of name -> hash

Benefit: Two people with the same DVD?
It only gets stored once.

63Thursday, November 11, 2010

How would this work?

64Thursday, November 11, 2010

0
0
1

Load it up!
Root
Host

0100100111011001
0001000101100011

1110001010010110
1001110100110111

0011000000000100

4

65Thursday, November 11, 2010

11

0

Split
Root
Host

0100100111011001
0001000101100011

1110001010010110
1001110100110111

0011000000000100

3

2

0110000111101100
0100000001101011
0010111000000001

3

001100010111100074

66Thursday, November 11, 2010

11

0

’01...’
Root
Host

0100100111011001
0001000101100011

1110001010010110
1001110100110111

0011000000000100

3

2

0110000111101100
0100000001101011
0010111000000001

3

001100010111100074

67Thursday, November 11, 2010

11

0

‘0...’
Root
Host

0100100111011001
0001000101100011

1110001010010110
1001110100110111

0011000000000100

3

2

0110000111101100
0100000001101011
0010111000000001

3

001100010111100074

68Thursday, November 11, 2010

11

0

‘1...’
Root
Host

0100100111011001
0001000101100011

1110001010010110
1001110100110111

0011000000000100

3

2

0110000111101100
0100000001101011
0010111000000001

3

001100010111100074

69Thursday, November 11, 2010

11

0

Split
Root
Host

0100100111011001

0001000101100011

1110001010010110
1001110100110111

0011000000000100

3

2
0110000111101100
0100000001101011

0010111000000001

3

001100010111100074

70Thursday, November 11, 2010

011

010Root
Host

011

000

010
001

000
011

001

010
001

000

010
001

000

011

011

010
001

000

Find: 0100100111011001...

Root
Host

010

010

Find: 0100100111011001...Find: 0100100111011001...

71Thursday, November 11, 2010

Find: 0100110111011...

72Thursday, November 11, 2010

011

010Root
Host

011

000

010
001

000
011

001

010
001

000

010
001

000

011

011

010
001

000

Find: 0100110111011...

Root
Host

010

011

Find: 0100110111011...Find: 0100110111011...

73Thursday, November 11, 2010

Each host stores:

All the data that “leaf” there.

The list of parent nodes talking to it.

The list of children it knows about.

74Thursday, November 11, 2010

Dynamically Adjusting:

Data hashes in “clumps” making some hosts
under-full and some hosts over-full.

Host running out of storage?

Split in two. Give half the data to another
node.

Host running out of bandwidth?

Clone data and load-balance.

75Thursday, November 11, 2010

011

010

011

000

010
001

000
011

001

010
001

000

010
001

000

011

011

010
001

000

Root
Host
Root
Host
Root
Host
Root
Host

000000000

010010

000000

001001001
001001001

76Thursday, November 11, 2010

Real DHTs in action

Peer 2 Peer file-sharing networks.

Content Delivery Networks (CDNs like Akamai)

Cooperative Caches

77Thursday, November 11, 2010

Distributed Hash Tables
(DHTs)

78Thursday, November 11, 2010

Key/Value Stores

79Thursday, November 11, 2010

Some common
Key/Value Stores

“NoSQL”

CouchDB

MongoDB

Apache Cassandra

Terrastore

Google Bigtable

80Thursday, November 11, 2010

Name Email Address

Tom Limoncelli tlim@google.com
1515 Main

Street

Mary Smith mary@example.com 111 One Street

Joe Bond joe@007.com 7 Seventh St

81Thursday, November 11, 2010

Name Email Address

Tom Limoncelli tlim@google.com 1515 Main Street

Mary Smith mary@example.com 111 One Street

Joe Bond joe@007.com 7 Seventh St

User Transaction Amount

Tom Limoncelli Deposit 100

Mary Smith Deposit 200

Tom Limoncelli Withdraw 50

82Thursday, November 11, 2010

Id Name Email Address

1 Tom
Limoncelli

tlim@google.com 1515 Main
Street

2 Mary Smith mary@example.c
om

111 One
Street

3 Joe Bond joe@007.com 7 Seventh St

User Id Transaction Amount

1 Deposit 100

2 Deposit 200

1 Withdraw 50

83Thursday, November 11, 2010

Id Name Email Address

1 Tom
Limoncelli

tlim@google.com 1515 Main
Street

2 Mary Bond mary@example.c
om

111 One
Street

3 Joe Bond joe@007.com 7 Seventh St

User Id Transaction Amount

1 Deposit 100

2 Deposit 200

3 Withdraw 50

84Thursday, November 11, 2010

Relational Databases

1st Normal Form

2nd Normal Form

3rd Normal Form

ACID: Atomicity, Consistency, Isolation, Durability

85Thursday, November 11, 2010

Key/Value Stores

Keys

Values

BASE: Basically Available, Soft-state, Eventually consistent

86Thursday, November 11, 2010

Eventually?

Who cares! This is the web, not payroll!

Change the address listed in your profile.

Might not propagate to Europe for 15 minutes.

Can you fly to Europe in less than 15 minutes?

And if you could, would you care?

87Thursday, November 11, 2010

Key/Value example:
Key Value

tlim@google.com BLOB OF DATA

mary@example.com BLOB OF DATA

joe@007.com BLOB OF DATA

88Thursday, November 11, 2010

Key/Value example:
Key Value

tlim@google.com
{
 ‘name’: ‘Tom Limoncelli’,
 ‘address’: ‘1515 Main Street’
}

mary@example.com
{
 ‘name’: ‘Mary Smith’,
 ‘address’: ‘111 One Street’
}

joe@007.com
{
 ‘name’: ‘Joe Bond’,
 ‘address’: ‘7 Seventh St’
}

89Thursday, November 11, 2010

Google Protobuf:
http://code.google.com/p/protobuf/

Key Value

tlim@google.com

message Person {
" required string name = 1;
" optional string address = 2;
 repeated string phone = 3;
}

mary@example.com

{
 ‘name’: ‘Mary Smith’,
 ‘address’: ‘111 One Street’,
 ‘phone’: [‘201-555-3456’, ‘908-444-1111’]
}

joe@007.com
{
 ‘name’: ‘Joe Bond’,
 ‘phone’: [‘862-555-9876’]
}

90Thursday, November 11, 2010

Key/Value Stores

91Thursday, November 11, 2010

Bigtable

92Thursday, November 11, 2010

Bigtable

Google’s very very large database.

OSDI'06

http://labs.google.com/papers/bigtable.html

Petabytes of data across thousands of commodity
servers.

Web indexing, Google Earth, and Google Finance

93Thursday, November 11, 2010

Bigtable Keys

Can be very huge.

Don’t have to have a value! (i.e the value is “null”)

Query by

Key

Key start/stop range (lexigraphical order)

94Thursday, November 11, 2010

Long keys are cool.

Key Value

Main St/123/Apt1 Jones

Main St/123/Apt2 Smith

Main St/200 Olson

Query range:
Start: “Main St/123”
End: infinity

95Thursday, November 11, 2010

Bigtable Values

Values can be huge. Gigabytes.

Multiple values per key, grouped in “families”:

“key:family:family:family:...”

96Thursday, November 11, 2010

Families

Within a family:

Sub-keys that link to data.

Sub-keys are dynamic: no need to pre-define.

Sub-keys can be repeated.

97Thursday, November 11, 2010

Example: Crawl the web

For every URL:

Store the HTML at that location.

Store a list of which URLs link to that URL.

Store the “anchor text” those sites used.

ANCHOR TEXT

98Thursday, November 11, 2010

http://www.cnn.com

<html>.........</html>

http://tomontime.com

<html>

<p>As you may have read on <a href=”http://
www.cnn.com”>my favorite news site there is...

99Thursday, November 11, 2010

Key contents: anchor:tomontime.com anchor:cnnsi.com

com.cnn.www <html>... my favorite news site CNN

Another familyFamily

Key contents: anchor:everythingsysadmin.com

com.tomontime <html>... videos

100Thursday, November 11, 2010

Each Family has its own...

Permissions (who can read/write/admin)

QoS (optimize for speed, storage diversity, etc.)

101Thursday, November 11, 2010

All updates are timestamped.

Retains at least n recent updates or “never”.

Expired updates are garbage collected “eventually”.

Plus “time”

102Thursday, November 11, 2010

Bigtable

103Thursday, November 11, 2010

Further Reading:

Bigtable:

http://research.google.com

A visual guide to NoSQL:

http://blog.nahurst.com/visual-guide-to-nosql-
systems

HashTables, DHTs, everything else

Wikipedia

104Thursday, November 11, 2010

Other futuristic topics:

Stop using “locks”, eliminate all deadlocks:

STM: Software Transactional Memory

Centralized routing: (you’d be surprised)

2 minute overview: www.openflowswitch.org

(the 4 minute demo video is MUCH BETTER)

“Network Coding”: n^2 more bandwidth?

SciAm.com: “Breaking Network Logjams”

105Thursday, November 11, 2010

Q&A

106Thursday, November 11, 2010

How to do a query?

107Thursday, November 11, 2010

KEY VALUE

bird “{ legs=2, horns=0, covering=‘feathers’ }”

cat “{ legs=4, horns=0, covering=‘fur’ }”

dog “{ legs=4, horns=0, covering=‘fur’ }”

spider “{ legs=8, horns=0, covering=‘hair’ }”

unicorn “{ legs=4, horns=1, covering=‘hair’ }”

108Thursday, November 11, 2010

“Which animals have 4 legs?”

Iterate over entire list

Open up each blob

Parse data

Accumulate list

 SLOW!

109Thursday, November 11, 2010

KEY VALUE

animal:bird “{ legs=2, horns=0, covering=‘feathers’ }”

animal:cat “{ legs=4, horns=0, covering=‘fur’ }”

animal:dog “{ legs=4, horns=0, covering=‘fur’ }”

animal:spider “{ legs=8, horns=0, covering=‘hair’ }”

animal:unicorn “{ legs=4, horns=1, covering=‘hair’ }”

legs:2:bird

legs:4:cat

legs:4:dog

legs:4:unicorn

legs:8:spider

Iterate:
Start: “legs:4”
End: “legs:5” Up to, but not

including “end”

110Thursday, November 11, 2010

legs=4 AND covering=fur

More indexes + the “zig zag” algorithm.

More indexed attributes = the slower insertions

Automatic if you use AppEngine’s storage system

111Thursday, November 11, 2010

