
HTGR: Jails, VMs, and
Sandboxes

Bill Cheswick
AT&T Research

ches@research.att.com

mailto:ches@research.att.com
mailto:ches@research.att.com

The Problem

• Applications fail

• Operating systems fail

• We lose control of our machines

Solution: belt and
suspenders

• Build a new, completely different container
(a sandbox) to make breakout much less
likely

Solutions

• Separate computer per function

• Sandbox for the application that limits
access to the OS and rest of the machine

• A virtual machine, that contains the entire
activity, good or bad, to a machine

Separate computer

• limits the damage to the computer

• power and software maintenance issues

• simplest solution

Sandboxes

• Unix chroot functionality

• limits access at the file system level

• I keep learning of new ways to break out

• FreeBSD jail function

• Chroot plus network and other
limitations

Solutions are old

• Virtual machines were used by IBM in the
1960s

• Extended operating system protections go
back to the 1960s (Multics rings)

Sandboxes: procedure
containment

• Janus (Wagner et al, 1996): SunOS at library
level

• Numerous solutions since then

• PeaPod paper at this LISA

• Not solved yet

Example: defaceless
read-only web server

• Each web connection fires up a new web
server

• Web server runs as not root

• Web server in chroot. Has write
permission only to the logs

• This can support 20 queries a second, easily

Not solved yet:
problems

• Hard to configure

• Detail all the permitted system calls for
firefox

• Not available on all *nix systems

• Hard to detail what information to save
between instantiations

Virtual machines

• Commercial products like VMWare and
Parallels

• Xen for Linux

• All benefit from recent hardware
improvements to the x86 architecture

Virtual Machines (VMs)

• simulate real or other machine at the
hardware level

• operating systems run at a higher level

• many may run on a piece of hardware

• often may be checkpointed and restarted

• invaluable in dangerous environments

VMs

• IBM used them in their mainframes since
the 1960s

• Haven’t been seen much until recently

• VMware, Parallels (Mac), Xen

• Recent x86 mods have made that hardware
more suitable

VM dream

• Build once, load many times

• different machines, different sessions,
different days

• a read-only web server is a program that
emits logs

• Save power, administrative manpower

Example: this Mac

• runs Parallels

• Current systems: FC-8 (4 versions),
FreeBSD 6.2, Ubuntu, Windows XP

Program containment

• File system name space control (Plan 9
1980s)

• Replace the library (Janus, 1996)

• Limit system calls (systrace, 2003)

• File system level (PeaPods, 2007)

Program containment
dream

• configuration files for important clients
(firefox, thunderbird, etc.) and network
services (samba, apache, etc.)

• simple enough to understand

• available on all *nix systems

Containment problems

• configuration tends to be hard

• what system calls should be allowed?

• what dynamic libraries are needed?

• How do you identify and preserve state
across instantiations? (e.g. bookmarks for a
browser)

Detecting VMs: arms
race

• the bad guys want to know if there are
suspenders present

• abandon or attack

• limits usefulness as a lab tool

• Ultimately, the detectors win this one, I
think

HTGR: Jails, VMs, and
Sandboxes

Bill Cheswick
AT&T Research

ches@research.att.com

mailto:ches@research.att.com
mailto:ches@research.att.com

