Towards Zero-Emission Datacenters through Direct Re-use of Waste Heat

I. Meijer, T. Brunschwiler, S. Paredes and B. Michel, Advanced Thermal Packaging, IBM Research GmbH, Säumerstrasse 4, 8803 Rüschlikon, Switzerland, bmi@zurich.ibm.com

© IBM Research 2009
Overview

- **Green Datacenter market drivers and trends**
 - *Inefficient air cooled data centers: Waste of energy and exergy*

- **Thinking global about carbon footprint and energy usage**
 - *Role of IT to tackle climate change*
 - *Economic and political interest*

- **Thermal packaging and liquid cooling**
 - *Improved thermal conductivity and heat transfer*
 - *Water cooling and refrigerant cooling*
 - *Hotspot cooling*
 - *History of liquid cooling: Cold – Warm - Hot*
 - *Future interlayer cooling of 3D stacked chips*

- **Energy re-use in liquid cooled data centers**
 - *Reduction of carbon footprint with efficiency increase and community heating*
 - *Value of heating and cooling in different climates*
 - *Joint project with ETH: Aquasar*

- **Main messages and next steps**
 - *Efficiency investments have a short payback time*
 - *Concentrated photovoltaics with energy recovery*
Green Datacenter Market Drivers and Trends

- Increased green consciousness, and rising cost of power

- IT demand outpaces technology improvements
 - Server energy use doubled 2000-2005; expected to increase 15%/year
 - 15% power growth per year is not sustainable
 - Koomey Study: Server use 1.2% of U.S. energy

- ICT industries consume 2% ww energy
 - Carbon dioxide emission like global aviation

Real Actions Needed

Source: IDC 2006, Document# 201722, "The impact of Power and Cooling on Datacenter Infrastructure, John Humphreys, Jed Scaramella"
Advanced Thermal Packaging

Datacenter: Cooling Infrastructure

Racks & Fans

Chilled Water CRAC/CRAHs

Electronic Power

Condensor

Evaporative Tower Fans

Chillers (Refrigeration)
What’s Driving Demand

- **Mobility** – cell/pda, broadband services, security, merchandising (13.6% CAGR from IT Mobile Tracker)

- **Digital Media** – streaming, iptv, music, Radiology, Visualization (200% CAGR from e-week Jan 2005)

- **24x7 global e-commerce**: financial & manufacturing sectors (26% CAGR

 Source: United States Department of Commerce, 11/22/05)

- **HPC**: BioMed – Pharma, genetic research, Oil & Gas, Virtualization in structural dynamics, Weather (10.5% CAGR

 Source: IDC)

- **Real time BI**: Walmart, Amazon, Yahoo/Google/MSN (Google Growth 79%

 Source: Wall Street Journal 4/21/06)

- **Compliance** – Hippa, Sox – ILM (“SOX may be your biggest information-technology expenditure this decade” source: e-week 8/1/03).
Advanced Thermal Packaging

From the Individual Transistor to the Globe

- Thermal/power issues propagate up to the world climate
- Global length- and decade-long time-scales involved
- A truly holistic view is required to solve these problems
- IT efficiency improves more than 15% per year
 ➔ IT to become part of the solution!
Energy Consumption of Transistor (Leakage Current)

Table PIDS2a High-performance Logic Technology Requirements—Near-term

<table>
<thead>
<tr>
<th>Year of Production</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPU/ASIC Metal I (M1) 1/2 Pitch (nm) (contacted)</td>
<td>68</td>
<td>59</td>
<td>52</td>
<td>45</td>
<td>40</td>
<td>36</td>
<td>32</td>
</tr>
<tr>
<td>MPU Physical Gate Length (um)</td>
<td>25</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>16</td>
<td>14</td>
<td>13</td>
</tr>
</tbody>
</table>

Equivalent Oxide Thickness

- Extended planar bulk (Å): 11, 9, 7.5, 6.5, 5.5, 5, 5, 5
- UTB FD (Å): 7, 6, 5.5, 5, 5, 5, 5, 5
- DG (Å): 8, 7, 6, 6, 6

Maximum gate Leakage Current

- Extended Planar Bulk (A/cm²): 8.0E+02, 9.09E+02, 1.00E+03, 1.11E+03, 1.25E+03, 1.43E+03
- UTB FD (A/cm²): 1.11E+03, 1.25E+03, 1.43E+03, 1.54E+03, 1.82E+03, 2.00E+03
- DG (A/cm²): 1.25E+03, 1.43E+03, 1.54E+03, 1.82E+03, 2.00E+03

Source/Drain Leakage Current

- Extended Planar Bulk (μA/μm): 0.34, 0.71, 0.70, 0.64, 0.74, 0.68
- UTB FD (μA/μm): 0.33, 0.52, 0.62, 0.56, 0.55, 0.60
- DG (μA/μm): 0.2, 0.34, 0.37, 0.38, 0.38

International Technology Roadmap for Semiconductors
Rethink: Green Datacenter Metric

New ranking list for supercomputers: Green 500

- Ranking of supercomputers which are listed in Top 500
- Energy needed for one floating point operation: MFLOPS / Watt
- Rank 1 to 20: PowerXCell, BlueGene, and MD GRAPE Accelerator

Earth Simulator 2002
- Linpack: 40.9 TFlops
- Peak power: 11.9MW
- 3.4 MFlops/Watt

Roadrunner 2008
- PowerXCell 3.2GHz
- Linpack: 1100 TFlops
- Peak power: 2.5MW
- 445 MFlops/Watt
- No. 1 Top500, No. 4 Green500

27x computing performance, 1/5 power consumption, but harder to program

New metric needed that includes the site & facility energy consumption
Historic Heat Flux Trends

- Module and Chip Heat Flux Explosion
- Number of transistors doubles every 18 months
- CMOS scaling was power density invariant 1980 – 1995 → reduction of V_{dd}
 \[P_{sw} = \frac{1}{2} C \cdot f \cdot V_{dd}^2 \]
- Energy per operation still shrinks
- Challenge: Transistor leakage

Bipolar & CMOS data from Cooling Council Roadmap; Chip flux calculated from *CATT 2001 Microprocessor Assessment, IBM Chip assumed to occupy 7/38 of Module Area GTO 2002
Thermal Packaging History

Time line

8088
Natural convection
bare die

Pentium III
Forced convection
50x50x40 mm³

Pentium IV
Forced convection
80x80x70 mm³

Apple G5
Liquid cooling
170x170x170 mm³

→ Increase 10x in volume, 10x in cost, 10x in complexity
History of Water Cooling at IBM

- Thermal conduction module for 3090 water cooled systems
- Used conventional water cooling for power densities up to 100 W/cm²
Motivation for Packaging Research

- Scaling beyond 22 nm decreases performance ~30% per generation
 - Needs to be compensated by new technologies like high k dielectrics, air gap, multicore
 - Will get more difficult with every generation

- ITRS reports “Acceleration of pace in assembly and packaging” and extensively revised roadmap in 2008 upgrade

- Packaging compensates for slower chip efficiency improvements
Why Thermal Packaging?

Performance
- Increased mobility at lower temperatures
- Leakage current depends exponentially on temperature

Reliability
- Most failure mechanisms are accelerated with temperature
- Catastrophic failure can occur due to thermo-mechanical stress

Typical processor package

- **Heat Spreader**
 - Spreads heat horizontally
 - Evens out hot spots
 - Protects the die

- **Heat Sink**
 - Dissipates heat to the environment

- **TIM 1**
 - Transmits heat to the spreader

- **TIM 2**
 - Transmits heat to the heat sink

- **Die**
 - Heat generation
 - Hot spots
Packaging and Thermal Interfaces

- Interfaces are large portion of total resistance
 - Thermal interface materials TIM 1 and TIM 2 cause almost half the overall thermal resistance in a high performance processor package

- Particle filled materials have cost benefit
 - Easier processing, no metallization, flexibility for many applications

- Conductivity increase with higher particle loading
 - Viscosity and shear strength also increase
 - If bondline thickness increases – **No Gain!**

- Assembly loads cannot be too high
 - C4 crushing, chip cracking
 - Substrates bend trapping thick TIM

- Hierarchical Nested Channel (HNC) creates **thinner bondlines** with **higher conductivity** materials using **low assembly forces**...
High Performance Thermal Interface Technology

- IEEE Harvey Rosten Award for Excellence in Thermal Sciences

Directed self-assembly
- Fluid-shear driven self-assembly
- Control of stacking with channel pattern

High performance thermal interface
- Increased particle density
- High performance with matched paste $R_{th} (< 5 \text{ mm}^2\text{K/W})$
- Quick integration into products possible
Motivation for Liquid Cooling

- Increase in heat removal performance: Superior thermal properties of liquids compared to air
- Design flexibility: Sensible heat transport to locations with available space
- Centralized secondary heat exchanger
- Efficient water-water heat exchanger

<table>
<thead>
<tr>
<th></th>
<th>Thermal conductivity [W/(m*K)]</th>
<th>Volumetric heat capacity [kJ/(m³*K)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>0.0245</td>
<td>1.27</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.6</td>
<td>4176</td>
</tr>
</tbody>
</table>

Disadvantage: Increased complexity

Long distance transport possible

Limited heat transport due to fin efficiency
Chip Scale Liquid Cooling

Arrayed jets, distributed return

Biological vascular systems are optimized for the mass transport at low pressure

Cooling of up to 350 W/cm²

Direct Liquid Jet-Impingement Cooling with Micron-Sized Nozzle Array and Distributed Return Architecture, T. Brunschwiler et al., Itherm 2006

SEM cross-section of two-level jet plate with diameter of 35µm
Ultra Thin High Efficiency Heat Sinks

- Motivation: Find the best coolant and the best structure for ultra-compact heatsinks (thickness < 2 mm)

- Nanofluid thermal properties explained by effective medium theory which means they cannot ‘magically’ improve heat transfer

→ Water provides the best combination of material properties

- Flat heatsinks reduce the board pitch of future systems from >30 mm (1U) to 3 mm (1/10 U)

- Optimum design provides a total thermal resistance of 0.09 cm²K/W @ V = 1.3 l/min, Δp = 0.22 bar
 ⇒ maximum power density > 700 W/cm² for ΔT = 65 K

- Increasing inlet temperature to 70°C (190 F) enhances the heat sink efficiency >40%
Manifold Micro-Channel Heat sink

RADially OSCillating Flow Hybrid Cooling System - RADIOS

- Self-contained, thin form factor
- Spreader plates in base of air heat sinks
- Basic principle:
 - Cold plate on the chip (Heat Absorber, HA)
 - Heat transport to larger area
 - Cold plates in periphery (Heat Dissipator, HD)
- Keep chip area free, heat transfer to air at unpopulated area

- Heat shuttling via fluidic branches (N)
- Displacement actuator with membranes
 - Periodic phase difference ($\varphi = 2\pi/N$)
- Fluid periodically dispensed in all directions
- At the center:
 - Constant flow speed with radially oscillating direction
Oscillating Flow Liquid Cooling

- Hybrid cooling: internal fluid external air
- Intermediate step – does not require external fluid connection
- Hermetically sealed, low risk
- Displacement pumps, low fluid volume
- Multiple pumping schemes

Unit cell stack

Blade-level

: Heat flow
: Heat and fluid flow

Rack-level
Hot Spots are Everywhere

Power map of a dual core microprocessor

Temperature map of a data center

Hot spot heat flux 4x higher then mean

Current thermal management infrastructure is over-dimensioned to keep hot spots cool

Improved efficiency:

- Thermal aware chip and datacenter design → reduced hot spot peak heat flux
- Hot spot adapted cooling architectures → minimal pumping power and thermal mixing
Phonon Transport Engineering

Investigation:
- Phonon relaxation times in channels
- Vibrational matching at interfaces
- Phonon tunneling in superlattice structures

Molecular Dynamics Modeling:
- Phonon transport considered, no electrons → valid in dielectrics

Hot spot mitigation in SOI channel:

Solid to fluid phonon transport engineering:

Silane: hydrophobic

Silanol: hydrophilic

Improved phonon coupling at hydrophilic interfaces
Slip Flow Induced Pressure Drop Reduction

Super-hydrophobicity:
- Micron / nano-sized topography with low surface free energy
- Water droplet contact angle close to 180°C
- Pressure stability: according to Laplace pressure $P \sim 1/r$

Pressure drop reduction:
- Slip length as a result of finite velocity at fluid-air interface
- If slip length 1/10 of the hydraulic diameter
 \rightarrow 60% reduction in pressure drop

![Lotus-Effect](image)

Three-phase Cassi-state

(Ou 04)
Flow-Boiling Loop

- Cooling with dielectric refrigerants R236fa and R245fa
 - Remove same chip heat flux
 - Eliminates risk for electronics

- More complex and more expensive to build and run
 - High system pressure (> 2 bar / 28 psi)
 - Many more control points needed
Multi-Core Architecture: Communication Bandwidth Limit

Cache – core balancing at constant off-chip bandwidth

- Cores share constant off-chip bandwidth
- Core proportional system performance demands cubic cache size scaling
- Total chip area increase
 - signal delay in wires
 - lithographic limit reached (~4cm²)

Solution: Vertical integration

Wilfried Haensch 08
Limits of Traditional Back-Side Heat Removal

Guidelines from a thermal perspective:
- MPU as close as possible to the cold plate
 - Lower peak temperature → high heat flux is conducted through minimum number of layers
 - Memory can handle 15K higher junction temperatures
- Non-identical hot spot locations

Unacceptable:
- Two identical MPU’s with overlapping hot spot
- More than two MPU layers

Heat removal limit constrains electrical design
Interlayer Thermal Management

Interlayer cooled chip stack

- Hydraulic diameter: 25-100µm
- Flow rate 1/10 of traditional cold plates

Interconnect density

Pitch optimum: electrical 1 - 100µm, cooling 50-200µm

Interconnect compatible heat transfer structures

- Microchannel
- Pin fin

Convective interlayer heat removal scales with the number of stacked tiers
Scalable Heat Removal by 3D Interlayer Cooling

- 3D integration will require interlayer cooling for stacked logic chips
- Bonding scheme to isolate electrical interconnects from coolant
- Heat removal scales with the number of dies

- Cool between logical layers with optimal vias
 - Best performance with 200 μm pin fins
 - Through-silicon via height limit, typically 150μm
 - Microchannel, pin fins staggered/in line, drop shape

Through silicon via with bonding scheme

- Interlayer cooling of 3D stacked chips
 - Remove 180 W/cm² per layer or
 - Remove 7.2 KW from 10 layers with 4 cm²

Interconnect compatible heat transfer structures

- Microchannel
- Pin fin inline / staggered
Electro-Thermal Co-Design

Chip design
- Power map
- Electrical interconnects

Heat Transfer Building Blocks
- Efficient heat removal
 - Heat transfer structure
 - Modulation of heat transfer structure
- Increase in local hot spot flow rate
 - Fluid focusing

Heat Transfer Structure Design
- Optimization
 - Power map
 - Interconnects
 - Pressure
 - Flow rate
 - Fluid
 - Geometry
 - Temp. map
 - Pumping power

Feedback
Experimental Validation: Pyramid Chip Stack

Thermal Demonstrator:
- Three active tiers, cooled with four cavities
- Polyimide bonding → represents wiring levels
- Multi-scale modeling accuracy validated (+/-10%)

Realistic Product Style Stack:
- Aligned hot-spot heat flux of 250W/cm² possible

Interlayer cooled chip stack

Random power map
Zero-Emission Data Centers

- High-performance chip-level cooling improves energy efficiency AND reduces carbon emission:
 - Cool chip with $\Delta T = 20^\circ C$ (previously 75$^\circ C$)
 - and cool datacenter with $T > 60^\circ C$ (170 F) hot water; no chillers are required anymore
 - Re-use waste energy in moderate climate, e.g., heat 700 homes with waste heat from 10 MW datacenter

- Necessity for carbon footprint reduction
 - EU, IPCC, Stern report targets

- Note:
 - Chillers use ~50% of datacenter energy
 - Space heating ~30% of carbon footprint

Thermal Energy Re-Use

- **Zero-emission concept**
 - valuable in all climates
 - Cold and moderate climates: **energy savings** (no chiller required) and **energy re-use**
 - for >60°C outlet, district heating
 - Hot climates: **energy savings** “only”
 - (no chiller required)

- **Europe: 5000 district heating systems**
 - Distribute 6% of total thermal demand
 - Thermal energy from datacenters easily absorbed
 - Largest sustainable energy source
 - **Thermal re-use: 3X (wind + solar)**

![Diagram](image)
Energy and Emission Conventional Data Centers

Net Emission: 100%

Chiller

Low-grade heat

Heat wasted: to air

Power Station

High-grade heat

Heat wasted: to air

CO₂

CO₂
Advanced Thermal Packaging

Conventional Data Centers with Energy Re-Use

Net Emission: 70%

Heat re-used:
district heating, etc.

Heat wasted:
to air

High-grade heat

Medium-grade heat

Chiller

Power Station

CO2

CO2

Net Emission: 70%
Zero – Emission Data Centers

Net Emission: <15%

Medium-grade heat

Heat re-used: district heating, etc.

High-grade heat

Heat re-used: Industry, etc.

Power & Heat Station

\[\text{CO}_2\]

\[\text{CO}_2\]
Evolution of Liquid Cooled Systems

Left: Rear door cooler removing heat from air with cold water

Right: P575 with cold water processor cooling

- Water slowly approaches chips…..
- Water cooled CRACs / CRAHs in Datacenters
- Rear door coolers, intercoolers etc. in Racks
- The closer water comes the hotter it can be while having the same cooling performance
The QPACE Project

QPACE = Quantum Chromodynamics PArallel computing on CEll

- Research collaboration of IBM Development and European universities and research institutes
- Goal to build a prototype of a cell processor-based supercomputer.

- Funded by the German Research Foundation (DFG – Deutsche Forschungsgemeinschaft) as part of a Collaborative Research Center (SFB – Sonderforschungsbereich [TR55]).
The QPACE System

- **Root Card** (16 per rack)
- **Node Card** (256 per rack)
- **Backplane** (8 per rack)
- **Rack**
- **Power Supply and Power Adapter Card** (24 per rack)
Warmwater Cooled System

- 56 coldplates/backplanes (8 per rack)
- $32 \times 56 = 1792$ nodecards

- 100% energy recovery with warm water operation $35^\circ \text{C} (100 \ \text{F})$
- Medium thermal resistance

- Gottfried Goldrian, Michael Malms, Juergen Marschall, and Harald Pross
 IBM Research & Development, Boeblingen, GER
First Prototype at IBM Rüschlikon

- Reduce cooling energy by tailored water cooling system
 - *Cooling the chip with “hot” water (up to 60°C / 170 F)*
 - *Free cooling: no energy-intensive chillers needed*

- Reuse waste heat for remote heating
 - *The prototype reuses 75% of the energy for remote heating*
 - *Obtain recyclable heat (60°C) for remote heating.*
 - *Best in a cold climate with dense population*

- Prototype
 - *Similar Power of CPU and main board for air / liquid 60°C cooled version*
 - *Large fan power reduction*
 - *Liquid pump much more efficient and can vary flow at the rack level*

![Diagram of Heat Pipe and Collector](image)

Experimental validation: Inlet temperatures up to 60°C / 170 F
Technical Objectives for Aquasar System

1. QS/HS22 Blades with fluid-loop

2. Fully populated BladeCenter® servers with manifold

System uses a mixed population of 11 QS22 IBM PowerXCell 8i and 3 H22 Intel Nehalem Blades per Blade Center® server.

3. Populated Rack with Blade Center® servers and pumps

Two Blade Center® servers are liquid cooled and one is air cooled for reference. The rack also holds communication equipment and a storage server. The closed cooling loop holds 10 liters of water, the coolant flow is 30 liters per minute.

4. Connection to heat distribution system of ETH for 50-60°C hot water
Aquasar: Objectives and Deliverables

Objectives

- Use high-performance “hot”-water cooling to allow 2x energy cost reduction and large reduction of carbon emission
- Show that “zero”-emission datacenter operation is possible & profitable
- Validate concept and accelerate path to commercialization

Deliverables and Next Steps

- Zero-emission datacenter prototype (2 hot water cooled blade centers in a rack)
- Deploy system with 33 QS22 Cell blades + 9 HS22 Intel Nehalem blades at ETH
- Joint IBM-ETH-EPFL CCEM project to started August 2009
- 3-year CCEM project to optimize system for 100% energy recovery at > 60°C / 170 F
- Optimize efficiency and carbon footprint with different loads and clock speeds
- Use experience to create future standards and best practices for datacenter operation with Green Grid
Aquasar: Milestones and Status

Current Status
- Cooling loops for blades and blade centers designed and conversion to hot water cooling pending
- ETH location is being prepared to connect system to water cooling system

Milestones
- December 2009: Hot water cooled components assembled (blade center and rack)
- April 2010: Hybrid Cell/Nehalem System operative and initial parameters study completed and system connected to ETH energy re-use.

Target
- Reach world record in performance (MFlops/W) and low emission (MFlop/gCO₂)
- Lead standardization for future datacenters
- PUE_reuse less than 1

⇒ This FOAK will deliver an innovative solution to run future datacenters
Going Green Impact Tool

- Assess a client's data center with two basic scenarios:
 - (A) Status quo and no green solutions are implemented
 - (B) Green solutions are implemented
- Assess energy efficiency and financial impact of scenario A and B
- Simplified total cost of ownership (TCO) analysis
- Run a ROI analysis of a project
- Contact: Hannes Engelstaedter
Summary

- Thinking global about energy usage
 - Total cost of ownership perspective
 - Demand and supply of sensible heat
 - Thermal energy re-use

- Energy re-use in liquid cooled data centers
 - Reduction of thermal resistance from junction to coolant by chip water cooling
 - Optimization of exergy efficiency

- Aquasar low-emission demonstrator
 - Cooling chips with “hot” water to obtain recyclable heat (65°C / 178 F) for remote heating
 - Best in a cold climate with dense population
 - Free cooling in all climates: No energy-intensive chillers needed

- Aquasar specifications
 - Saves 40% of energy
 - Reduces emission by 85% through heat re-use on ETH campus
Main Messages and Next Steps

- **Key Component for Future Datacenters**
 - Chip cooling technology exists but needs to be combined with current computers
 - Centralized computing more efficient and emission free

- Roadmap for large efficiency increase in 10 years
 - 3D interlayer cooling and electrical-thermal co-design

Next Steps

- Optimization of coolant temperature as function of demand and supply

- **Scale up to full size HPC and business data centers: We are ready are you ready as well?**

- Thermal energy re-use in solar collectors
Thermal Packaging Leverage in Concentrated Photovoltaic

Concentrated photovoltaic

- Expensive triple junction cells with 41% peak cell-efficiency
- Chip cost leverage by sun concentration (today 50 to 200x)
- Concentration limited by junction temperature (efficiency, reliability)

Liquid-cooled CPV-unit:
high-performance thermal management enables 1000x sun concentration
→ Potential for cost reduction

Heat flux (@1000x): 100W/cm²
Re-Use: Concentrated Photovoltaic serves Desalination

Worldwide socio-ecological challenge of the 21th century

- Energy demand
- Fresh water supply

→ Locations with high sun irradiation and scarce fresh water resources coincide
Acknowledgment

- Advanced Thermal Packaging Group Members
 Thomas Brunschwiler, Werner Escher, Wulf Glatz, Javier Goicochea, Ingmar Meijer, Stephan Paredes, Brian Smith, Reto Waelchli, Ryan Linderman

- Microfabrication team
 Rene Beyeler, Daniele Caimi, Ute Drechsler, Urs Kloter, Richard Stutz, Kurt Wasser, and Martin Witzig

- IBM Boeblingen Research and Development GmbH (Germany)
 Gottfried Goldrian, Michael Malms, Juergen Marschall, Harald Pross, and Wolfgang Zierhut

- IBM Research Yorktown (USA)
 Paul Andry, Evan Colgan, Claudius Feger, Winfried Haensch, Hendrik Hamann, Theodore vanKessel, Ken Marston, Yves Martin, John Maegerlein, and Thomas Theis

- IBM Server and Technology Group in East Fishkill and Poughkeepsie (USA)
 Pepe Bezama, Kamal Sikka, Michael Ellsworth, Roger Schmidt, and Madhu Iyengar

- IBM Austin and other locations (USA)
 Dave Frank, Vinod Kamath, Hannes Engelstaedter

- Financial Support:
 IBM Zurich Research Laboratory, IBM Research FOAK program, Swiss Government KTI Projects, EU FP7 project NanoPack

Thank your for your attention
Literature and Links

Youtube Video on Zero-Emission Datacenter: http://youtube.com/watch?v=1J7KpgozpRs&feature=user

