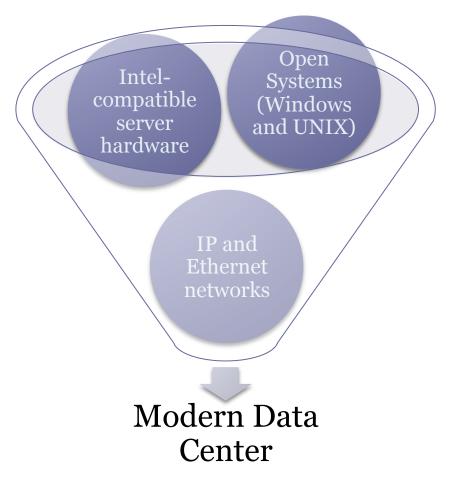
Storage over Ethernet: What's In It for Me?

Stephen Foskett stephen@fosketts.net @SFoskett


> FoskettServices.com Blog.Fosketts.net GestaltIT.com

This is Not a Rah-Rah Session

Introduction: Converging on convergence

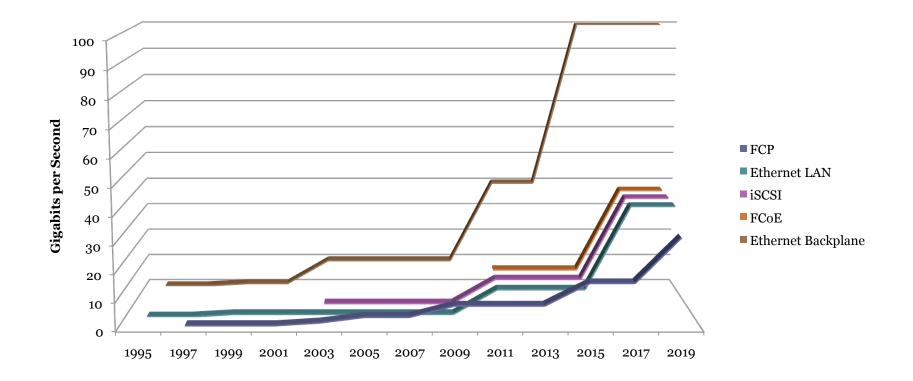
- Data centers rely more on standard ingredients
- What will connect these systems together?
- IP and Ethernet are logical choices

Drivers of Convergence

Virtualization

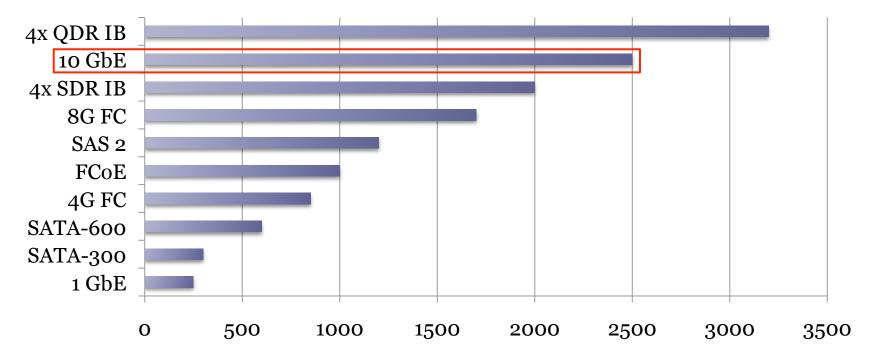
- Demanding greater network and storage I/O
- The "I/O blender"
- Mobility and abstraction

Consolidation


- Need to reduce port count, combining LAN and SAN
- Network abstraction features

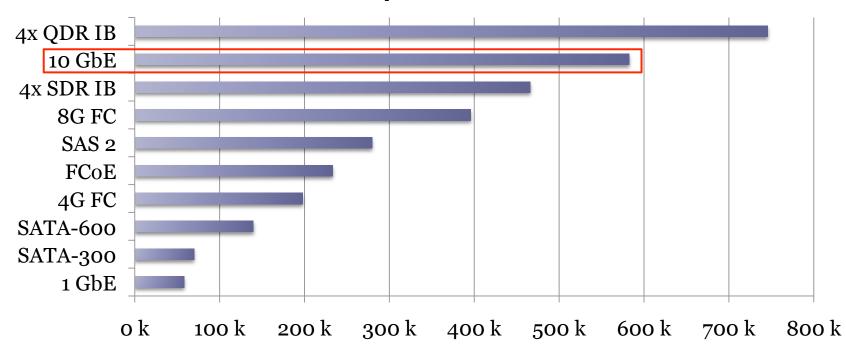
Performance

- Data-driven applications need massive I/O
- Virtualization and VDI


The Storage Network Roadmap

Network Performance Timeline

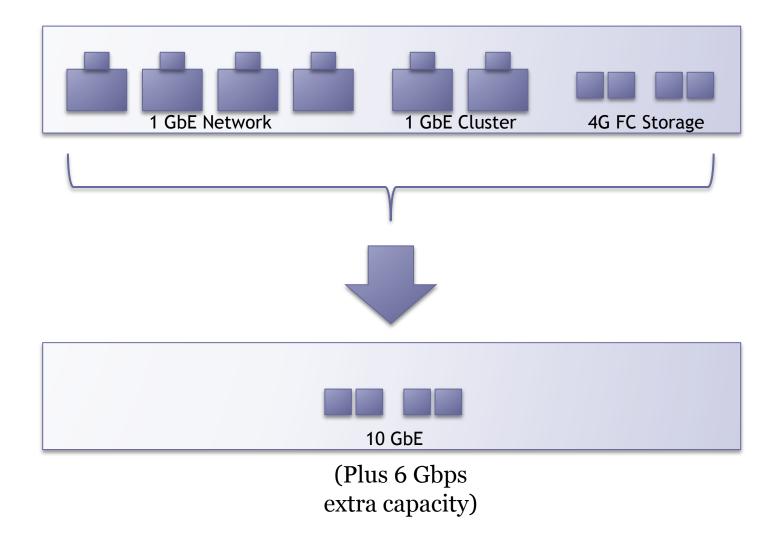
Serious Performance


- 10 GbE is faster than most storage interconnects
- iSCSI and FCoE both can perform at wire-rate

Full-Duplex Throughput (MB/s)

Latency is Critical Too

• Latency is even more critical in shared storage



4K IOPS

Benefits Beyond Speed

- 10 GbE takes performance off the table (for now...)
- But performance is only half the story:
 - Simplified connectivity
 - New network architecture
 - [•] Virtual machine mobility

Server Connectivity

Flexibility

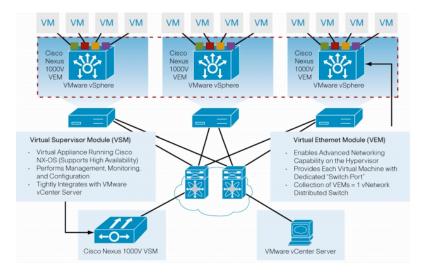
- No more rats-nest of cables
- Servers become interchangeable units
 - Swappable
 - [•] Brought on line quickly
 - Few cable connections
- Less concern about availability of I/O slots, cards and ports
- CPU, memory, chipset are deciding factor, not HBA or network adapter

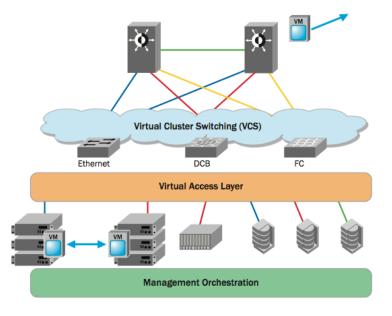
Changing Data Center

- Placement and cabling of SAN switches and adapters dictates where to install servers
- Considerations for placing SAN-attached servers:
 - [•] Cable types and lengths
 - Switch location
 - Logical SAN layout
- Applies to both FC and GbE iSCSI SANs
- Unified 10 GbE network allows the same data and storage networking in any rack position

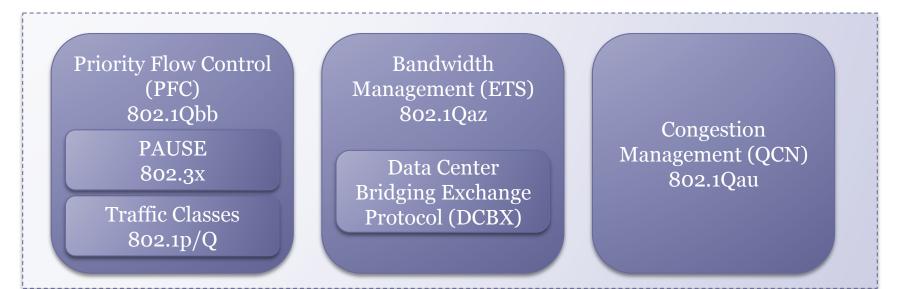
Virtualization: Performance and Flexibility

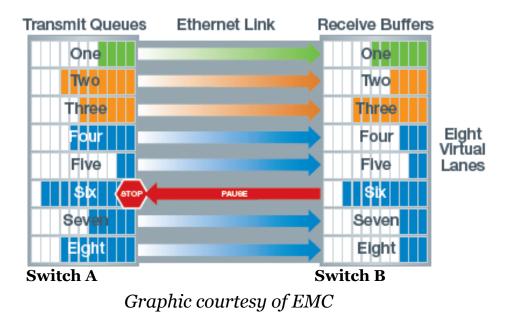
- Performance and flexibility benefits are amplified with virtual servers
- 10 GbE acceleration of storage performance, especially latency – "the I/O blender"
- Can allow performancesensitive applications to use virtual servers


Virtual Machine Mobility


- Moving virtual machines is the next big challenge
- Physical servers are difficult to move around and between data centers
- Pent-up desire to move virtual machines from host to host and even to different physical locations

Virtualization-Aware Networks

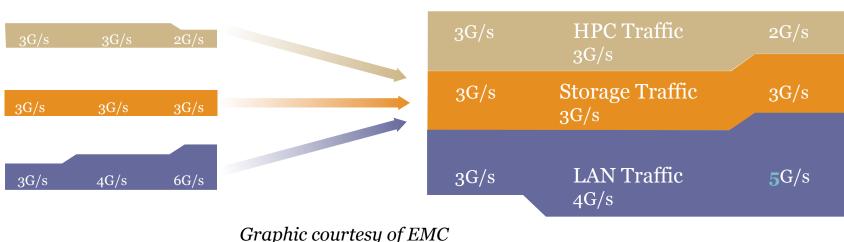

- Two schools of thought have emerged:
 - Extend the network inside the virtual environment (e.g. Cisco)
 - Rely on smart and virtualization-aware physical network switches (e.g. Brocade)
- Both enable seamless movement of virtual machines around the LAN


Data Center Ethernet

- Ethernet and SCSI were not made for each other
 - SCSI expects a lossless and transport with guaranteed delivery
 - Ethernet expects higher-level protocols to take care of issues
- Data Center Bridging is a project to create lossless Ethernet
 - IEEE name is Data Center Bridging (DCB)
 - Cisco trademarked Data Center Ethernet (DCE)
 - Many vendors used to call it Converged Enhanced Ethernet (CEE)

Flow Control

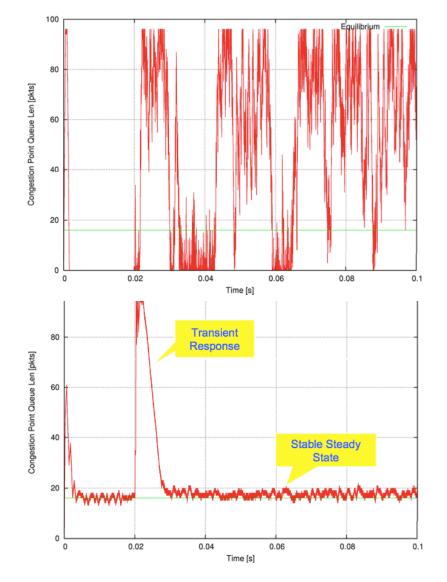
- PAUSE (802.3x)
 - Reactive not proactive (like FC credit approach)
 - Allows a receiver to block incoming traffic in a pointto-point Ethernet link
- Priority Flow Control 802.1Qbb)
 - Uses an 8-bit mask in PAUSE to specify 802.1p priorities
 - Blocks a class of traffic, not an entire link
 - Ratified and shipping



- Result of PFC:
 - Handles transient spikes
 - Makes Ethernet lossless
 - Required for FCoE

Bandwidth Management

- Enhanced Transmission Selection (ETS) 802.1Qaz
 - ^a Latest in a series of attempts at Quality of Service (QoS)
 - Allows "overflow" to better-utilize bandwidth
- Data Center Bridging Exchange (DCBX) protocol
 - Allows devices to determine mutual capabilities
 - Required for ETS, useful for others
- Ratified and shipping

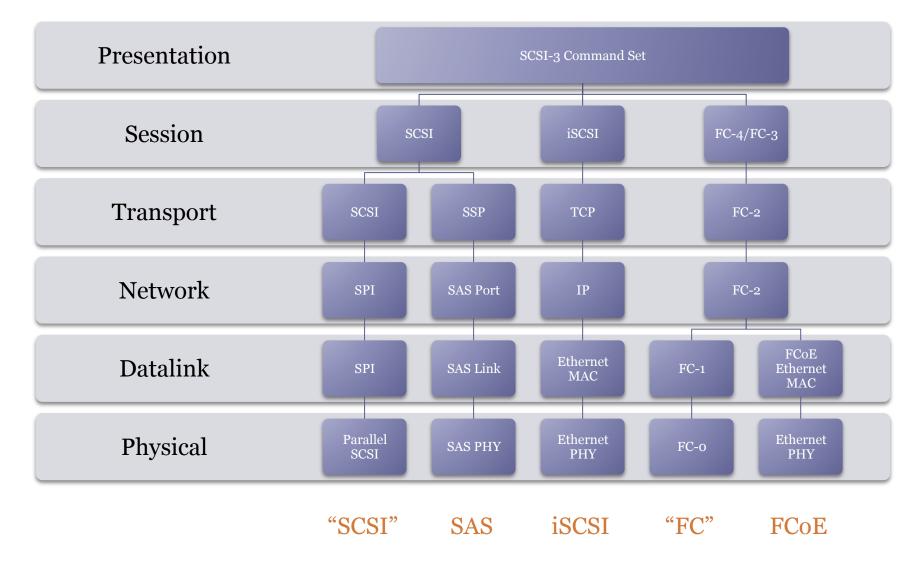

Offered Traffic

10 GE Link Realized Traffic Utilization

Congestion Notification

- Need a more proactive approach to persistent congestion
- QCN 802.1Qau
 - Notifies edge ports of congestion, allowing traffic to flow more smoothly
 - Improves end-to-end network latency (important for storage)
 - Should also improve overall throughput
- Not quite ready

Graphic courtesy of Broadcom


SAN History: SCSI

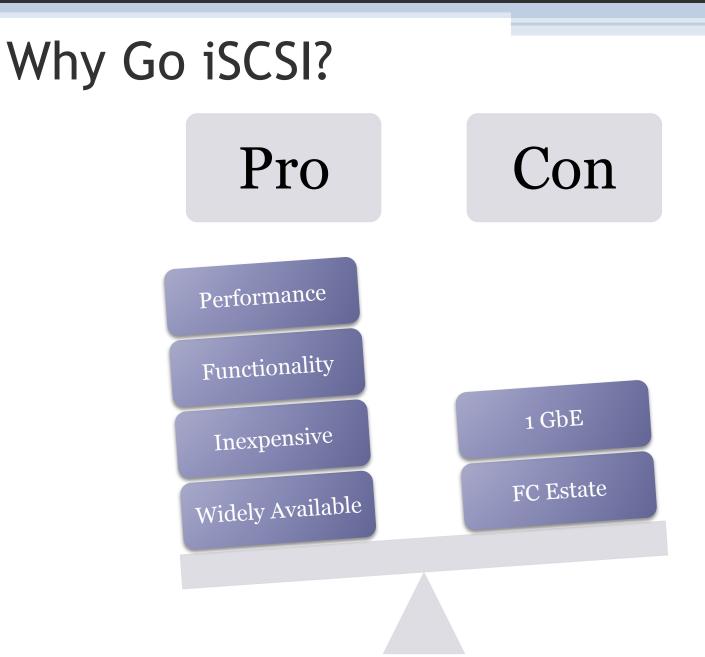
• Early storage protocols were system-dependent and short distance

Technologies

- [•] Microcomputers used internal ST-506 disks
- Mainframes used external bus-and-tag storage
- SCSI allowed systems to use external disks
 - Block protocol, one-to-many communication
 - External enclosures, RAID
 - Replaced ST-506 and ESDI in UNIX systems
 - SAS dominates in servers; PCs use IDE (SATA)

The Many Faces of SCSI

Comparing Protocols


	iSCSI	FCoE	FCP
DCB Ethernet	Optional	Required	N/A
Routable	Yes	No	Optional
Hosts	Servers and Clients	Server-Only	Server Only
Initiators	Software and Hardware	Software* and Hardware	Hardware
Guaranteed Delivery	Yes (TCP)	Optional	Optional
Flow Control	Optional (Rate- Based)	Rate-Based	Credit-Based
Inception	2003	2009	1997
Fabric Management	Ethernet Tools	FC Tools	FC Tools

iSCSI: Where It's At

- iSCSI targets are robust and mature
 - Just about every storage vendor offers iSCSI arrays
 - Software targets abound, too (Nexenta, Microsoft, StarWind)
- Client-side iSCSI is strong as well
 - Wide variety of iSCSI adapters/HBAs
 - Software initiators for UNIX, Windows, VMware, Mac
- Smooth transition from 1- to 10-gigabit Ethernet
 - [•] Plug it in and it works, no extensions required
 - iSCSI over DCB is rapidly appearing

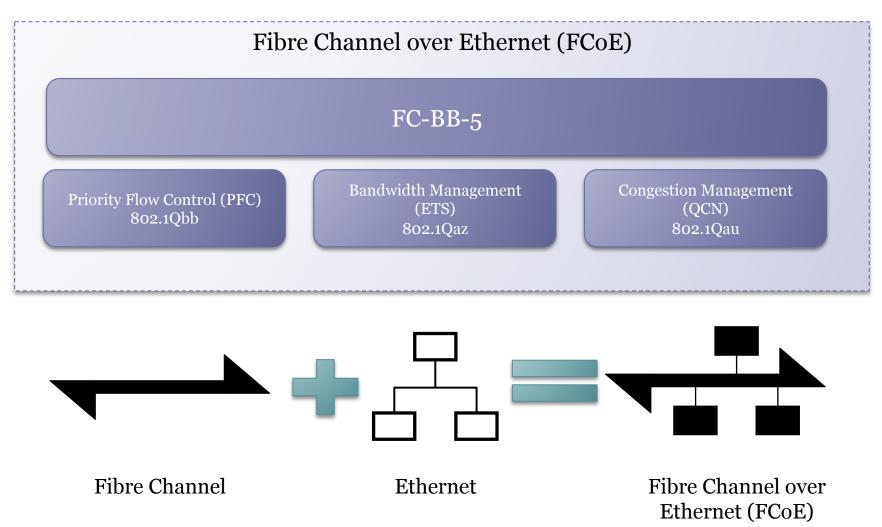
iSCSI Support Matrix

	Certified?	Initiator	Multi-Path	Clustering
Windows	Yes	HBA/SW	MPIO, MCS	Yes
Sun	Yes	HBA/SW	Trunking, MPIO	Yes
HP	Yes	SW	PV Links	?
IBM	Yes	SW	Trunking	?
RedHat	Yes	HBA/SW	Trunking, MPIO	Yes
Suse	Yes	HBA/SW	Trunking, MPIO	Yes
ESX	Yes	SW	Trunking	Yes

The Three-Fold Path of Fibre Channel

End-to-End Fibre Channel

- The traditional approach – no Ethernet
- Currently at 8 Gb
- Widespread, proven


FC Core and FCoE Edge

- Common "FCoE" approach
- Combines 10 GbE with 4or 8-Gb FC
- Functional
- Leverages FC install base

End-to-End FCoE

- Extremely rare currently
- All-10 GbE
- Should gain traction
- Requires lots of new hardware

FCoE Spotters' Guide

Why FCoE?

- Large FC install base/investment
 - Storage arrays and switches
 - Management tools and skills
- Allows for incremental adoption
 - FCoE as an edge protocol promises to reduce connectivity costs
 - End-to-end FCoE would be implemented later
- I/O consolidation and virtualization capabilities
 - Many DCB technologies map to the needs of server virtualization architectures
- Also leverages Ethernet infrastructure and skills

Who's Pushing FCoE and Why?

- Cisco wants to move to an all-Ethernet future
- Brocade sees it as a way to knock off Cisco in the Ethernet market
- Qlogic, Emulex, and Broadcom see it as a differentiator to push silicon
- Intel wants to drive CPU upgrades
- NetApp thinks their unified storage will win as native FCoE targets
- EMC and HDS want to extend their dominance of high-end FC storage
- HP, IBM, and Oracle don't care about FC anyway

FCoE Reality Check

Leverages FC Investment

Pro

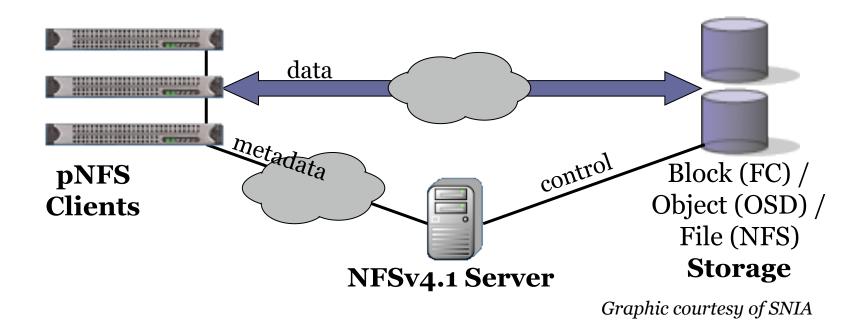
Might be cheaper or faster than FC

All the cool kids are doing it!

Continued bickering over protocols

8 Gb FC is here

End-to-end FCoE is nonexistent


Unproven and expensive

NFS: The Other Ethernet Storage Protocol

- NFS has grown up and out
 - [°] NFS v4 is a much-improved NAS protocol
 - [°] pNFS (v4.1) does it all file, block, and object
- Do you hate NFS? NFS v4 should fix that!
 - [°] One protocol on a single port
 - Stateful with intelligent leases
 - [•] Strong, integrated authentication
 - Better access control
 - ^o Strong, integrated encryption (Kerberos V5)
 - No more UDP!

Then There's pNFS...

- "What if we added everything to NFS?"
 - pNFS is the child of SAN FS and NFS
 - Focused on scale-out
 - Developed by Panasas, EMC, Sun, NetApp, IBM

What You Should Know About pNFS

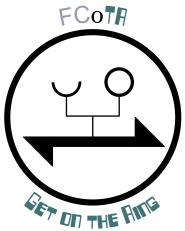
- General pNFS protocol is standardized in NFS v4.1
- File access is standardized in NFS v4.1
- Block access is not standardized but will use SCSI (iSCSI, FC, FCoE, etc)
- Object access is not standardized but will use OSD over iSCSI
- Server-to-server control protocol isn't agreed on
- OpenSolaris client is file-only
- Linux client supports files, and work on blocks and objects is ongoing
- Single namespace with single metadata server

What's in it for you?

Server Managers

- More flexibility and mobility
- Better support for virtual servers and blades
- Increased overall performance

Network Managers


- Wider sphere of influence (Ethernet everywhere)
- More tools to control traffic
- More to learn
- New headaches from storage protocols

Storage Managers

- Fewer esoteric storage protocols
- New esoteric network protocols
- Less responsibility for I/O
- Increased focus on data management

Counterpoint: Why Ethernet?

- Why converge on Ethernet at all?
 - Lots of work just to make Ethernet perform unnatural acts!
- Why not InfiniBand?
 - Converged I/O already works
 - Excellent performance and scalability
 - Wide hardware availability and support
 - Kinda pricey; another new network
- Why not something else entirely?
 Token Ring would have been great!

Conclusion

- Ethernet will come to dominate
 - Economies of scale = lower cost
 - Focal point of development
 - Excellent roadmap
 - ^{DCB} is here (PFC, ETS, DCBX)
 - [•] Further extensions questionable (QCN, TRILL)

Conclusion

- iSCSI will continue to grow
 - Easy, cheap, widely supported
 - [°] Grow to 10 Gb seamlessly
- FCoE is likely but not guaranteed
 - Relentlessly promoted by major vendors
 - Many areas still not ready for prime-time
- The future of NFS is unclear
 - NFS v4 is an excellent upgrade and should be adopted
 - [•] pNFS is strongly supported by storage vendors
 - Scale-out files are great, but do we need block and object in NFS, too?

Thank You!

Stephen Foskett stephen@fosketts.net twitter.com/sfoskett +1(508)451-9532

FoskettServices.com blog.fosketts.net GestaltIT.com **Tomorrow and Friday: TechFieldDay.com**

