
Empirical Virtual Machine Models for Performance

Guarantees

Andrew Turner Akkarit Sangpetch Hyong S. Kim

andrewtu@cmu.edu asangpet@andrew.cmu.edu kim@ece.cmu.edu

Department of Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh, PA, USA

ABSTRACT

Existing Virtual Machine (VM) management

systems rely on host resource utilization metrics to

allocate and schedule VMs. Many management

systems only consolidate and migrate VMs based on

hosts’ CPU utilizations. However, the performance of

delay-sensitive workloads, such as web services and

online transaction processing, can be severely

degraded by contention on numerous of the hosts’

components. Current VM management systems

typically use threshold based rules to decide when to

migrate VMs, rather than using application-level

performance. This means that they cannot easily

provide application-level service level objective

(SLO) guarantees. Providing SLO guarantees is even

more difficult when considering that today’s

enterprise applications often consist of multiple VM

tiers.

In this paper we show how the performance of a

multi-tiered VM application can be empirically

captured, modeled and scaled. This allows our

management system to guarantee application-level

performance, despite variable host utilization and

VM workload levels. Additionally, it can predict the

performance of an application at host utilization

levels that have not been previously observed. This is

achieved by performing regression analysis on the

previously observed values and scaling the

applications performance model. This allows the

performance of a VM to be predicted before it is

migrated to or from a new host. We have found that

by dynamically, rather than statically, allocating

resources, average response time can be improved by

30%. Additionally, we found that resource

allocations can be reduced by 20%, with no

degradation in response time.

1. INTRODUCTION

Modern data centers contain a large number of

virtual machines (VMs). Additionally, internet Cloud

services use VMs to run multiple applications across

multiple physical servers, under the premise that the

Cloud is a single resource pool. While hypervisor

vendors such as VMware [1], Citrix [2] and

Microsoft [3] tout the potential benefits of VMs,

these benefits are not always fully realized. This is

typically due to increased overheads and resource

contention cause by other VMs. In this paper we

show how application-level performance can be

guaranteed for multi-tier VM applications.

Additionally, we show how hardware utilization can

be increased over current VM management systems

by more densely packing VMs than threshold based

systems. Finally, we show that the overall

performance of the applications in a datacenter can

be improved by dynamically setting resource

allocation levels.

VMs were originally deployed as a way to

increase resource utilization levels. This is achieved

by consolidating multiple machines that have low

resource utilization levels onto a single physical host,

saving both hardware capital and energy costs. This

is possible as VMs are isolated from each other by

the hypervisor, allowing them to share the same

physical resources. Additionally, modern VMs can be

live-migrated [21] and will run on heterogeneous

hardware. While consolidating under-utilized

applications is easy, consolidating even moderately

used applications can be difficult. This is because

VMs are not entirely isolated from each other, and

virtualization adds additional overhead. Thus, two

VMs running on the same physical host can have an

impact on each other's performance; as shown in [12]

and [13].

To achieve the greatest amount of capital and

energy savings, VMs must be placed to minimize the

number of physical hosts required. However, a

placement scheme must also ensure that the

applications' performances remain at an acceptable

level. To achieve this, VMs must be placed in such a

way as to minimize the performance impact they

have on each other. Current placement schemes

primarily focus on setting utilization threshold levels.

However, resource utilization levels can be a poor

indicator of application level performance. This

suggests that VM placement schemes should not be

solely based on the idea of bin-packing resource

utilization levels.

Commercial VM placement technologies, such as

VMware Distributed Resource Scheduler (DRS)[4],

place VMs based on resource utilization levels. DRS

uses the VMs' CPU utilization level and RAM usage

commitment to automatically decide which VMs

should be placed on which physical hosts. VMs are

then migrated between hosts as resource utilization

levels change. Placement schemes such as this rely

on the assumption that resource utilization levels

reflect application-level performance. However, as

resource utilization levels do not always reflect

application level performance, such a scheme cannot

easily guarantee application-level SLO.

In this paper we show that a VM management

system can model multi-tiered applications to

guarantee application-level SLO. This would allow

system administrators to choose performance

guarantees, such as response time < 500ms, without

having to manually configure resource allocations.

We show how the applications’ model can be scaled

to unobserved utilization levels, to allow SLO

guarantees despite varied host workloads.

Additionally, scaling the applications’ model can

predict the performance impact on an application

before migrating VMs to or from a host where one of

the application’s tiers resides. Lastly, we show that

modeling applications can help to more effectively

and flexibly place VMs over a threshold based

approach. For example, an application’s VMs tiers

can be placed to minimize power usage, or to

minimize the risk of a certain response time being

exceeded.

The paper is organized as follows: In Section 2 we

discuss related works. In Section 3 we describe our

system. In Section 4 we describe our experimental

setup. In Section 5 we evaluate our results, followed

by our conclusion in Section 6.

2. RELATED WORKS

There are many works on maximizing resource

utilization levels and increasing efficiency in the

virtual environment [5], [6], [7]. Existing commercial

products are also available to facilitate the task of

managing and relocating VMs. For example,

VMware DRS [4] monitors the CPU and memory

usage of VMs and migrates them to balance

utilization levels. Similarly, VMware Distributed

Power Management [4] minimizes the power usage

of a data center by migrating VMs from lowly-

utilized hosts and powers them off. Both systems

focus on maintaining CPU and memory usage. Our

work focuses on service level performance.

Recent efforts such as [8], [14], [15] and [16]

have attempted to further increase resource utilization

levels by migrating VMs. Each VM's resource

utilization level is monitored and VMs are migrated

to new hosts such that host resource utilization is

maximized, and no host is overloaded. Kochut et. al

[14] consider both autocorrelation and a periodogram

to decide which VMs are best candidates to be placed

together. Ideally, colocated VMs should have a low

probability of overloading the host. Hermenier et. al.

[15] consider the order that the migrations occur in

addition to which VMs to migrate to minimize the

impact of the migrations on system performance.

Another method to maximize resource utilization

levels is overbooking resources. Urgaonkar et. al. [9]

shows that a 500% increase in utility can be achieved

by overbooking hosts by 5% of their peak load

values. This only causes a 4.6% decrease in overall

throughput. However, the study focuses on a shared

hosting environment, not a virtual one, and considers

neither contention nor the overhead caused by a

virtual environment.

To maintain end-to-end service level

performance, Stewart et.al [11] offers a response time

prediction model. The model is based on an identified

trait model for multi-tier applications. Their work

focuses on predicting the service response time,

based on pre-identified trait model relationships

between processor properties and observed response

time. Liu et. al. [18] use an autoregressive model to

control CPU allocation. This allows VMs to be

assigned a certain resource level as to normalize

multiple applications' performance. Padala et. al. [19]

and [20] have further used an autoregressive moving

average to assign VM multiple resources.

3. MOTIVATION

The motivation behind our work is to remove the

need for administrators to perform resource

allocation in the virtual environment. Our system

aims to achieve SLOs by automatically allocating

resources when they are required by a VM.

Resources are then taken away and reallocated to

other VMs as resource needs change. In a non-

virtualized datacenter, applications avoid

performance degradations by being isolated and run

on dedicated hardware. However, this typically

means low resource utilization levels, resulting in

high hardware and energy costs. It is therefore

attractive to place applications within VMs to reduce

these costs. However, once applications are placed in

a virtual environment, they must contest for resources

as they are no longer entirely isolated. This can cause

applications to suffer from performance degradations.

To ensure applications perform satisfactorily,

Virtual Machine Monitors can be set to allocate a

certain amount of hardware resources to each VM.

There are however, a number of problems with

current VM management systems. Firstly,

administrators typically need to set the resource

allocation levels manually. This requires

administrators to monitor their applications’

performances, and set each VMs’ resource allocation

and priority in the VM management system. This task

can be made more difficult if the VMs’ resource

requirements frequently change. Secondly, the

resource allocation levels only guarantee that a VM

will receive a certain share of a resource. They do not

provide any application-level performance guarantee.

This can lead to lower hardware utilization levels, as

administrators will typically over-provision resource

allocations to ensure satisfactory performance.

Lastly, administrators must manually set the

utilization levels at which VMs will be migrated to

and from hosts. This can again lead to lower

hardware utilization as migration thresholds must be

set low enough to ensure application-level

performance does not suffer due to high resource

contention.

To address these problems, our system monitors

application-level performance and automatically

allocates VMs the minimum level of resources they

need to meet an application-level SLO guarantee.

Our system works by monitoring the applications’

performances at various user, resource allocation, and

resource contention levels. Resource contention

occurs on a host when multiple VMs require the use

of the same resource. Once our system has multiple

readings at different values, it can interpolate the

minimum resource allocations needed to achieve a

certain response time.

Figure 1 shows the basic flow of information in

the management system. The process starts by an

application reporting its response time and the level

of resource contention on each host where one of its

VMs resides. The management system then chooses

the model that best describes the application's

response time based on the current resource

contention levels. Initially, this model will be empty

as the management system does not have any data

about the application. The model is then stretched

based on how far the readings in the model are from

the current resource contention levels. The missing

data points in the model are then interpolated from

the data that is available. The minimum resource

allocation levels that allow the application to meet its

response time target are then found in the

interpolated model. Finally, the resource allocations

are set on the hosts, and the hosts wait to take a new

reading to report to the management system.

The applications’ performance models are created

automatically by analyzing the performance achieved

at the various resource allocation levels. Although

such models could contain millions of potential data

points, we have found that a model can be

constructed with only 10’s of data points. Although

each application will have a unique model, in future

work it may be possible to apply a generic model to

different types of applications, and then quickly tailor

them with even fewer data points.

In addition to interpolating the minimum resource

allocations needed to achieve a certain response time,

our system can also interpolate a response time value

for a given resource contention level. This can help

predict the performance of a VM before it is migrated

to or from a host. This allows migration decisions to

be made more flexibly, as they can be based on VM

performance, rather than occurring at a fixed

threshold.

As many of today’s datacenter applications rely

on multiple tiers, our system allows for this. Our

system sets the resource allocations at each tier, such

that the total response time experienced by the end

user is below the SLO target. This allows an

administrator to configure a single SLO value for an

Perform regression to

discover what

resources contribute

to response time

Scale the application's

model to describe to the

current contention levels

Application

Model

Choose the model

closest to the

current resource

contention levels

Application

Model
Application

Model

Interpolate missing

data points in the

model

Get the minimum

resource allocation

levels that allow the

response time target

to be met

Set the resource

allocation levels for

the VMs on their

hosts

Update the model

with the new

reading

Wait for reading of

current resource

contention levels

and application

response time

Report to

management server

Figure 1: Management system flow

entire application stack. This is in contrast to current

management systems, where the resource allocation

must be configured individually for each tier.

3.1 Monitoring

To collect the data we need for our system we

record the application’s response time at its first tier;

as shown in Figure 2. Throughput based applications

can be monitored in a similar fashion, with

throughput per time period recorded rather than

response time. While monitoring response times at

each individual tier could possibly provide a more

accurate model, such monitoring would incur a

significant overhead. Additionally, monitoring at

intermediate tiers does not always reflect the overall

performance characteristics experienced by the end-

users.

The data we capture are the applications’ average

total response time, CPU utilization, and storage and

network throughput. All of the data are captured

outside of the VMs, thereby not requiring a client to

be inside the VMs. To allow our system to react

quickly to changes, we take a reading every 10

seconds. This period could be increased or decreased

as needed, depending on the system being controlled.

After the data is captured, it is passed to a server

and added to our model. The model then interpolates

the resource allocations that each VM should receive

to meet a specified response time and chooses the

minimum value. These resource allocations are then

set on each host so that each VM receives the amount

of resources calculated by the model, as shown in

Figure 3.

Figure 3: Control flow

3.2 Model Interpolation

Once the data is reported to our management

system it is added to an application system model. An

application’s system model describes the previous

response time values that we have observed for an

application at various user, resource allocation, and

hardware contention levels. We then use this model

to predict the minimum resource allocations an

application’s VMs require to meet a certain response

time.

To predict the required resource allocation levels

we must first identify trends in the data. Figure 4

shows the effect of CPU contention on the host

containing the web tier of TPC-W. The CPU

contention is the total CPU utilization minus the

amount used by the VM itself. As shown, the

response time curve follows an exponential

distribution. As the data closely fits an exponential

distribution very few points are needed during run

time to interpolate estimated resource allocation

values.

Figure 4: CPU contention and response time

degradation

Figure 5 show the response time of TPC-W as the

web tier has its CPU allocation changed from 10% to

100%. The resource allocation levels are currently

capped to a minimum of 10% in our system as we

have found that response times quickly approach

infinity (the website crashes) for extremely low

resource allocation values. Both the proxy and SQL

tiers were set to 80% CPU allocation. As shown, for

45%-100% CPU allocation the response time for all

four contention levels can be roughly predicted by

the same linear function. For allocation values less

than 45%, each contention level follows its own

steeper linear function. This occurs as the web server

tier is not the bottleneck of the application until it

receives less than 45% CPU allocation.

0

200

400

600

800

1000

1200

1400

0
%

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

1
0
0
%

R
e

sp
o

n
se

 t
im

e
 (

m
s)

CPU contention

CPU contention effect on response time

Desired

response time

Resource

shares
Minimize

Model
Host

Hypervisor

Monitoring

Figure 2: Response time monitoring

App 1

Proxy VM

Monitor total round trip time

App 1

Web VM

App 1

SQL VM

App 2

Web VM

App 2

SQL VM

App 3

VM

Host A Host B Host C

Observed data

Exponential prediction

Figure 5: TPC-W response time with proxy and

web server set at 80% CPU allocation

If the SLO guarantee we are trying to fulfill is

100ms, for example, Figure 5 would suggest that we

allocate the web tier 45% of the CPU share if the

CPU contention on the host is 20% or above.

However, this only considers a single tier of the

application. Figure 6 shows the response time curves

when the web tier’s CPU allocation is changed from

10% to 100%, but the proxy tier’s allocation has been

reduced to 30%. In this situation, there is no way to

meet the 100ms response time goal if the contention

on the host is more than 10%. This is because the

proxy tier has become the application’s bottleneck, so

assigning more resources to the web tier will not

significantly improve the response time. Because of

this, it is clear that to minimize the resource

allocations the model must include every tier of the

application as a dimension.

Figure 6: TPC-W response time with proxy set at

80% CPU allocation

Figure 7 shows the surface plot for the TPC-W

proxy and web tiers with 300 active users and 40%

CPU contention on each host. It should be noted that

our system uses data from every application tier and

from multiple hardware components. However,

displaying graphs with more than three dimensions is

difficult.

While Figure 7, 8 and 9 contain hundreds of data

points to show the complete resource allocation to

response time model, the runtime model does not

require this much data. If, for example, the

administrator has set 150ms as the SLO target, each

model will contain points around that response time,

but only a few points for the rest of the model. For

example, in Figures 8 and 9 the model will mostly

need to record data points between the dotted lines.

In addition to having to store less data points, being

able to characterize the application with fewer data

points helps the model converge and adapt to changes

quickly.

Figure 7: Proxy and Web tier CPU allocation

response times for 40% CPU contention

Figure 8: Proxy and Web tier CPU allocation

response times for 40%CPU contention

10 20 30 40 50 60 70 80 90 100
50

100

150

200

250

300

350

400

Web Server CPU allocation (%)

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

TPC-W response time

40% contention

30% contention

20% contention

10% contention

10 20 30 40 50 60 70 80 90 100
50

100

150

200

250

300

350

400

450

500

550

Web server CPU allocation

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

TPC-W response time

40% contention

30% contention

20% contention

10% contention

0
20

40
60

80

100

0

20

40

60

80

100

0

100

200

300

400

500

600

Web server share

TPC-W response time while changing proxy and web CPU allocation

Proxy server share

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

0

50

100

150

200

250

102030405060708090100

10

20

30

40

50

60

70

80

90

100

TPC-W response time 40% contention

Web server share

P
ro

x
y
 s

e
rv

e
r

s
h
a
re

0

50

100

150

200

250

Figure 9: Proxy and Web tier CPU allocation

response times for 30% CPU contention

3.3 Dimensional Reduction

As there are potentially thousands, or even

millions, of resource contention combinations, it is

infeasible to keep a model for every combination we

encounter. Instead, we keep a subset of models, and

scale the response time values to fit the current

contention levels. To achieve this scaling

same data used in the resource allocation to response

time models (Figures 7, 8 and 9), but instead

interpolate contention to response time for a given

resource allocation level. We use piecewise

linear regression to estimate the value that each point

in the model should be scaled by.

estimating resource allocation values for a resource

contention level that we do not have a model for, the

management system needs to choose the model that

most accurately represents the current resource

contention levels. The model chosen to be scaled is

the one with the smallest Euclidean distance

current resource contention levels.

Figure 10 shows the actual response time

TPC-W and the estimated response time calculated

using the regression coefficients. The data

subset of data points where the CPU contention is

between 10% and 40% for each tier. As can be seen

in Figure 10, the estimated and actual response times

are highly correlated, as would be expected

fit of the data shown in Figure 4.

Figure 11 shows the response time increase

the number of users increase; in this

10% CPU contention on each of the hosts where the

TPC-W VMs are placed. As can be seen, the

response time increases exponentially with the

number of users. This can be accurately

by linearly scaling three copies of an

resource allocation model.

30405060708090100

10

20

30

40

50

60

70

80

90

100

TPC-W response time 30% contention

Web sever allocation

P
ro

x
y
 s

e
v
e
r

a
llo

c
a
ti
o
n

: Proxy and Web tier CPU allocation

CPU contention

As there are potentially thousands, or even

millions, of resource contention combinations, it is

infeasible to keep a model for every combination we

encounter. Instead, we keep a subset of models, and

scale the response time values to fit the current

scaling we use the

allocation to response

time models (Figures 7, 8 and 9), but instead

interpolate contention to response time for a given

allocation level. We use piecewise multiple

to estimate the value that each point

. When we are

estimating resource allocation values for a resource

contention level that we do not have a model for, the

management system needs to choose the model that

most accurately represents the current resource

contention levels. The model chosen to be scaled is

distance from the

shows the actual response time for

and the estimated response time calculated

using the regression coefficients. The data shown is a

subset of data points where the CPU contention is

tier. As can be seen

response times

highly correlated, as would be expected given the

shows the response time increases as

in this case there is

10% CPU contention on each of the hosts where the

W VMs are placed. As can be seen, the

exponentially with the

accurately represented

an application’s

Figure 10: Estimated and Actual TPC

time

Figure 11: Response time increase

Figure 12 shows the degredation in TPC

responce time at various CPU contention level

responce times shown are when the web tier is

assigned 50% or 10% CPU allocation.

share allocation the CPU contention has little affect

on the response time. This is because the web tier

recieves CPU cycles very frequently, and is not the

application’s bottleneck. At 10% CPU share

allocation the response time quickly degrades to

almost a 50% increase in response time with a 10%

increase in CPU contention. Even though the CPU

had over 40% free cycles, the web tier does not

receive its cycles promply enough, cauing it to

become the bottleneck tier and causing degraded

response time.

1020

0

50

100

150

200

250

0

50

100

150

200

250

300

0 50 100 150P
re

d
ic

te
d

 R
es

p
o

n
se

 t
im

e
(m

s)

Actual Response time (ms)

Estimated vs Actual response time

0

200

400

600

800

1000

1200

1400

10 100 200 300 400

R
es

p
o

n
se

 t
im

e
(m

s)

Users

Users level and response time

Actual distribution

Model

Linear estimate

: Estimated and Actual TPC-W response

: Response time increase vs. user level

shows the degredation in TPC-W's

at various CPU contention levels. The

responce times shown are when the web tier is

assigned 50% or 10% CPU allocation. At 50% CPU

share allocation the CPU contention has little affect

on the response time. This is because the web tier

recieves CPU cycles very frequently, and is not the

application’s bottleneck. At 10% CPU share

allocation the response time quickly degrades to

in response time with a 10%

increase in CPU contention. Even though the CPU

had over 40% free cycles, the web tier does not

s promply enough, cauing it to

become the bottleneck tier and causing degraded

200 250 300

Actual Response time (ms)

Estimated vs Actual response time

400 500 600 700 800

Users level and response time

Figure 12: Regression values used to stretch a

model

To scale an application's performance model, we

multiply the model from the current contention level

to the new one for each resource allocation level. For

example, if we wanted to know the response time at

20% CPU contention and 50% CPU share allocation

we would estimate 73 + 1.1 * 20 = 95ms. If our SLO

target is 100ms, we would know that we could place

the web tier on a host with 20% CPU contention if it

could receive 50% of the CPU share allocation.

However, if the host only had 40% CPU share

allocation remaining, the estimated response time

would be 80 + 1.15 * 20 = 103ms. Therefore, we

would not expect that we could palce the web tier on

that host.

4. EXPERIMENTAL SETUP

4.1 Infrastructure

Our experiments are setup on a flat local area

network using commodity hardware. The host

operating system is Fedora 12 with Linux kernel

2.6.31. We use KVM as our hypervisor. The VM

hosts consist of three nodes with tri-core 2.1 GHz

CPU, 4GB RAM. The test clients consist of two

nodes with quad-core 2.66 GHz CPU, 4GB RAM.

The storage node contains a dual-core 2.8 GHz CPU,

4GB RAM.

The network topology we use is two flat-networks

each with one switch: the user data network and the

management network. Each physical host has two

network interface cards (NICs). One NIC is

connected to a user data network using a 24-port

Gigabit switch. The user network carries all of the

user workload and benchmark traffic. The other NIC

is connected to a management network using a

separate Gigabit switch as shown in Figure 13. The

management network carries management-related

commands and network attached storage traffic for

the VMs' virtual disk images.

The storage system is hosted on two-spindle

RAID-0, 2TB, 7200rpm hard disks. The storage

server exports an NFS share. All virtual machine

images are served from this location. To ensure

network storage was not the bottleneck in our system,

we benchmarked the network storage and found it

more than capable of handling all of the VMs' disk

traffic.

4.2 Workloads

To test our system we use the TPC-W benchmark

suit [22]. We use TPC-W as a test of a real-world

delay-sensitive application. TPC-W mimics an

online-bookstore application. It consists of an Apache

web proxy front-end, a Tomcat application server,

and a MySQL database back-end. There are 15 types

of page requests. The benchmark client is a closed-

loop client which simulates multiple users

concurrently accessing the server. TPC-W's

performance is measured based on response time for

each action performed.

5. RESULTS

In this section we discuss the results from our

system. We test our system by running the TPC-W

benchmark with each of the application’s tiers on a

separate host. Each host also contains another VM

running an Apache web server hosting

computationally intensive web pages. The additional

VMs are used to create resource contention on the

hosts. They represent other applications that would

undoubtedly also be running in a shared virtual

environment. The number of requests per second to

each Apache server was varied throughout the

experiments to change the resource contention levels.

0

50

100

150

200

250

6 8 10 12 14 16

R
es

p
o

n
se

 t
im

e
(m

s)

CPU contention level (%)

Response time degredation with

increase in contention

50% CPU Share

10% CPU Share

Figure 13: Test bed setup

Simulated

users

Physical hosts

Storage Server

5.1 Meeting SLO target

Figure 14 shows the resulting response times of

TPC-W when the resource allocation levels are set

manually and when they are controlled by our

system. When the resource allocations are set

manually, each tier receives the same resource

allocation on each host. For example, in the 50%

resource allocation experiment, each tier has a fixed

50% resource allocation throughout the experiment.

As can be seen in Figure 14, when using our

system TPC-W’s response time closely follows the

SLO target that is set. It is expected that the response

time will oscillate above and below the SLO target as

our system attempts to make the median response

time equal to the SLO target. It is also evident from

Figure 14 that the response time when using our

system is usually faster, rather than slower, than the

SLO target, and therefore averages to faster than the

required SLO value. This is due to the resource

allocation optimizer being cautious in its estimates.

This is a conscious design decision, as a system that

constantly over performs is more useful than a

system that constantly under performs.

It can also be seen in Figure 14 that setting the

resource allocation levels manually does not always

produce a consistent response time. This is because

resource contentions may increase over time, but the

resource allocations do not. When the resource

allocation is set to 50%, TPC-W’s response time is

faster for a longer period of time than when the SLO

target is set to 150ms. However, at time period 480, a

50% resource allocation is no longer sufficient to

continue providing that fast response time. However,

with a dynamically set resource allocation our system

can keep providing the same response time despite

the CPU contention increase.

Test RT average Resource

allocation

average

Apache VM

average

SLO = 100ms 89ms 48% 125ms

SLO = 150ms 127ms 35% 107ms

50% resource

allocation

150ms 50% 120ms

10% resource

allocation

355ms 10% 83ms

Table 1: Response time for TPC-W and

contention workload

As can be seen in Table 1, despite the 50%

resource allocation test having a faster response time

for a longer period of time than the SLO 150ms test,

its final average response time is greater.

Additionally, the SLO 150ms test uses on average

15% less resources to achieve this faster average

response time. As TPC-W uses less resources in the

SLO 150ms test, the Apache workload on the host

receives a greater share of resources; thus reducing

its average response time from 120ms to 107ms. This

is because the optimizer does not needlessly

overprovision TPC-W, allowing the host scheduler to

allocate remaining resources as needed. This shows

that dynamically setting the resource allocation levels

can not only guarantee a specified response time, but

is also a more efficient use of resources. In this case,

both applications have benefited from faster response

times, despite our system only guaranteeing one of

them.

Comparing the two tests with the closest resource

allocation levels, we find that dynamic resource

allocation helps achieve a faster average response

time while using overall fewer hardware resources.

Even excluding the final 120 readings, where the

50% allocation test performed poorly, dynamic

allocation still performs faster, with an average

response time of 89ms vs. the static allocation

average of 106ms.

5.2 Resource Allocation

Figure 15 shows the resource allocation levels that

TPC-W received for the SLO 100ms and 150ms tests.

The other two tests remain at 50% and 10%

allocation throughout and are not shown.

At time period 200 it can be seen that the CPU

contention on the SQL VM's host jumps 40%;

however, the resource allocation only increases

roughly 10%. This shows an advantage of modeling

and predicting the application’s performance over a

more simple resource control scheme, such as

increasing the resource allocation by a fixed factor of

CPU contention. The regression analysis identifies

that the CPU contention on the SQL VM's host does

not cause large increases in response time. Therefore,

when a model is used to predict the resource

allocations for the new contention level, the scaling

factor is low. This is in contrast to time period 110,

when the CPU contention on the web server VM's

host increases by 10%. In this case, the resource

allocation increases by 20% in the SLO 150ms test

and by 30% in the SLO 100ms test. This is because

the model has correctly predicted that increased CPU

contention on the web server VM’s host will cause an

increase in response time and has scaled the resource

allocation model accordingly. We can see that the

system predicted the correct resource allocation

increases in both cases, as the response times for the

SLO tests in Figure 14 both change to the configured

SLO level at time period 110.

5.3 Change in user levels

Figure 16 shows the TPC-W response time when

the number of users is varied during the experiment.

We again configure our system to meet either a

100ms or 150ms response time SLO. We also

experiment with the VMs resource allocations set

statically to either 50% or 10%.

It can be seen from Figure 16 that our system can

dynamically adjust resource allocations to meet an

SLO despite a varying user level. Our system keeps

the response time near the SLO target, whereas the

static resource allocation causes response time to

vary from 100ms-400ms.

0 100 200 300 400 500
50

100

150

0 100 200 300 400 500
50

100

150

200

0 100 200 300 400 500

100

200

300

0 100 200 300 400 500

100

200

300

0 100 200 300 400 500
0

50

100

SLO 100ms

SLO 150ms

50% resource

allocation

10% resource

allocation

CPU contention

levels

Figure 14: Response time results for dynamic and static resource allocations, changing CPU contention

Proxy Contention

SQL Contention

Web Contention

R
es

p
o

n
se

 t
im

e
(m

s)

Experiment period (10s)

C
P

U
 (

%
)

0 100 200 300 400 500
0

20

40

60

80

100

0 100 200 300 400 500
0

20

40

60

80

100

0 100 200 300 400 500
0

20

40

60

80

0 20 40 60 80 100 120 140 160 180
50

100

150

0 20 40 60 80 100 120 140 160 180
50

100

150

200

0 20 40 60 80 100 120 140 160 180
0

100

200

300

400

0 20 40 60 80 100 120 140 160 180
0

100

200

300

400

0 20 40 60 80 100 120 140 160 180
100

200

300

400

Figure 15: Allocated resource levels for dynamic resource allocation test

SLO 100ms

SLO 150ms

Proxy Contention

SQL Contention

Web Contention

Experiment period (10s)

C
P

U
 (

%
)

CPU contention

levels

T
o

ta
l

T
P

C
-W

 r
es

o
u

rc
e

al
lo

ca
ti

o
n

 (
%

)

SLO 100ms

SLO 150ms

50% resource

allocation

10% resource

allocation

R
es

p
o

n
se

 t
im

e
(m

s)

Number of

users U
se

rs

Figure 16: Response time results for dynamic and static resource allocations, changing user level

Experiment period (10s)

6. CONCLUSION AND FUTURE WORK

In this work we have shown that applications

comprised of multiple VM tiers can meet SLOs by

dynamically allocating host resources. We show that

by capturing an application’s previous performance,

we can model and predict the minimum amount of

resources it needs to meet an SLO. Additionally, we

show that these models can be stretched to changes in

host utilization levels. This allows the resource

allocation to be quickly altered when resource

utilization levels change.

We evaluate our system using TPC-W and setting

response time SLO targets. The host utilization is

then varied throughout the experiments. Our system

adapts to the changes in host utilization levels, and

helps maintain TPC-W’s response time within the

SLO target. Our system also assigns the minimum

amount of resources required to meet the SLO,

allowing the other application running on the same

hosts to improve its performance.

Although our system allows applications to meet

SLOs, minimizing the total amount of resources used

by each application may not be the most desirable

goal in a data center. As VM migration causes both

performance degradation and increased utilization,

assigning resources in such a way as to lower the

number of migrations may achieve lower global

resource utilization than attempting to minimize

resource allocation alone. Additional study would be

needed to analyze the application specific

performance degradation caused by migration.

While our current control scheme ensures that

VMs receive the correct amount of resources to meet

an SLO, it does not actually provide a hard guarantee

about the number of violations. In future work we

will bound the number and severity of SLO

violations to provide administrators with hard

guarantees about application level performance.

Additionally, rather than starting with a blank

slate for each application, we hope to identify

common traits between applications. This will allow

performance models to be created and adapted more

quickly, and could allow for different modes of

control for different application types. This could

potentially make the task of bounding the number of

SLO violations easier.

7. REFERENCES

[1] VMware vSphere. www.vmware.com/products/vsphere/

[2] Citrix XenServer. http://www.xensource.com/

[3] Microsoft Hyper-V Server.

http://www.microsoft.com/hyper-v-server/

[4] VMware Infrastructure: Resource Management with

VMware DRS.

[5] Carrera, D. et. al. Utility-based placement of dynamic

Web applications with fairness goals, NOMS 2008.

[6] Karve, A., et. al. A. Dynamic placement for clustered

web applications. WWW 2006.

[7] Madhukar Korupolu, Aameek Singh, Bhuvan Bamba,

Coupled placement in modern data centers, SPDP 2009.

[8] Choi, et.al. Autonomous learning for efficient resource

utilization of dynamic VM migration. ICS 2008.

[9] Urgaonkar, B., Shenoy, P., and Roscoe, T. Resource

overbooking and application profiling in shared hosting

platforms. SIGOPS Oper. Syst. Rev. 36, SI Dec. 2002

[10] Karve, A., et. al. A. Dynamic placement for clustered

web applications. WWW 2006.

[11] Stewart, C. et. al. A dollar from 15 cents: cross-

platform management for internet services. USENIX 2008.

[12] Cherkasova, L, et. al. Comparison of the Three CPU

Schedulers in Xen

[13] Somani, G. Chaudhary, S., Application Performance

Isolation in Virtualization, CLOUD `09, IEEE International

Conference on Cloud Computing, 2009

[14] Kochut, A., Beaty, K., On Strategies for Dynamic

Resource Management in Virtualized Server Environments,

IEEE MASCOTS, 2007

[15] Hermenier, F., et. al., Entropy: a consolidation

manager for clusters, ACM/Usenix International

Conference On Virtual Execution Environments, ACM

SIGPLAN/SIGOPS, 2009

[16] Verma, A., Ahuja, P., Neogi, A., pMapper: Power and

Migration Cost Aware Application Placement in

Virtualized Systems, Middleware 2008, 2008

[17] Bobroff, N.; Kochut, A.; Beaty, K., Dynamic

Placement of Virtual Machines for Managing SLA

Violations, Integrated Network Management, 2007. IM '07

[18] Lui, X., et. al., Optimal Multivariate Control for

Differentiated Services on a Shared Hosting Platform,

Decision and Control, 2007

[19] Padala, P., et. al., Adaptive control of virtualized

resources in utility computing environments, ACM

SIGOPS Operating Systems Review, Volume 41 , Issue 3,

2007

[20] Padala, P., et. al., Automated control of multiple

virtualized resources, ACM European conference on

Computer systems, Cloud Computing, 2009

[21] Clark, C., et. al., Live migration of virtual machines,

USENIX Networked Systems Design & Implementation -

Volume 2, 2005

[22] TPC-W, http://www.tpc.org/tpcw/default.asp

