An Analysis of Network Configuration Artifacts

LISA '09, November 5, 2009

David Plonka & Andres Jaan Tack
{plonka,tack}@cs.wisc.edu
Motivation and Goals

- Like software quality, network reliability is evolving:
 - Expectation of high availability, increasing reliance
 - Increasing numbers of skilled practitioners
 - Increasing level of automation
Motivation and Goals

• Like software quality, network reliability is evolving:
 – Expectation of high availability, increasing reliance
 – Increasing numbers of skilled practitioners
 – Increasing level of automation

• However, the management of networks and the Internet has not received similar attention to the development of software.
Motivation and Goals

- Like software quality, network reliability is evolving:
 - Expectation of high availability, increasing reliance
 - Increasing numbers of skilled practitioners
 - Increasing level of automation
- However, the management of networks and the Internet has not received similar attention to the development of software.
- We propose an analogy-based analysis, and that these elements are akin to each other:
 - Networks : Software Systems
 - Network Engineering : Software Engineering
 - Network Operators : Programmers
Campus Network
Network Artifacts

• *artifact* - an object created by humans, especially one remaining from a particular period

• Network Performance Measurements

• Network Management Systems' Topology

• Trouble Tickets

• **Network Device Configurations**
 - Routers, switches, firewalls
 - Network practitioners use Source Code Management (SCM) of device configurations for:
 - Configuration backups
 - Communicating changes
Network Configuration Repositories
Networks Studied

<table>
<thead>
<tr>
<th>Network</th>
<th>Period in Years</th>
<th>Operators (super-users)</th>
<th>Devices / Configuration Files</th>
<th>Revisions</th>
<th>Lines of Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campus</td>
<td>5+</td>
<td>343 (64)</td>
<td>3,839</td>
<td>128,394</td>
<td>2,898,362</td>
</tr>
<tr>
<td>Service Provider</td>
<td>10+</td>
<td>31 (31)</td>
<td>519</td>
<td>41,787</td>
<td>163,882</td>
</tr>
</tbody>
</table>
Mining SCM Repositories - Why?

- While successful in the PL community, this hasn't been leveraged in the context of network configuration and management.
- To visualize and elucidate network operation with the goal of understanding and improving the practice.
Mining SCM Repositories - How?

- Convert existing custom network version control system repositories to common CVS repositories.
- Use existing tools from the Programming Language (PL) and open source developer communities, e.g.:
 - StatCVS-XML
 - cvs2cl (CVS to ChangeLog)
- Perform additional static file analyses, e.g.:
 - Syntax-aware statistics (i.e. config stanzas)
 - Revision lifetimes
version 12.2
no service pad
service timestamps debug datetime localtime
service timestamps log datetime localtime
service password-encryption
!
hostname s-bldg-5-2-access
!
spanning-tree mode rapid-pvst
no spanning-tree optimize bpdu transmission
spanning-tree extend system-id
!
interface FastEthernet1/0/1
 description sample 100Mbps ethernet interface
 switchport access vlan 42
 switchport mode access
 ip access-group nodhcpserver in
 snmp trap mac-notification change added
 snmp trap mac-notification change removed
 no snmp trap link-status
 no mdix auto
 spanning-tree portfast
 spanning-tree bpduguard enable
 spanning-tree guard root
ip access-list extended nodhcpserver
remark Id: ndhcp.acl,v 1.2 2005-05-20 11:26:03 ashley Exp
deny udp any eq bootps any
permit ip any any
!
access-list 5 permit 192.2.0.1
access-list 5 remark Allow foo, bar, and baz servers
access-list 5 permit 192.2.0.10
access-list 5 permit 192.2.0.11
!
...
Campus File / Device Count

Campus Network
File Count

Files
0
250
500
750
1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
3500
3750
4000

Date
Jan-1999
May-1999
Sep-1999
Jan-2000
May-2000
Sep-2000
Jan-2001
May-2001
Sep-2001
Jan-2002
May-2002
Sep-2002
Jan-2003
May-2003
Sep-2003
Jan-2004
May-2004
Sep-2004
Jan-2005
May-2005
Sep-2005
Jan-2006
May-2006
Sep-2006
Jan-2007
May-2007
Sep-2007
Jan-2008
May-2008
Sep-2008
Jan-2009
Campus LOC by Topology

Campus Network
Lines Of Code (per module)

campus/access/ = 1,912,430

campus/access/wireless/ = 601,836

campus/firewall/ = 120,147

campus/mgmt/ = 117,756

campus/dist/ = 98,921

campus/core/ = 47,272
Campus Network
Lines Of Code (per author)

Campus Size Per Author

alexander ann annie antonio betty bradley cathryn christina cindy daniel danny debbie deborah don edwin
elizabeth frederick glenn grace jason jim jimmy joe kenny juanita judith kathryn kelly kimberly leonard
michael michelle mike monica paula ray raymond renee rhonda samuel shannon steve steven tiffany tom
tracy travis troy victor virginia wayne ann barry catherine dana danielle diane howard janice jay jeffery
jeffrey john jonathan justin lauren margaret maria matthew mildred phyllis rebecca sharon stanley aaron
amy brian ellen joseph josephine nicole pamela patrick randy russell ruth timothy valerie vincent craig
douglas gail gloria kathleen linda michelle nicholas samantha therma victoria wendy amber brenda carmen
clarence david edna jeremy joan jian lisa thomas alice doris jackie marcus mark norma yvonne amanda
anne jamie lawrence nancy robert sylvia theodore julia ana carolyn barbara jacqueline bobby jack laura
rosa shawn heather michael may sandra sheila vivian donna carl charles geraldine francis lynn william
albert carol sherry roy stacy pauline wanda christopher eleanor henry christine anita judy andrea helen
billy randall philip crystal gladys darlene luis jacob jean alan miguel charlotte clara donald george
jessica martin herbert francis jeff james megan veronica tina jill harold jane fred jerry hazel chris
susan scott tony eugene leroy joshua erin todd richard rita anthony ryan marvin kenneth carrie eva
norman audrey eric angela ethel johnny walker ronald regina keith bruce andrew edward shirley lois
gregory melvin florence anna emma gerald april brandon ruby edith nathan peggy sara ashley kevin
Campus Size Per Group

Campus Network by Device Type
Lines Of Code (per author)

- net = 2,418,758
- contract = 348,207
- noc = 100,099
- field = 57,582
- authorized-agents = 1,821
- security = 103

Legend:
- security
- authorized-agents
- field
- noc
- contract
- net
Campus Commits by Hour
Common Commit Comments

<table>
<thead>
<tr>
<th>Comment</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial revision</td>
<td>1487 (2.7%)</td>
</tr>
<tr>
<td>test</td>
<td>812 (1.5%)</td>
</tr>
<tr>
<td>asdf</td>
<td>593 (1.1%)</td>
</tr>
<tr>
<td>'newer bulk checkin'</td>
<td>411 (0.7%)</td>
</tr>
<tr>
<td>change vlan</td>
<td>316 (0.6%)</td>
</tr>
</tbody>
</table>
An Anomaly

<table>
<thead>
<tr>
<th>Author</th>
<th>Revisions</th>
<th>Lines of Code</th>
<th>Added Lines of Code</th>
<th>Lines of Code per Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>net</td>
<td>63468 (47.2%)</td>
<td>2418758 (82.9%)</td>
<td>3313853 (74.1%)</td>
<td>38.11</td>
</tr>
<tr>
<td>authorized-agents</td>
<td>38625 (28.8%)</td>
<td>1821 (0.1%)</td>
<td>208956 (4.7%)</td>
<td>0.05</td>
</tr>
<tr>
<td>system</td>
<td>11218 (8.4%)</td>
<td>-8795 (-0.3%)</td>
<td>125618 (2.8%)</td>
<td>-0.78</td>
</tr>
<tr>
<td>noc</td>
<td>10715 (8.0%)</td>
<td>100099 (3.4%)</td>
<td>303481 (6.8%)</td>
<td>9.34</td>
</tr>
<tr>
<td>field</td>
<td>6122 (4.6%)</td>
<td>57582 (2.0%)</td>
<td>152498 (3.4%)</td>
<td>9.41</td>
</tr>
<tr>
<td>contract</td>
<td>3959 (2.9%)</td>
<td>348207 (11.9%)</td>
<td>368518 (8.2%)</td>
<td>87.95</td>
</tr>
<tr>
<td>security</td>
<td>230 (0.2%)</td>
<td>103 (0.0%)</td>
<td>1898 (0.0%)</td>
<td>0.45</td>
</tr>
</tbody>
</table>
Code Push Results

Made directory: /home/net/cms/codepusher/af4f5bf32242246a603eb619ce60cc66

Created working set file.
Push is running in process 5604.

Creating command files...
Created command file for s-1301ua-214-1-access.
Created command file for s-agentl-120a-1-access.
Created command file for s-cscc-b295-2-access.

Done creating command files.

Making upgrade.make... done!

Running upgrade.make
s-1301ua-214-1-access.log... starting.
s-agentl-120a-1-access.log... starting.
s-cscc-b295-2-access.log... starting.
s-cscc-b295-2-access.log... writing.
s-agentl-120a-1-access.log... writing.
s-1301ua-214-1-access.log... completed. Time elapsed: 4 wallclock secs
s-1301ua-214-1-access.log... completed. Time elapsed: 4 wallclock secs
s-cscc-b295-2-access.log... completed. Time elapsed: 4 wallclock secs

Done pushing code!

COMMANDS PUSHED:

show boot.

Beginning error scan...
Scanning s-1301ua-214-1-access.log for errors... No errors found.
Scanning s-agentl-120a-1-access.log for errors... No errors found.
Scanning s-cscc-b295-2-access.log for errors... No errors found.

Error scan complete

Code push completed.
Your log files are located in /home/net/cms/codepusher/af4f5bf32242246a603eb619ce60cc66
You should check them manually for errors.

Check in your config files, if necessary!!

AANTS Home Page | EdgeConf | UW Home

If you have feedback or questions, please contact the aants administration team at:

sants-admin@net.dotl.wisc.edu

Copyright © 2004 The Board of Regents of the University of Wisconsin System
Evaluating Practitioner Effort

- Measurements of practitioner effort
 - How often are “fixes” introduced?
 - How often do configurations change?
 - “Bad Days” (are Friday checkins more buggy?)

- Look toward improvements:
 - Syntax-aware revision analysis (stanzas)
 - How do we direct tool development?
Revision Lifetimes

• How long does a revision last before it is next modified?
 – Suggests the modus operandi of practitioners
 – Suggests the value or the staying power of a revision
 – Might also suggest some measure of network volatility
Campus Revision Lifetimes (<3.5 days)
Campus Revision Lifetimes (<10 min)
% Short-Lived Revisions by Day

- Sun
- Mon
- Tue
- Wed
- Thu
- Fri
- Sat

Service Provider
Campus
% Short-Lived Revisions by Day

(Campus Drill-Down)
Campus Average File Size

Campus Network
Average Filesize

Date
LOC / File
250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500
Service Provider Average File Size

Service Provider Network
Average Filesize

LOC / File

Date
Campus Revisions by Stanza Type

<table>
<thead>
<tr>
<th>Stanza Type</th>
<th>Total Revision Count</th>
<th>Revisions per Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>471,238</td>
<td>4</td>
</tr>
<tr>
<td>vlan</td>
<td>25,591</td>
<td>1</td>
</tr>
<tr>
<td>global</td>
<td>12,534</td>
<td>4</td>
</tr>
<tr>
<td>logging</td>
<td>12,390</td>
<td>9</td>
</tr>
<tr>
<td>ip</td>
<td>12,006</td>
<td>1</td>
</tr>
<tr>
<td>bridge</td>
<td>4,353</td>
<td>1</td>
</tr>
<tr>
<td>line</td>
<td>3,936</td>
<td>1</td>
</tr>
<tr>
<td>banner</td>
<td>3,810</td>
<td>1</td>
</tr>
<tr>
<td>dot11</td>
<td>3,324</td>
<td>1</td>
</tr>
<tr>
<td>control-plane</td>
<td>3,013</td>
<td>1</td>
</tr>
</tbody>
</table>
Some Conclusions

- With varying device types, LOC is an erratic metric for the stanza-based, declarative network configuration language, (such as Cisco IOS)
- Analysis of network configurations exposes pertinent network management details including:
 - Group behaviors
 - Outstanding practitioners
 - Change times
 - High level of user compliance, but some curiosities
 - Tool-based efficiencies both expected and invented
Contributions

• An initial application of software development analysis tools to network operations based on existing, freely-available tools

• Beginnings of a network operations-specific measurement of practitioner effort to guide tool development, such as SCM and IDE-like tools for network operators

• In our case studies, this analogy-based analysis approach shows promise based on feedback by expert interviews.
Discussion and Future Work

- As in software, can we identify and investigate code decay, refactorings, and code clones?
- Leverage other artifacts to measure practitioner compliance and network service reliability and performance.
- Develop a complexity metric based on stanzas and inter-stanza references. (see Benson, et al., NSDI 2009)
An Analysis of Network Configuration Artifacts

LISA '09, November 5, 2009

David Plonka & Andres Jaan Tack
{plonka,tack}@cs.wisc.edu