
Portable Desktop Applications Based on P2P
Transportation and Virtualization

Youhui Zhang, Xiaoling Wang, and Liang Hong – Tsinghua University, Beijing, China

ABSTRACT

Play-on-demand is usually regarded as a feasible access mode for web content (including
streaming video, web pages and so on), web services and some Software-As-A-Service (SaaS)
applications, but not for common desktop applications. This paper presents such a solution for
Windows desktop-applications based on lightweight virtualization and network transportation
technologies which allows a user to run her personalized software on any compatible computer
across the Internet even though they do not exist on local disks of the host.

In our approach, the user’s data and their configurations are stored on a portable USB device.
At run time, the desktop applications are downloaded from the Internet and run in a lightweight
virtualization environment in which some resource-accessing APIs, such as registry, files/
directories, environment variables, and the like, are intercepted and redirected to the portable
device or network as needed. Because applications are ‘‘played’’ without installation, like
streaming media, they can be called ‘‘streaming software.’’ Moreover, to protect software vendors’
rights, access control technologies are used to block any illegal access. In the current imple-
mentation, P2P transportation is used as the transport method. However, our design actually does
not rely on P2P, and another data delivery mechanism, like a dedicated file server, could be
employed instead to make the system more predictable.

This paper describes the design and technical details for this system, presents a demo
application and evaluates it performance. The proposed solution is shown to be more efficient in
performance and storage capacity than some of the existing solutions based on VM techniques.

Introduction

Today, a desktop PC is usually available at home,
at work and at some public places. However, the
diversified PCs, although running the same OS, cannot
provide the user with her unique personalized desktop
environment, which includes personal documents, fre-
quently-used applications and their customizations.

Several solutions to this dilemma have been pro-
posed. The first approach is thin-client computing [1].
CITRIX [2] is such a framework that allows a variety
of remote computers to connect to a Windows NT ter-
minal server to access a powerful desktop and its
applications. And the remote computers only execute
the graphical interface of the applications. For this
solution, users’ feeling would be bad when it is
employed across the Internet, because of the long net-
work latency.

Web-based application [3] is the second solution.
In this mode a web browser is employed as a running
platform for applications with the collaboration from a
remote server. However, applications running on the
platform are not compatible with the mainstream desk-
top environment: they should be rewritten for the web
situation.

The third approach is the virtual machine-based
solution. For example, IBM’s SoulPad [4] carries an
auto-configuring OS with a virtual machine monitor

on a small USB device. The computer boots from the
device and launches the virtual machine, thus giving
the user access to her personal desktop. Moka5 [5], a
commercial product, provides a similar solution. It
uses the local machine’s installed operating system
(Windows XP or Vista) and runs the virtual machine
(under VMPlayer) there. Recently, Moka5 also pro-
vided a network-based solution that users can down-
load the VM image and use it on-the-fly. Collective [6]
also propose a virtual-machine-based solution. It runs
virtual machines on a PC and downloads OS images
from Internet, rather than from the portable device.

The VM-based solution is promising because it is
fully compatible with the mainstream desktop environ-
ment. However, virtual machine will introduce fairly
substantial performance overheads. On one hand, as
mentioned in [4], the VMWare-based configuration of
SoulPad incurred a 26-29% increase in response time
for Office Productivity and Internet Content Creation
applications. And on the other, although the Xen virtu-
alization environment is claimed to incurred only a
2-8% [7] slowdown in general owing to its paravirtual-
ization architecture, it is necessary to modify the guest
OS to take advantage of this feature. Now, some hard-
ware-based virtualization acceleration can be used to
deploy VM transparently, but this acceleration can
introduce more overhead compared with the full soft-
ware-based solution [8], especially for workloads that

22nd Large Installation System Administration Conference (LISA ’08) 133

Portable Desktop Applications Based on P2P . . . Zhang, Wang, and Hong

perform I/O, create processes, or switch contexts
rapidly.

Moreover, carrying or downloading a whole
VM-based OS is not economical. For example, a com-
plete Windows XP installation occupies more than 1.5
GB disk space, which is too bulky for a tiny USB
flash disk or the current Internet access rate.

It is believed that application virtualization will be
the next frontier, and Software-As-A-Service (SaaS) is
a promising deployment mode for software. Therefore,
owing to the prevalence of portable storage devices and
the ubiquitous network access, we propose a solution
that combines the two technologies for any user to
‘‘ p l a y ’’ her personalized software without installation
anytime and anywhere conveniently. In this solution,
the user’s data and applications configurations are
stored on a portable USB device. While at run-time, the
desktop applications are streamed: downloaded from
the Internet on-the-fly and run in an OS-level virtual-
ization environment without installation.

In contrast to hardware-level virtual machine
technologies, OS-level technologies have the virtual-
ization layer positioned between the operating system
and application programs. Every virtualization envi-
ronment shares the same execution environment as the
host machine, and only retains any divergences from
the host as the VM’s local state. Therefore, such an
environment can have very small resource require-
ments and thus introduce only very limited overhead.

Under our approach, only personalized data and
documents are stored on the portable device. Each per-
sonalized application runs in an OS-level virtualiza-
tion environment that is layered on top of the local
machine’s Windows OS. At run-time, the virtualiza-
tion environment intercepts some resource-accessing
APIs, including those that access system registry, files/
directories, environment variables, and the like, from
these applications, and redirects them to those re-
sources stored on the portable device or network as
needed. For example, when one application accesses
My Documents, Desktop or some other personalized
configuration, it will reach the corresponding re-
sources on the portable device instead of the local disk
of the host machine.

In user’s view, she can access her personalized
applications and data conveniently on any compatible
computer, even though they do not exist on local disks
of the host. Moreover, because of the commonality of
frequently-used applications, P2P transportation and
the local look-aside cache can be used to improve the
access performance.

Compared with the VM-based method, the stor-
age capacity occupied by our solution is much smaller
than other VM-based approaches, and the performance
overhead introduced by virtualization is small. Of
course, it relies on the host computer to provide the
hardware resource as well as the compatible OS envi-
ronment.

In addition, protecting software vendors’ rights is
a necessary prerequisite for a successful deployment
mode. In our solution, only those processes running in
the virtualization environment can have the right to
access application files, and the user has to login a
remote server before she launches the environment.
Then, some mature billing mechanism can be em-
ployed, and illegal access will be prohibited.

In this paper, we first present the overview of our
design, followed by implementation details, including
how to run a software without installation, how to
make software streaming in a friendly usage-mode
based on file system filter and network transportation
technologies, as well as the access control implemen-
tation. Then the prototype is introduced, and perfor-
mance tests are presented. Finally, we present our con-
clusions, including comparison to of related works.

Design Philosophy

In our solution, a user can use her applications
when plugging the portable storage into a Windows
PC; and her personalized configurations, including
Desktop, My Documents, Favorites. Browser History,
Temporary Internet Files, Cookies. In addition, appli-
cations customizations (e.g., for a web browser, De-
fault Homepage, Internet Settings, Download Direc-
tory, Toolbars’ Positions, Recently Opened Docu-
ments) are restored just as if she were using her unique
desktop environment on her home computer. More-
over, no trace of her work will be left behind on the
host PC.

To provide these features, the following technical
challenges should be overcome:

• How to run a Windows application without
installation, including how to restore applica-
tions’ customizations and user’s personalized
configurations transparently and how to leave
no trace on the host PC.

• How to implement software streaming.
• How to enforce software licensing.

We will discuss each point separately below.

How to Run an Application Without Installation
Most Windows applications need to be installed

before they can run normally. Even for an application
that can work without installation, most of them save
their customizations into the system registry and/or
into configuration files located in some system fold-
ers. Then an application can be regarded as including
two parts: Part 1 is all of the files and folders and reg-
istry keys and environment variables created by its
installation process, and Part 2 is the customization
produced during the run time.

To conquer the challenge, we have to make Part1
portable and enable the application to run in a sandbox
where it can access and store the data associated with
Part 2 in an isolation mode. The OS-level virtualiza-
tion technologies are used to achieve these functions.

134 22nd Large Installation System Administration Conference (LISA ’08)

Zhang, Wang, and Hong Portable Desktop Applications Based on P2P . . .

Therefore, this work consists of two tasks:
1) An installation snapshot, and
2) A runtime system design.

which are presented as follows.

Installation Snapshot

To make Part 1 portable, the modifications made
by the application’s installation process must be cap-
tured. There are usually two types of modifications:
registry contents and files/folders. InstallWatch [9] is
used to complete the task. It is a system monitoring
tool that tracks changes to the computer’s hard disk,
registry, and .ini files when a new application is being
installed.

In our implementation, a target application is
installed on one clean Windows XP system. At the
same time, InstallWatch is running to log those files
created or modified in this process, as well as registry
additions and modifications. Then, the files/folders
created or updated are copied to a separated folder,
called the private folder, while the directory hierarchy
is retained. Similarly, the contents of the added/modi-
fied registry keys are collected to be stored in a sepa-
rated file, which is called the private registry file.

Runtime System

Now we have captured Part 1 of one application,
and the second issue is how to make it accessible by
the application’s executable file. API Interception is
employed to do so.

API interception means to intercept calls from
the application to the underlying running system and
reinterpret the calls. It is usually used to extend exist-
ing OS and application functionality without modifi-
cations of the source code. Detours [10], a library
developed by Microsoft Research Institute, are used to
intercept those APIs employed to access the system
registry and files/folders.

Owing to Detours, we have built Wrapper APIs
that inject a wrapper DLL into the target process vir-
tual address space as described in [10]. For example,
when an application uses an interpreted WIN32 API to
access the system registry, the wrapper API will be
called firstly. Our injected code deals with this request
before the original API – If one of the registry keys
contained in Part 1 is to be accessed, the injected code
can return the corresponding value from the private
registry; otherwise the original API will be called to
access the system resource. For requests for files and
folders, a similar mechanism is adopted.

This makes the portability feasible because the cus-
tomizations and files of an application have been isolated
from the OS. And any modification happened during the
run time will be store into the private registry or the pri-
vate folder instead of the system’s default position, while
read operations are done wherever the content exists.
Therefore no trace of application execution will be left
behind on the host PC.

Streaming Software
Once we have succeeded in making the user-spe-

cific application state portable, the pivotal issue be-
comes where to locate the installation snapshot. Put-
ting it on the portable device with the user’s private
data is not a bad idea. However, this approach disrupts
traditional approaches to software licensing. The dom-
inant licensing model for PC software permits use of
the software ‘‘on a single computer,’’ not ‘‘on a single
USB drive.’’ However, if they are placed on a network
for downloading on demand, some mature billing
mechanisms, like those employed in SaaS, can be used
to protect vendors’ rights.

Therefore, in the current implementation, appli-
cations are stored on the Internet and downloaded on
demand while users’ private data is still kept on the
portable device for privacy.

However, it can be difficult for ordinary users to
run applications transparently and quickly when stream-
ing software is used. Thus, we have implemented a
solution based on file system filter driver [11] technol-
ogy.

A file system filter driver intercepts requests tar-
geted at a file system. By intercepting the request
before it reaches its nominal target, the filter driver
can extend or replace functionality provided by the
original target. Owing to this feature, a file system vir-
tualization mechanism, which we call an anchor file,
is achieved to present users a friendly interface.

For example, when the user launches an exe-
cutable file, z:\abc.exe, the shell program will send a
serial of IRPs (I/O Request Packets) to the file module
of OS, which is intercepted by our filter driver. Then
the driver will deal with these IRPs and return results
directly rather than transfer those to the target. So,
while it looks like the z:\abc.exe is being accessed, in
fact the filter driver has transformed and redirected
these requests to an Internet location. z:\abc.exe is just
an anchor.

Those file system visits generated while the
application is running will be handled in a similar
way. In other words, our filter driver will judge
whether the installation snapshot should be accessed
or not. If the answer is yes, the drive will redirect the
requests to the remote location. Moreover, because of
the commonality of frequently-used applications, in
the current implementation P2P transportation and
look-aside cache are used to improve the access per-
formance. More details about the virtualization ap-
proach and4 software streaming are presented in the
next section.

Access Control
Copyright violation is a real problem that ham-

pers the software industry’s progress. In this play-on-
demand mode, it is especially important to prevent any
illegal access; otherwise, running software without
installation will be good news for illegal users.

22nd Large Installation System Administration Conference (LISA ’08) 135

Portable Desktop Applications Based on P2P . . . Zhang, Wang, and Hong

Therefore, before the user launches our own
shell program with the file system filter, she has to
identify herself and login to the server.

Moreover, as mentioned previously, users can
access the application files just like they are using the
local file system, so how to prevent the illegal down-
load is another key consideration. Otherwise, a user
can copy applications to her local disk and use them
without login.

In our solution, an access control mechanism is
implemented to protect some essential files (such as
the executable and DLL files of applications). It works
by allowing only certain processes in the virtualization
environment (like our own shell program) to access
those files. If the user attempts to use another program
(for example, explorer.exe) to copy one essential file
out, our filter driver will intercept those IRPs to iden-
tify whether they are issued from a legal process or
not. Because explorer.exe is a program outside of the
virtualization environment, its access will be denied.

Implementation

Virtualization Running Environment
Because there are some existing similar OS-level

implementations, like Progressive Deployment System
(PDS) [12] and Featherweight Virtual Machine (FVM)
[13], only a brief overview of our implementation is
presented here.

The captured installation snapshot can be divided
into six categories:

• Added registry set. It contains the entries cre-
ated by the installation.

• Modified registry set. It contains the entries
whose values or sub-keys have been modified
or deleted.

• Deleted registry set. Those entries deleted by
the installation are included. So that the entries
in this set will not be accessed during the run
time.

• Added file set. It is similar to the added registry
set, including new files and new folders created
by the installation.

• Deleted file set. It is similar to the deleted reg-
istry set.

• Modified folder set. For any file or folder in the
added/deleted file set, its parent folder will be
included in this set.
These six sets are not fixed. They may be modi-

fied when the application runs.
The private registry is a complete registry system

that provides access APIs just as Windows OS does. It
works like a small subset of WINE [14], which is an
open source implementation of the Windows API on
top of UNIX. In other words, our private registry pro-
vides another implementation of registry APIs.

When the target application is launched, the six
sets and registry contents will be initialized. The abso-
lute path is used to identify a single registry key and

such a map structure is maintained, which can map a
handle of any opened key to its full path. For example,
when one program opens the registry key ‘‘ H K C R \ .doc’’
the interception code will map the returned handle to
the path string. Then every time this handle is used, its
full path can be referred to.

The registry-related APIs below have been
wrapped.

Open/Create a Key (RegOpenKeyEx / RegCreateKeyEx)

Arguments of RegOpenKeyEx contain the han-
dle of an opened key and a null-terminated string indi-
cating the name of the subkey to open. Based on the
above-mentioned map, we can identify the absolute
path name for the key to open, and thus find out which
set it belongs to. If the key is in the added registry set,
it will be opened in the private registry; if it is in the
modified registry set, it will be opened in both the pri-
vate registry and the system registry. The two handles
referring to both keys are stored in another handle-
map structure that will be used in subsequent invoca-
tions, and the system handle is returned to the applica-
tion. If the key is in the deleted registry set, this invo-
cation fails. If the key is not present in any of the reg-
istry sets, then the original system API will be used.

Creating a key is often regarded as an open oper-
ation except that it will create a new key when the key
does not exist. In this case, the new key is created in
the private registry and its full path is inserted into the
added registry set. In addition, its parent key is moved
into the modified set.

Set Value of a Key (RegSetValueEx)

Any new value is always saved in the private
registry, and its parent key will be moved to the modi-
fied set (the exception is that it has been in the added
set).

Query/Enum Value of a Key (RegQueryValueEx /
RegEnumKeyEx / RegEnumValue /
RegQueryInfoKey)

If the key is in the added set, it will be queried
only in the private space. Similarly, the query will be
done in the system registry if the key does not exist in
any predefined set. The most complicated case occurs
when the key is in the modified set. Both of the pri-
vate and the system registries should be queried, and
the results will be merged before return. It means, if
there is any duplicated key, the private one should be
presented instead of the system one. The same method
is adopted for accesses to key values.

Close Key. (RegClosekey)

When closed, the key’s corresponding handles
must be released and removed from both maps.

Delete Key/Value (RegDeleteKey / RegDeleteValue)

If the key is in the added or the modified set, it
will be deleted from the private registry and inserted
into the deleted registry set. If it exists in the system

136 22nd Large Installation System Administration Conference (LISA ’08)

Zhang, Wang, and Hong Portable Desktop Applications Based on P2P . . .

registry, it will not be actually deleted. Instead we add
it into the deleted registry set. For subsequent accesses
later, we first check whether the key is in the deleted
registry set; if so, nothing is done but an error code is
returned. Deleting a value is handled in the analogous
way.

In summary, the principle is that any modifica-
tion is always saved in the private space while any
query will return the combination of results from both
registries. In addition, if there is any duplication, the
private registry has the higher priority.

Since the private folder is located in a portable
device whose drive letter will change on different
hosts, the registry value containing such a full path is
modified to represent the current position before
return.

For APIs that access the file system, a similar
method is adopted because folders can be regarded as
registry keys and files can be regarded as values.
Moreover, the copy on write (COW) mechanism is
applied at the whole file level when a file is modified
during run time.

For environment variables, the solution is much
simpler. As we know, a process will inherit environ-
ment variables from its parent process. In our imple-
mentation, a shell program is in charge of launching
any target application. Therefore, it can set any appli-
cation-specific variable before launching the target.

Streaming Software Based on File System Filter
Driver
In order to explain the implementation clearly,

we begin with an example operation.

The user inserts a USB device into the Windows
host and then our own shell program (with the filter
driver) is loaded automatically by an auto-run mecha-
nism. Thereafter, any file system I/O operation will be
intercepted.

The portable application is located on the USB
device, in z:\program files\abc\. But in fact the physi-
cal position of this folder is empty and the real appli-
cation is stored on a remote file server.Our shell pro-
gram presents a shortcut of this application to the user.

When the user clicks the shortcut to launch the
application, the shell program will send some IRPs,
including IRP_MJ_CREATE, IRP_MJ_DIRECTORY_CON-
TROL, IRP_MJ_READ, IRP_MJ_CLEANUP and IRP_MJ_
CLOSE.

IRP_MJ_CREATE is used to open the folder/file
and then one or more IRP_MJ_DIRECTORY_CONTROL
IRPs are issued to query the folder/file information,
followed by lots of IRP_MJ_READs to read the real
data. The last two IRPs end the operation series.

During this process, our filter driver handles all
IRPs issued to this folder/file entirely. Specifically, it
simulates the target to return folder/file information
(metadata) and data that are obtained from the network

server in reality. So, in the shell’s – and therefore the
user ’s – view, this application can be launched as a
local one.

Work Flow. During the start-up stage, our shell
program connects to the remote server to download all
metadata of the anchor files and folders. Because this
file system does not exist physically on the portable
device, these metadata must be retrieved first for pre-
sentation. Fortunately, their total size is very small,
which only delays the startup time for a few seconds.

All metadata are transferred to the filter driver,
which had learned previously which folders/files are
to be managed and what should be returned when they
are accessed.

As it runs, the portable application will issue
many IRPs and which will then be intercepted by this
driver. If an IRP is issued for metadata, it will be han-
dled by the driver itself. IRPs for file data will be
retransferred to another user-level module, the client
module, which will download the data from the net-
work.

Details of IRP handlers. Because no Fast I/O is
supported in our driver, any I/O request will generate
IRP operations. The IRPs below are intercepted (for
more info for IRP and Fast I/O, please refer to [11]).

CREATE IRP

When any file or folder is to be accessed, this is
always the first IRP. In its dispatch function, the full
path of the target is obtained using the ObQuery-
NameString API at first. If it is an object belonging to
the install snapshot, the target’s file object address will
be stored into an internal hash table. We know all sub-
sequent IRPs will carry their object addresses, so this
table can be used to check whether an IRP should be
handled by our dispatch functions or by the system
default route.

DIRECTORY CONTROL IRP

This IRP contains two subtypes: IRP_MN_
NOTIFY_CHANGE_DIRECTORY and IRP_MN_QUERY_
DIRECTORY. The first one can be skipped in our solu-
tion. The second is used to get information about all
files and subfolders of the target directory. The corre-
sponding metadata obtained at the startup stage will be
returned.

QUERY INFO IRP

It is used to query file metadata and can be han-
dled like the preceding one.

READ IRP

Its dispatch function will put the IRP into its
internal waiting queue and simultaneously signal a
waiting event to notify the client module that there is
some request to deal with. The module then reads the
request using the DeviceIoControl API and downloads
the requested data from the network. After download-
ing, it will call DeviceIoControl API to send the data

22nd Large Installation System Administration Conference (LISA ’08) 137

Portable Desktop Applications Based on P2P . . . Zhang, Wang, and Hong

to the driver. On receipt of the data, the filter com-
pletes that pending IRP.

In the current implementation, the driver waiting
queue can contain up to 5000 requests, which is
enough for most common use cases.

CLEANUP/CLOSE IRPs

This pair of IRPs always appears as the end of a
series of operations to one target. They remove the
responding target’s entry from the hash table when
present. At the same time, its dispatch function will
notify the client module that the access series finished.

P2P Transportation and Optimization. The
portable application can be downloaded through a sin-
gle dedicated server or it can be downloaded from mul-
tiple servers in parallel to speed up the process. Since
the implementation of a dedicated server is rather
straightforward, we use libtorrent [15], an open source
library that implements BitTorrent [16] protocol, to
achieve P2P transportation. Because P2P is a mature
technology, its technical details are skipped here.

In addition to speed up the access performance,
the client module creates a look-aside cache on the
USB device. We know that in BitTorrent a download-
able file is divided into many fixed-length pieces, with
each piece indexed by its hash value. So, we use a
content-based addressing scheme, similar to several
previously discussed in the literature [17] to imple-
ment a nonvolatile cache. When a particular piece is
accessed, the local cache will be first, avoiding a net-
work operation if the data is already present. When the
virtual environment exits, all cached data will be
stored for the next time.

The content-based addressing scheme brings us
three other benefits:

1. It can reduce the storage requirements because
content-addressing storage is also a good com-
pression mechanism.

2. Store files in this mode rather than storing them
directly can prevent users from recovering ap-
plication files from the cache.

3. Hash value-based indexing allows any tam-
pered content to be detected easily.

In addition, some pre-fetch technology is em-
ployed. Specifically, when one piece of a file is
requested, the whole file or even the whole application
to which that file belongs will begin to be downloaded.
Obviously this pre-fetch can be highly efficient.

Finally, the client machines are able to serve out
the applications themselves once they have them
cached, which is why it is called P2P.

So far, we have discussed only read operations.
So how does our approach handle write operations?

We know that most snapshot files are read-only;
only configuration files (including private registry
files mentioned earlier) will ever be modified. For
these files, the copy-on-write strategy is employed:

when a file is modified, it will be downloaded com-
pletely to the local USB device, and any subsequent
modification will happen locally. Note that there is no
coherency problem to worry about since modified files
belong to users’ personal customizations.

Access Control Based on WMI Service

Wi n d o w s Management Instrumentation (WMI)
[18] is the infrastructure for management data and oper-
ations on Windows-based operating systems. It can be
used to get information of all current processes (using
CreateToolhelp32Snapshot API) and can send corre-
sponding notifications when any process is created or
terminates (using ExecNotificationQuery Async API).

Based on these features, the client module cre-
ates the process-hierarchy structure at startup. During
the application’s running time, any new process’s ID
and their parents can be detected and captured. In this
way, a whole process hierarchy can be maintained in
real time.

The access control policy is based on process ID.
In our design, the root of the hierarchy is the process
ID of our shell program, which can access all installa-
tion snapshot files while any processes outside of the
hierarchy is forbidden. Furthermore, a process and its
offspring can only access the files belonging to its
own application. Therefore, when the client module
accepts a read request from the filter driver, it will
determine whether the original sender is an authorized
one or not based on the process hierarchy. Only legal
requests are allowed.

The Prototype

Overview

A prototype implementation of our solution has
been completed using VC 7.0. And many existing appli-
cations can be made portable, including MS Word 2003,
MS Excel 2003, MS PowerPoint 2003, Lotus Notes,
Photoshop, Internet Explorer 6.0, Outlook Express 6,
Wi n z i p , UltraEdit, FlashGet, Bittorrent and so on.

Of course, there are still some applications that
cannot currently be made portable using our approach.
For example, applications that have their own kernel
modules are not supported because our solution only
supports access- redirection for user-level resources.
Another problem is that the current implementation
does not consider Windows Side by Side technology
(SxS) [19] and so some new applications like Mi-
crosoft Office 2007 and Adobe Reader 8 are not sup-
ported. With SxS technology, applications can install
DLLs to version-specific directories and tell Windows
what version of the DLL should be used when they
load a DLL by that name. However, we plan to sup-
port this feature in the next version.

The whole work flow of the prototype is de-
scribed in Figure 1. Initially, installation snapshots of
applications are captured by the server and are stored

138 22nd Large Installation System Administration Conference (LISA ’08)

Zhang, Wang, and Hong Portable Desktop Applications Based on P2P . . .

on the data server, which also functions as the tracker
server for BitTorrent P2P transportation. When the
application runs, the virtualization environment is run-
ning on multiple clients that are connected with each
other for P2P data sharing.

Figure 1: The work flow.

The shell program of this prototype is a start-
menu-like GUI where the user can launch any portable
application as she operates the system’s Start menu.
Of course, these applications are located on the porta-
ble device instead of being installed on the host.

Besides portable applications, most personal fol-
ders such as My documents, My Desktop, Cache paths,
Te m p o r a r y Internet Files, etc., are also portable. For
example, when Outlook Express is launched from our
prototype, its email boxes are located on the portable
device, and other customizations, including the account
info and the email signature, etc. are personalized.
Moreover, all newly received emails, as well as modifi-
cations of its customization settings, are stored onto the
portable device so that the program is enabled to be
portable. In contrast, when Outlook Express starts from
the system’s start menu, all of its configuration settings
belong to the owner of the host. Once the portable
device is unplugged, no trace of work is left behind on
the host PC.

In addition, there are some visual indications to
users that they are running a portable application. For
example, when the portable Outlook Express is
launched, its title will be modified to ‘‘Outlook Ex-
press – Desktop2Go’’ by intercepting the CreateWin-
dow API, reminding the user not to save newly created
files to the local hard disk.

When the portal application exits, all modifica-
tions to the system registry and the file system are
stored on the portable device. Therefore, when the
application is launched again from a different com-
puter, the user’s latest modifications are present.

Additional Technical Details
Some Windows pre-installed applications, such

as IE and Outlook Express, are deeply integrated into
the OS, making it very difficult to separate them from
the operating system. On the other hand, this also
means that they are always available on a compatible
host. For such applications, only their customizations
and personalized data are made portable.

For example, when IE (located on the host sys-
tem) is launched from our GUI, it will run in the virtu-
alization environment and its registry APIs are inter-
cepted. Then, when it accesses registry entries that
store customizations, like Home Page, Download
Folder, Favorites, Browser History, Internet Tempo-
rary Files and so on, the interception code will return
values from the private registry so that the portable
personalized customizations are implemented.

For registry entries, our principle is that any
modification is always saved in the private space
while any query will return the combination of results
from both registries. In reality, lots of registry accesses
can be skipped. Most applications do not write their
implementation from stem to stern. Instead, many
standard Windows components will be employed. For
example, when an application shows an open file dia-
log, many registry accesses occur, but they are totally
transparent to the application since they are invoked
by system code. Therefore, registry accesses can be
divided into two categories: application-specific ones
that program developers complete intentionally and
ones generated from system components. The latter
can be ignored by the virtualization system.

For instance, Adobe Reader creates the key
‘‘ H K E Y _ L O C A L _ M A C H I N E \ S O F T WARE\Adobe\Acrobat
Reader ’’ to save its configurations. Therefore, only
those entries below this key handled in the manner
described above, and all other registry accesses are left
to the host system. Of course, differentiating the two
types of access depends on the specific application.
Fortunately, for Windows OS, some public publica-
tions, like [20], have explained which registry entries
are system-related.

Our last point is about shell folders mapping.
TEMP, HOMEPATH, USERPROFILE, APPDATA, and
other system directories are called shell folders in
Windows. Applications typically use them and consult
the system registry in order to locate the current user’s
My Documents, Desktop, and other personalized fold-
ers. Because these folders are also portable, accesses
to the related registry entries have to be redirected into
the private space. Specifically, the following registry
entries are also stored in the private registry:

• HKCU\Software\Microsoft\Windows\CurrentVersion\
Explorer\User Shell Folders

• HKCU\Software\Microsoft\Windows\CurrentVersion\
Explorer\Shell Folders

• HKLM\Software\Microsoft\Windows\CurrentVersion\
Explorer\User Shell Folders

22nd Large Installation System Administration Conference (LISA ’08) 139

Portable Desktop Applications Based on P2P . . . Zhang, Wang, and Hong

• HKLM\Software\Microsoft\Windows\CurrentVersion\
Explorer\Shell Folders

In this way, portable applications can transpar-
ently visit personalized folders located on the mobile
device.
Performance Testing

Application response times are the key metric of
our prototype’s usability. The time it takes for applica-
tions to respond to user-initiated operations is a mea-
sure of what it feels like to use the system for every-
day work.

The test platform is a Windows XP SP2 PC,
equipped with 1.25 GB DDR SDRAM, one Intel Pen-
tium 1.6 GHz CPU and the 100 Mb Ethernet. The hard
disk is one Hitachi IC25N030ATMR04 Travelstar.

The Common Desktop Application (CDA)
benchmark is used. It automates the execution of com-
mon desktop applications of the Microsoft Office suite
and IE browser in the Windows XP environment. Dur-
ing this process, nine local documents (including three
Word files, three Excel sheets and three PowerPoint
presentations) are opened, edited and closed automati-
cally, while three instances of IE are running as the
background load. Finally, all applications are closed
and the running time is logged.

In all test cases, the pre-fetch mechanism is
enabled.

Test Case 1: Perfect Local Cache

In this case, the look-aside cache performance is
assumed to be perfect: all reads are cache hits.

System Normalization
Configuration Workload Value
Physical, IDE 39.6 s 1.000
Virtual, IDE 43.2 s 1.091
Virtual, USB 47.9 s 1.210

Table 1: Response times.

Table 1 shows the running time averages across
three runs of the benchmark. The row labeled ‘‘Physi-
cal, IDE’’ represents our baseline configuration, appli-
cations running on the physical machine and from the
internal IDE drive, meaning our environment is not
deployed.

The row labeled ‘‘Virtual, IDE’’ corresponds to
running applications in the virtualization environment,
with the cache located on the internal IDE drive. It is
intended to isolate the overhead of virtualization from
the overhead of using an external drive.

The row labeled ‘‘Virtual, USB’’ corresponds to
locating the cache on the PocketDrive connected via
USB 2.0.

The results show that moving to a VM-based
configuration with the cache on the IDE drive incurred
a 9.1% increase in response time. Moving to a VM-
based configuration with the cache on the USB drive

incurred a 21.0% increase over the baseline. So, the
overhead introduced by virtualization (including the
user-level virtualization and filter driver) is much
smaller than that due to using external storage for the
cache.

Of course, perfect cache performance is not the
common case. However, if the user always uses some
limited portable applications and if the cache space is
large enough, we believe the cache will behave very
nicely.

Test Case 2: No Local Cache

For this case, our testing client is located in the
China Education & Research Network (CERN) while
the BitTorrent tracker server is placed in an IDC out-
side of CERN; and a P2P transportation environment
is constructed. For more information about this infra-
structure, please refer to [16]. In this case, the local
cache is disabled. But this does not mean that there is
no cache in the whole system: the default file cache of
OS is still present.

We can identify three subsets of the runs for this
test case:

• One Remote Peer. In this case, one remote
peer (located outside of CERN) is running,
which holds all portable applications. So, as the
testing client starts to access files, it can down-
load them from this peer as well as the tracker
server.

• One Local Peer. In this case, one local peer
(located in the same 100 Mb Ethernet-LAN as
the testing client) is running, which holds all
portable applications. So, as the testing client
starts to access files, it can download them
from this peer as well as the tracker server.

• More Than One Peer. In this case, two, four,
or eight local peers (located in the same LAN
as the testing client) are running, and each of
them holds all portable applications. So, as the
testing client starts to access files, it can down-
load them from these peers as well as the
tracker server.

The test results show that when there are only
limited, remote peers, the system performance is fairly
slow compared with the baseline. However, we be-
lieve in reality the situation will be not so pessimistic:

• First, in our observation, only the startup pro-
cess of an application shows slowdown, and
when the application’s GUI is presented, the
operation delay is acceptable. Because it is dif-
ficult to accurately define what the startup time
is and we cannot separate it from the whole
operation time, we can only present our subjec-
tive feelings here.

• Secondly, because most users access only a
limited number of frequently-used applications,
we can expect the local cache to exhibit a high
hit ratio.

140 22nd Large Installation System Administration Conference (LISA ’08)

Zhang, Wang, and Hong Portable Desktop Applications Based on P2P . . .

• Finally, in our tests human response time was
not emulated. However, in reality, the natural
delays that occur when people are working are
helpful to hide the background download la-
tency.

System Normalization
Configuration Workload Value

Physical, IDE 39.6 s 1.000
One Remote Peer 201.9 s 5.098
One Local Peer 82.3 s 2.078
Two Local Peers 65.3 s 1.649
Four Local Peers 52.2 s 1.318
Eight Local Peers 50.9 s 1.285

Table 2: Response time.

Discussion

Software Licensing

Virtualization disrupts traditional approaches to
software licensing. For instance, the arguably domi-
nant licensing model for PC software permits use of
the software ‘‘on a single computer.’’ Is it necessary to
modify it to ‘‘for one person’’?

Alternatively, we can extend this solution to an
Internet-based service, where the private space will be
located in a network server and accessible to every
connected computer. Then, any access to the applica-
tions can be logged by the service-provider, which can
be used for accounting.

Security and Privacy

Our solution does not write any customization to
storage on the host PC. This isolation can keep the OS
pristine, helping prevent and contain security breaches
and infections.

Unlike some VM-based methods, this solution
works at OS-level and highly depends on the host OS,
so user should trust the host before operating on it. On
the other hand, our VM-based solution is safer in
some ways than using an unknown PC since it does
not run any software previously installed on the host
and starts the host from a known power-down state.
However, if the local BIOS is compromised, it is
equally unsafe as using the host directly.

Another open question is whether our solution is
safe or not if the host has already been infected by
some virus. Because our access control mechanism
can prevent any illegal access to the protected applica-
tion files, it seems that the virus can not impair them.

Finally, we believe it is necessary to construct a
trusted chain between the user and the host to solve
this problem completely, which depends on the preva-
lence and availability of trusted computing.

After these problems are solved, we can expect
that software-on-demand may become one important

deployment model for common personal applications.
Just like today’s video-on-demand (VOD) services,
maybe some SOD (software-on-demand) providers
will spring up, and a user can play her personalized
software on any compatible hosts without installation
and without conflicts. Some applications can even be
subscribed to and pushed to one’s host, so the down-
load latency is hidden.
Others

In the current implementation, P2P transporta-
tion is used as an architectural requirement. In fact, it
is apparent that other data delivery mechanisms can be
employed. For example, to deploy such a system in an
enterprise, one or more central servers can be used as
the application source.

Another adaptation is that, if the host has the
same application and its components, our system
should use these components instead of downloading
them from the Internet. But in this situation, if the host
application is infected with a virus/malware, other
applications running inside VM are vulnerable to
security issues (even if we assume that our access con-
trol mechanism is not infected). A solution to this
problem can be addressed by having the component be
verified based on its hash value before it is used. If the
verification fails, the component is downloaded even
though it is present locally.

Related Work

Portable Systems & Software
Chen and Noble [21] observed that virtual ma-

chine technology [22] can be used to migrate sessions
between computers and thus be used for mobility.
Internet Suspend/Resume [23] demonstrated that using
commercial VM technology such as VMware Work-
station, together with a networked file system such as
Coda [24], makes it possible to walk up to a machine
and resume a suspended session. Each ISR client has a
Host OS and VMware Workstation preinstalled and
has access to a networked store of VM images.

SoulPad is a new approach based on carrying an
auto-configuring operating system along with a sus-
pended virtual machine on a small portable device.
With this approach, the computer boots from the
device and resumes the virtual machine, thus giving
the user access to his personal environment, including
previously running computations. SoulPad has mini-
mal infrastructure requirements and is therefore appli-
cable to a wide range of conditions, particularly in
developing countries.

A Soulpad-like solution is DoK (Desktop on
Keychain) [25]. In contrast, it uses the local machine’s
installed operating system (Windows), and runs Virtu-
alPC there, resuming the user’s previous virtual ma-
chine session.

A commercialized product is Moka5 LivePC,
which contains everything needed to run a virtual com-
puter: an operating system and a set of applications.

22nd Large Installation System Administration Conference (LISA ’08) 141

Portable Desktop Applications Based on P2P . . . Zhang, Wang, and Hong

LivePCs can be used on the desktop, or users can take
them on a portable USB drive or access them through a
network server. In the latter case, a central difference
server can provide a VM image ‘‘diff’’ through stream-
ing, so that the end user will not experience undue
delays on system startup.

Unlike these approaches, our solution is based on
ultralightweight virtualization. Accordingly, the stor-
age capacity required by our solution is much smaller,
and the performance overhead introduced by virtual-
ization is almost negligible.

Some recent commercial offerings attempt to
support personalization of anonymous PCs at OS-
level. For example, Migo [26] allows users to carry
personal settings and files on a USB flash key. One
limitation of this approach is that it must be tailored
for each application to be migrated. Moreover, it only
saves personalized data into the USB storage, not the
applications themselves.

U3 [27] presents a development specification of
portable applications, which means software should be
rewritten for portability. So compared with our solu-
tion, it is not a transparent one.

A similar solution is Ceedo [28], but there is no
documentation of its implementation technologies.

Software As Service (SaaS)
SaaS is a software usage mode where the vendor

develops a web-native software application and hosts
and operates the application for use by its customers
over the Internet. In the past, this mode was usually
used by some enterprise-level software, including
CRM, SCM, ERP and so on. Now, it has moved closer
to ordinary users.

One example of this approach are web-based
applications such as Google Docs & Spreadsheets
[29], in which a web browser is usually employed as a
running platform for word processing and spreadsheet
applications. This looks like a promising software
delivery model; however, the applications have to be
rewritten for the Internet environment. So for the
existing desktop applications, a compatible model is
preferred.

Virtualization has also been deployed in on-
demand software. One solution is Progressive Deploy-
ment System (PDS), which is a virtual execution envi-
ronment and infrastructure designed specifically for
deploying software on demand while enabling man-
agement from a central location. PDS intercepts a
selected subset of system calls on the target machine
to provide a partial virtualization at the operating sys-
tem level. This enables software’s install-time envi-
ronment to be reproduced virtually while otherwise
not isolating the software from peer applications on
the target machine.

Another similar and practical solution is Mi-
crosoft’s SoftGrid [30], which can help IT depart-
ments to cut costs while increasing operational agility

and reducing conflicts. SoftGrid can convert applica-
tions into virtual services that are managed and hosted
centrally but run on demand locally. Application virtu-
alization reduces the complexity and labor involved in
deploying, updating, and managing applications.

However, both PDS and SoftGrid are designed
for LAN environments and are not general solutions.

Our solution is an interesting and helpful explo-
ration for deploying personal software on demand in a
compatible way. Compared with other works, it com-
bines application virtualization and SaaS technologies
together: users can access their personalized applica-
tions over the Internet with some access control,
which is speeded up by P2P transportation and the
local cache.

Others
Using P2P to improve system’s start-up perfor-

mance has been used in some other systems, like
Moobi [31]. Moobi uses BitTorrent to provide effi-
cient distribution of the image cache of a dataless-
workstation system, and it can support many more
nodes to startup simultaneously compared to conven-
tional network booting.

Another work we have referred to is OS Circular
[32]. It is a framework for Internet Disk Image Distri-
bution of software for virtual machines, those which
offer a virtualized common PC environment on any
PC. Especially, it used FUSE [33], a user-space file
system framework, to implement a stackable virtual
disk across the Internet, which inspired us to design
the anchor file system.

Summary and Future Work

This paper presents a solution for portable Win-
dows applications/customizations based on OS-level
virtualization and P2P technologies. This solution can
separate an application’s private files/folders/registry
entries into a portable device and employs API inter-
ception to make the application transparently access
these resources at run time. From the user’s viewpoint,
she is able to access her personalized applications and
data conveniently on any compatible computer, even
though they are not present on the local disks of the
host computer.

In addition, to present a friendly interface for
users, file system virtualization is implemented, com-
bined with access control to prevent any illegal soft-
ware usage. P2P and local caching are used to speed
up the download performance.

The design principle is presented and a prototype
solution is introduced. We find in reality some practi-
cal issues, such as pre-installed applications, shell
folders and application-irrelevant accesses, should be
dealt with individually. Owing to the lightweight vir-
tualization, the extra performance overhead mainly
comes from the network latency, which can be de-
creased by P2P transportation and the local cache.

142 22nd Large Installation System Administration Conference (LISA ’08)

Zhang, Wang, and Hong Portable Desktop Applications Based on P2P . . .

We believe this solution can be used not only for
personal computing across the Internet but also for
software deployment and administration in enterprises.
In this mode, software installation can be converted
into content distribution, which is hosted centrally but
runs on demand locally. Doing so will reduce the PC
total cost of ownership (TCO) significantly.

Currently we put users’ data and customizations
on the portable device for privacy. In the future, we
plan to discard the device entirely and employ the net-
work to provide and store everything. The challenge
lies in how to keep coherence of personal data across
the Internet. Moreover, we intend to address the prob-
lem of upgrading portable applications transparently,
especially upgrade those cached on portable devices,
in the next version. Some existing Content Distribu-
tion Network (CDN) technologies will be referred to.

Another issue with the current version is that the
filter driver-based implementation requires the user
have Administrator’ access, which violates the princi-
ple of least privilege [34]. We plan to achieve a user-
level version in the next version.

Author Biographies

Zhang, Youhui is an Associate Professor in the
Department of Computer Science at the University of
Tsinghua, China. His research interests include porta-
ble computing, network storage and microprocessor
architecture. He received his Ph.D. degree in Com-
puter Science from the same university in 2002.

Wang, Xiaoling is a Master’s degree student in
the Research Institute of Information Technologies at
the University of Tsinghua, China. Her current re-
search interests include portable computing and com-
puter system simulation.

Hong, Liang is a Master’s degree student at the
Beijing University of Post and Telecommunication,
China. Currently he is doing his research work at the
University of Tsinghua, and his research field is porta-
ble computing.

Acknowledgement

We would like to thank Prof. Brent B. Hoon
Kang, and Ms. Aeleen Frisch and our anonymous
reviewers for their time and insightful comments
regarding this paper.

The work is supported by the High Technology
Research and Development Program of China under
Grant No. 2006AA01Z111 and the National Grand
Fundamental Research 973 Program of China under
Grant No. 2007CB310900.

Bibliography

[1] Richardson, T., Q. Stafford-Fraser, K. R. Wood,
et al., ‘‘A Virtual Network Computing,’’ Internet
Computing, IEEE, Vol. 2, Num. 1, January, 1998.

[2] CITRIX, http://www.citrix.com .
[3] http://en.wikipedia.org/wiki/Web_application .
[4] Caceres, Ramon, Casey Carter, Chandra Narayan-

aswami and Mandayam Raghunath, ‘‘Reincarnat-
ing PCs with Portable SoulPads,’’ Proceedings of
the Third International Conference on Mobile
Systems, Applications, and Services (MobiSys
2005), June, 2005.

[5] http://www.moka5.com/ .
[6] Chandra, R., N. Zeldovich, C. Sapuntzakis, and

M. S. Lam, ‘‘The Collective: A Cache-Based
System Management Architecture,’’ Proceedings
of the Second Symposium on Networked Systems
Design and Implementation (NSDI 2005), May,
2005.

[7] http://www.cl.cam.ac.uk/research/srg/netos/xen/
performance.html .

[8] Adams, Keith and Ole Agesen, ‘‘A Comparison
of Software and Hardware Techniques for x86
Virtualization,’’ Proceedings of the 12th Interna-
tional Conference on Architectural Support for
Programming Languages and Operating Systems,
March, 2006.

[9] http://tejasconsulting.com/open-testware/feature/
installwatch.html .

[10] Hunt, Galen and Doug Brubacher, ‘‘Detours:
Binary Interception of Win32 Functions,’’ Pro-
ceedings of the Third USENIX Windows NT Sym-
posium, July, 1999.

[11] File System Filter Drivers, http://www.microsoft.
com/whdc/driver/filterdrv/default.mspx .

[12] Alpern, Bowen, Joshua Auerbach, et al., ‘‘PDS:
A Virtual Execution Environment for Software
Deployment,’’ Proceedings of the First ACM/
USENIX International Conference on Virtual Ex-
ecution Environments, March, 2005.

[13] Yu, Yang, Fanglu Guo, Susanta Nanda, Lap-
chung Lam and Tzi-cker Chiueh, ‘‘A Feather-
weight Virtual Machine for Windows Applica-
tions,’’ Proceedings of the Second ACM/USENIX
Conference on Virtual Execution Environments
(VEE’06), June, 2006.

[14] http://www.winehq.org/site/docs/wineusr-guide/
index .

[15] http://sourceforge.net/projects/libtorrent/ .
[16] Cohen, Bram, ‘‘Incentives Build Robustness in

BitTorrent,’’ Proceedings of the First Workshop
on Economics of Peer-to-Peer Systems, June,
2003.

[17] Morrey III, Charles B. and Dirk Grunwald, ‘‘Con-
tent-Based Block Caching,’’ Proceedings of 23rd
IEEE Conference on Mass Storage Systems and
Technologies, May, 2006.

[18] Wi n d o w s Management Instrumentation, http://
msdn.microsoft.com/en-us/library/aa394582.aspx .

[19] http://en.wikipedia.org/wiki/Features_new_to_
Windows_XP .

22nd Large Installation System Administration Conference (LISA ’08) 143

Portable Desktop Applications Based on P2P . . . Zhang, Wang, and Hong

[20] Russinovich, Mark E. and David A. Solomon,
Microsoft Windows Internals, Fourth Edition:
Microsoft Windows Server 2003, Windows XP,
and Windows 2000, Microsoft Press, January,
2005.

[21] Chen, P. M. and B. D. Noble, ‘‘When Virtual is
Better Than Real,’’ Proceedings of IEEE 8th
Workshop on Hot Topics in Operating Systems,
May, 2001.

[22] Goldberg, R. P., ‘‘Survey of Virtual Machine
Research,’’ IEEE Computer, Vol. 7, Num. 6,
June, 1974.

[23] Kozuch, M. and M. Satyanarayanan, ‘‘Internet Sus-
pend/Resume,’’ Proceedings of 4th IEEE Workshop
on Mobile Computing Systems and Applications,
June, 2002.

[24] Satyanarayanan, M., ‘‘The Evolution of Coda,’’
ACM TOCS, Vol. 20, Num. 2, May, 2002.

[25] Annamalai, Muthukarrupan, Andrew Birrell, Den-
nis Fetterly and Ted Wobber, ‘‘Implementing Por-
table Desktops: A New Option and Compar-
isons,’’ Microsoft Research (MSR)-2006-151,
October, 2006.

[26] http://www.migosoftware.com/default.php .
[27] http://www.u3.com .
[28] http://www.ceedo.com/ .
[29] http://documents.google.com/ .
[30] http://www.microsoft.com/systemcenter/softgrid/

default.mspx .
[31] McEniry, Chris, ‘‘Moobi: A Thin Server Manage-

ment System Using BitTorrent,’’ Proceedings of
21st Large Installation System Administration
Conference, November, 2007.

[32] Suzaki, Kuniyasu, Toshiki Yagi, Kengo Iijima,
and Nguyen Anh Quynh, ‘‘OS Circular: Internet
Client for Reference,’’ Proceedings of 21st Large
Installation System Administration Conference,
November, 2007.

[33] Filesystem in Userspace, http://fuse.sourceforge.
net/ .

[34] http://en.wikipedia.org/wiki/Principle_of_least_
privilege .

144 22nd Large Installation System Administration Conference (LISA ’08)

