How to proceed when 1 000 call agents tell you: ’My Computer is slow‘

Tobias Oetiker <tobi@oetiker.ch>

OETIKER+PARTNER AG

22nd Large Installation System Administration Conference
boot up

- users blame IT performance
- stop watch and heisenbugs
- sysinternals tools
- autoit and winspy
- sorry, no quick fix
- but we can monitor it
boot up

- users blame IT performance
- stop watch and heisenbugs
- sysinternals tools
- autoit and winspy
- sorry, no quick fix
- but we can monitor it
boot up

- users blame IT performance
- stop watch and heisenbugs
- **sysinternals tools**
- autoit and winspy
- sorry, no quick fix
- but we can monitor it
boot up

- users blame IT performance
- stop watch and heisenbugs
- sysinternals tools
- autoit and winspy
- sorry, no quick fix
- but we can monitor it
boot up

- users blame IT performance
- stop watch and heisenbugs
- sysinternals tools
- autoit and winspy
- sorry, no quick fix
- but we can monitor it
boot up

- users blame IT performance
- stop watch and heisenbugs
- sysinternals tools
- autoit and winspy
- sorry, no quick fix
- but we can monitor it
design goals

- passive monitoring from users perspective
- let users give their input
- minimal impact
- simple setup and update
- central data store
design goals

- passive monitoring from users perspective
- let users give their input
- minimal impact
- simple setup and update
- central data store
design goals

- passive monitoring from users perspective
- let users give their input
- minimal impact
- simple setup and update
- central data store
design goals

- passive monitoring from users perspective
- let users give their input
- minimal impact
- simple setup and update
- central data store
design goals

- passive monitoring from users perspective
- let users give their input
- minimal impact
- simple setup and update
- central data store
three tools

- CPV monitor: observe the system
- CPV reporter: easy problem reporting
- CPV explorer: view the results
three tools

- CPV monitor: observe the system
- CPV reporter: easy problem reporting
- CPV explorer: view the results
three tools

- CPV monitor: observe the system
- CPV reporter: easy problem reporting
- CPV explorer: view the results
Look it’s perl honey!

- **AutoIt**
 - use Win32::GuiTest;
 - use Win32::API;
 - use Win32::OLE;
 - use Win32::GUI;
 - use FSA::Rules;
 - use threads;
Look it’s perl honey!

- AutoIt
- `use Win32::GuiTest;`
- `use Win32::API;`
- `use Win32::OLE;`
- `use Win32::GUI;`
- `use FSA::Rules;`
- `use threads;`
cpv monitor and perl/CPAN

Look it’s perl honey!

- AutoIt
- use Win32::GuiTest;
- use Win32::API;
- use Win32::OLE;
- use Win32::GUI;
- use FSA::Rules;
- use threads;
Look it’s perl honey!

▷ AutoIt
▷ use Win32::GuiTest;
▷ use Win32::API;
▷ use Win32::OLE;
▷ use Win32::GUI;
▷ use FSA::Rules;
▷ use threads;
Look it’s perl honey!

- AutoIt
- use Win32::GuiTest;
- use Win32::API;
- use Win32::OLE;
- use Win32::GUI;
- use FSA::Rules;
- use threads;
Look it’s perl honey!

- AutoIt
- use Win32::GuiTest;
- use Win32::API;
- use Win32::OLE;
- use Win32::GUI;
- use FSA::Rules;
- use threads;
Look it’s perl honey!

- AutoIt
 - use Win32::GuiTest;
 - use Win32::API;
 - use Win32::OLE;
 - use Win32::GUI;
 - use FSA::Rules;
 - use threads;
cpv system overview
cpv monitor structure
lesson #1: fsm are cool
lesson #1: seemingly simple
lesson #1: complexity trap
cpv monitor
cpv monitor monitor
Application XYZ just died (AGAIN !!!!)
cpv explorer
thinking BIG

wants

- ~ 1500 clients in the call-center
- dynamic configuration
- individual profiles

infrastructure

data store : PostgreSQL
configuration : Apache, CPVservice.cgi
analysis : Apache, Qooxdoo, CPVjson.cgi, Gnuplot
thinking BIG

wants

► ~ 1500 clients in the call-center
► dynamic configuration
► individual profiles

infrastructure

data store : PostgreSQL
configuration : Apache, CPVservice.cgi
analysis : Apache, Qooxdoo, CPVjson.cgi, Gnuplot
thinking BIG

wants

- ~ 1500 clients in the call-center
- dynamic configuration
- individual profiles

infrastructure

data store : PostgreSQL
configuration : Apache, CPVservice.cgi
analysis : Apache, Qooxdoo, CPVjson.cgi, Gnuplot
thinking BIG

wants

- ~ 1500 clients in the call-center
- dynamic configuration
- individual profiles

infrastructure

data store : PostgreSQL
configuration : Apache, CPVservice.cgi
analysis : Apache, Qooxdoo, CPVjson.cgi, Gnuplot
thinking BIG

wants

- ~ 1500 clients in the call-center
- dynamic configuration
- individual profiles

infrastructure

data store : PostgreSQL
configuration : Apache, CPVservice.cgi
analysis : Apache, Qooxdoo, CPVjson.cgi, Gnuplot
thinking BIG

wants

► ~ 1500 clients in the call-center
► dynamic configuration
► individual profiles

infrastructure

data store : PostgreSQL
configuration : Apache, CPVservice.cgi
analysis : Apache, Qooxdoo, CPVjson.cgi, Gnuplot
observation tools

- **GetWindowText and friends**
- Reading log files
- Windows WMI (Load, Processes)
- Active Probing (Ping, HTTP)
- HTTPAnalyzer ($$$) for http(s)
- Full Custom Probes
observation tools

▶ GetWindowText and friends
▶ Reading log files
▶ Windows WMI (Load, Processes)
▶ Active Probing (Ping, HTTP)
▶ HTTPAnalyzer ($$$) for http(s)
▶ Full Custom Probes
observation tools

- GetWindowText and friends
- Reading log files
- Windows WMI (Load, Processes)
- Active Probing (Ping, HTTP)
- HTTPAnalyzer ($$$) for http(s)
- Full Custom Probes
observation tools

- GetWindowText and friends
- Reading log files
- Windows WMI (Load, Processes)
- Active Probing (Ping, HTTP)
- HTTPAnalyzer ($$$) for http(s)
- Full Custom Probes
observation tools

- GetWindowText and friends
- Reading log files
- Windows WMI (Load, Processes)
- Active Probing (Ping, HTTP)
- HTTPAnalyzer ($$$) for http(s)
- Full Custom Probes
observation tools

- GetWindowText and friends
- Reading log files
- Windows WMI (Load, Processes)
- Active Probing (Ping, HTTP)
- HTTPAnalyzer ($$$) for http(s)
- Full Custom Probes
lesson #2: finding outlook errors

- outlook modal popup send button does not work
 - GetAsyncKeyState: Although the least significant bit of the return value indicates whether the key has been pressed since the last query, due to the pre-emptive multitasking nature of Windows, another application can call GetAsyncKeyState and receive the “recently pressed” bit instead of your application. The behavior of the least significant bit of the return value is retained strictly for compatibility with 16-bit Windows applications (which are non-preemptive) and should not be relied upon.

 - GetClassName(WindowFromPoint(GetCursorPos())) eq 'MsoCommandBar';
lesson #2: finding outlook errors

- outlook modal popup send button does not work
- GetAsyncKeyState: Although the least significant bit of the return value indicates whether the key has been pressed since the last query, due to the pre-emptive multitasking nature of Windows, another application can call GetAsyncKeyState and receive the “recently pressed” bit instead of your application. The behavior of the least significant bit of the return value is retained strictly for compatibility with 16-bit Windows applications (which are non-preemptive) and should not be relied upon.

- GetClassName(WindowFromPoint(GetCursorPos())) eq 'MsoCommandBar'；
lesson #2: finding outlook errors

- outlook modal popup send button does not work
- `GetAsyncKeyState`: Although the least significant bit of the return value indicates whether the key has been pressed since the last query, due to the pre-emptive multitasking nature of Windows, another application can call `GetAsyncKeyState` and receive the “recently pressed” bit instead of your application. The behavior of the least significant bit of the return value is retained strictly for compatibility with 16-bit Windows applications (which are non-preemptive) and should not be relied upon.

- `GetClassName(WindowFromPoint(GetCursorPos())) eq 'MsoCommandBar';`
lesson #3: WMGetText

- GetWindowText or WMGetText
- Application becomes real busy with WMGetText
- stay with GetWindowText
lesson #3: WMGetText

- GetWindowText or WMGetText
- Application becomes real busy with WMGetText
- stay with GetWindowText
lesson #3: WMGetText

- GetWindowText or WMGetText
- Application becomes real busy with WMGetText
- stay with GetWindowText
lesson #4: server issues

- 2008-10-27: 1,459 devices sent 2,417,807 samples
- 4 Core / 32-bit / 4 GB ram
- 40 days of data 100,000,000 samples
- index does not fit in ram
- too much data for processing
lesson #4: server issues

- 2008-10-27: 1,459 devices sent 2,417,807 samples
- 4 Core / 32-bit / 4 GB ram
- 40 days of data 100,000,000 samples
- index does not fit in ram
- too much data for processing
lesson #4: server issues

▶ 2008-10-27: 1,459 devices sent 2,417,807 samples
▶ 4 Core / 32-bit / 4 GB ram
▶ 40 days of data 100,000,000 samples
▶ index does not fit in ram
▶ too much data for processing
lesson #4: server issues

- 2008-10-27: 1,459 devices sent 2,417,807 samples
- 4 Core / 32-bit / 4 GB ram
- 40 days of data 100,000,000 samples
- index does not fit in ram
- too much data for processing
lesson #4: server issues

- 2008-10-27: 1,459 devices sent 2,417,807 samples
- 4 Core / 32-bit / 4 GB ram
- 40 days of data 100,000,000 samples
- index does not fit in ram
- too much data for processing
lesson #5: index compaction

- function based index
 - hours since 2007 is good for 7 years with 2 byte
 - 2 byte for metric id
 - 2 byte for workstation id
 - two WHERE conditions
lesson #5: index compaction

► function based index
► hours since 2007 is good for 7 years with 2 byte
► 2 byte for metric id
► 2 byte for workstation id
► two WHERE conditions
lesson #5: index compaction

- function based index
- hours since 2007 is good for 7 years with 2 byte
- 2 byte for metric id
- 2 byte for workstation id
- two WHERE conditions
lesson #5: index compaction

- function based index
- hours since 2007 is good for 7 years with 2 byte
- 2 byte for metric id
- 2 byte for workstation id
- two WHERE conditions
lesson #5: index compaction

- function based index
- hours since 2007 is good for 7 years with 2 byte
- 2 byte for metric id
- 2 byte for workstation id
- two WHERE conditions
lesson #6: random data reduction

- too much data for statistics
- how to get 12% of the samples?
- add 2 byte random value to each sample
- select all sample with rand < maxrand $\frac{12}{100}$
lesson #6: random data reduction

- too much data for statistics
- how to get 12% of the samples?
 - add 2 byte random value to each sample
 - select all sample with rand < maxrand $\frac{12}{100}$
lesson #6: random data reduction

- too much data for statistics
- how to get 12% of the samples?
- add 2 byte random value to each sample
- select all sample with rand < maxrand \(\frac{12}{100} \)
lesson #6: random data reduction

- too much data for statistics
- how to get 12% of the samples?
- add 2 byte random value to each sample
- select all sample with rand < maxrand $\frac{12}{100}$
Lesson #7: threaded perl

- works very well on win32
- full copy — lots of memory
- save require modules after creating the thread
- only thread where really necessary
lesson #7: threaded perl

- works very well on win32
- full copy — lots of memory
- save require modules after creating the thread
- only thread where really necessary
lesson #7: threaded perl

- works very well on win32
- full copy — lots of memory
- save require modules after creating the thread
- only thread where really necessary
lesson #7: threaded perl

- works very well on win32
- full copy — lots of memory
- save require modules after creating the thread
- only thread where really necessary
Lesson #8: Measuring Boot and Logon Time

- GWP boot
- Services.exe started
- Explorer.exe or CPV.exe started

Key Events:
- WMI SystemUpTime
- WMI Process CreateDate
- WMI LogonSession StartTime
- WMI Process CreateDate
lesson #9: detecting crashes

- no wait but process handle
 - no signals only exit codes
 - 0xC0000005 - segfault
 - 0x00000103 - still running
 - TerminateProcess can define exit code

Implementation
- find active window
- attach process handle
- poll for exit code
lesson #9: detecting crashes

- no wait but process handle
- no signals only exit codes
 - 0xC0000005 - segfault
 - 0x00000103 - still running
- `TerminateProcess` can define exit code

Implementation
- find active window
- attach process handle
- poll for exit code
lesson #9: detecting crashes

- no wait but process handle
- no signals only exit codes
- \texttt{0xC0000005} - segfault
- \texttt{0x00000103} - still running
- \texttt{TerminateProcess} can define exit code

Implementation

- find active window
- attach process handle
- poll for exit code
lesson #9: detecting crashes

- no wait but process handle
- no signals only exit codes
- 0xC0000005 - segfault
- 0x00000103 - still running
- **TerminateProcess** can define exit code

Implementation

- find active window
- attach process handle
- poll for exit code
lesson #9: detecting crashes

- no wait but process handle
- no signals only exit codes
- 0xC0000005 - segfault
- 0x00000103 - still running
- `TerminateProcess` can define exit code

Implementation

- find active window
- attach process handle
- poll for exit code
lesson #9: detecting crashes

- no wait but process handle
- no signals only exit codes
- 0xC0000005 - segfault
- 0x00000103 - still running
- `TerminateProcess` can define exit code

Implementation

- find active window
- attach process handle
- poll for exit code
lesson #9: detecting crashes

- no wait but process handle
- no signals only exit codes
- 0xC0000005 - segfault
- 0x00000103 - still running
- `TerminateProcess` can define exit code

Implementation

- find active window
- attach process handle
- poll for exit code
lesson #9: detecting crashes

- no wait but process handle
- no signals only exit codes
- 0xC0000005 - segfault
- 0x00000103 - still running
- terminateProcess can define exit code

Implementation

- find active window
- attach process handle
- poll for exit code
lesson #10: application hangs - symptoms

confirm Ctrl+Alt+Delete

Everything you need from a clock. It includes a ticking second hand, minute hand, and hour hand. This Javascript clock comes with 16 positions which...
lesson #10: application hangs - symptoms

Everything you need from a clock. It includes a ticking second hand, minute hand, and hour hand. This Javascript clock comes with 16 positions which...
lesson #10: application hangs - symptoms

Everything you need from a clock. It includes a ticking second hand, minute hand, and hour hand. This Javascript clock comes with 16 positions which...
lesson #10: application hangs - symptoms

Everything you need from a clock. It includes a ticking second hand, minute hand, and hour hand. This Javascript clock comes with 16 positions which
lesson #10: application hangs - symptoms
lesson #10: application hangs - detection

- dead apps don’t process messages
 - explorer fakes responsiveness

Implementation

- find active window
- window ping: SendMessage WM_NULL
- wait until the window is back
lesson #10: application hangs - detection

- dead apps don’t process messages
- explorer fakes responsiveness

Implementation

- find active window
- window ping: SendMessage WM_NULL
- wait until the window is back
lesson #10: application hangs - detection

- dead apps don’t process messages
- explorer fakes responsiveness

Implementation

- find active window
 - window ping: SendMessage WM_NULL
 - wait until the window is back
lesson #10: application hangs - detection

▶ dead apps don’t process messages
▶ explorer fakes responsiveness

Implementation

▶ find active window
▶ window ping: SendMessage WM_NULL
▶ wait until the window is back
Lesson #10: Application hangs - detection

- Dead apps don’t process messages
- Explorer fakes responsiveness

Implementation

- Find active window
- Window ping: SendMessage WM_NULL
- Wait until the window is back
positive

- CPV reporter - being part of the solution
- CPV explorer - data accessibility
- case: CRM crash detection
- ongoing: webapp monitoring
- structured problem solving
- closed feedback loop
- SLA benchmarks
positive

- CPV reporter - being part of the solution
- CPV explorer - data accessibility
 - case: CRM crash detection
 - ongoing: webapp monitoring
 - structured problem solving
 - closed feedback loop
 - SLA benchmarks
positive

- CPV reporter - being part of the solution
- CPV explorer - data accessibility
- case: CRM crash detection
- ongoing: webapp monitoring
- structured problem solving
- closed feedback loop
- SLA benchmarks
positive

- CPV reporter - being part of the solution
- CPV explorer - data accessibility
- case: CRM crash detection
- ongoing: webapp monitoring
- structured problem solving
- closed feedback loop
- SLA benchmarks
positive

- CPV reporter - being part of the solution
- CPV explorer - data accessibility
- case: CRM crash detection
- ongoing: webapp monitoring
- structured problem solving
- closed feedback loop
- SLA benchmarks
positive

- CPV reporter - being part of the solution
- CPV explorer - data accessibility
- case: CRM crash detection
- ongoing: webapp monitoring
- structured problem solving
- closed feedback loop
- SLA benchmarks
positive

- CPV reporter - being part of the solution
- CPV explorer - data accessibility
- case: CRM crash detection
- ongoing: webapp monitoring
- structured problem solving
- closed feedback loop
- SLA benchmarks
challenges

- CPV drama triangle - victim / rescuer
- who is begin observed
- mapping the human ways
- side effects
- high observability assumptions
challenge

- CPV drama triangle - victim / rescuer
- who is begin observed
- mapping the human ways
- side effects
- high observability assumptions
challenge

- CPV drama triangle - victim / rescuer
- who is begin observed
- mapping the human ways
- side effects
- high observability assumptions
challenge

➤ CPV drama triangle - victim / rescuer
➤ who is begin observed
➤ mapping the human ways
➤ side effects
➤ high observability assumptions
challenge

- CPV drama triangle - victim / rescuer
- who is begin observed
- mapping the human ways
- side effects
- high observability assumptions
future work

- DLL injection
- webapps, webapps, webapps
- dealing with the data
future work

- DLL injection
- webapps, webapps, webapps
- dealing with the data
future work

- DLL injection
- webapps, webapps, webapps
- dealing with the data
Questions
Tobi Oetiker <tobi@oetiker.ch>
OETIKER+PARTNER AG

Commercial Contact:
Claus Henning Simon <ClausHenning.Simon@swisscom.com>
Swisscom IT Services AG