
ZFS
Right Now!
Jeff Bonwick
Sun Fellow

ZFS Right Now!

Create a Mirrored ZFS Pool, “tank”

zpool create tank mirror c2d0 c3d0

That's it. You're done.

df

Filesystem size used avail capacity Mounted on

tank 233G 18K 233G 1% /tank

Thank you for coming.

Goodbye.

ZFS Right Now!

ZFS Overview
● Pooled storage

● Completely eliminates the antique notion of volumes
● Does for storage what VM did for memory

● Transactional objects
● Always consistent on disk – no fsck, ever
● Supports all object types – file, block, iSCSI, swap, ...

● Provable end-to-end data integrity
● Detects and corrects silent data corruption
● Historically considered “too expensive” – no longer true

● Simple administration
● Concisely express your intent

ZFS Right Now!

FS/Volume Model vs. Pooled Storage

Traditional Volumes
● Abstraction: virtual disk
● Partition/volume for each FS
● Grow/shrink by hand
● Each FS has limited bandwidth
● Storage is fragmented, stranded

ZFS Pooled Storage
● Abstraction: malloc/free
● No partitions to manage
● Grow/shrink automatically
● All bandwidth always available
● All storage in the pool is shared

Storage PoolVolume

FS

Volume

FS

Volume

FS ZFS ZFS ZFS

ZFS Right Now!

FS/Volume Interfaces vs. ZFS
FS/Volume I/O Stack

FS

Volume

Block Device Interface

● “Write this block,
then that block, ...”

● Loss of power = loss of
on-disk consistency

● Workaround: journaling,
which is slow & complex

ZPL

SPA
Block Device Interface

● Write each block to each
disk immediately to keep
mirrors in sync

● Loss of power = resync

● Synchronous and slow

Object-Based Transactions

● “Make these 7 changes
to these 3 objects”

● All-or-nothing

Transaction Group Batch I/O

● Schedule, aggregate,
and issue I/O at will

● No resync if power lost

● Runs at platter speed

ZFS I/O Stack

DMUTransaction Group Commit

● Again, all-or-nothing

● Always consistent on disk

● No journal – not needed

ZFS Right Now!

ZFS Transactional Object System
● DMU provides a general-purpose transactional object store

● ZFS dataset = up to 248 objects, each up to 264 bytes

● File, block, and network datasets all build on this foundation
● Filesystems, iSCSI targets, etc. all draw from common storage pool
● All datasets are full-featured – snapshots, compression, encryption, etc.

ZFS POSIX Layer pNFS

iSCSI

Data Management Unit (DMU)

Storage Pool Allocator (SPA)

ZFS Volume Emulator

UFS(!)Dump

DBLustre

Raw SwapCIFSNFSLocal

ZFS Right Now!

Trends in Storage Integrity
● Uncorrectable error rates have stayed roughly constant

● 1 in 1014 bits (~12TB) for desktop-class drives
● 1 in 1015 bits (~120TB) for enterprise-class drives
● Bad sector every 8-20TB in practice (desktop and enterprise)

● Drive capacities doubling every 12-18 months
● Number of drives per deployment increasing
● → Rapid increase in error rates
● Both silent and “noisy” data corruption becoming

more common
● Cheap flash storage will only accelerate this trend

ZFS Right Now!

End-to-End Data Integrity In Action

Application

ZFS mirror

Application

ZFS mirror

Application

ZFS mirror

1. Application issues a read.
ZFS mirror tries the first disk.
Checksum detects silent data
corruption, on disk or in flight.

2. ZFS tries the second disk.
Checksum indicates that the
block is good.

3. ZFS returns known good
data to the application and
repairs the damaged block.

ZFS Right Now!

ZFS Administration
● Pooled storage – no more volumes!

● Up to 248 datasets per pool – filesystems, iSCSI targets, swap, etc.
● Nothing to provision!

● Filesystems become administrative control points
● Hierarchical, with inherited properties

● Per-dataset policy: snapshots, compression, backups, quotas, etc.
● Who's using all the space? du(1) takes forever, but df(1M) is instant
● Manage logically related filesystems as a group
● Inheritance makes large-scale administration a snap

● Policy follows the data (mounts, shares, properties, etc.)
● Delegated administration lets users manage their own data

● Online everything

ZFS Right Now!

Creating Pools and Filesystems
● Create a mirrored pool named “tank”

zpool create tank mirror c2d0 c3d0

● Create home directory filesystem, mounted at /export/home

zfs create tank/home
zfs set mountpoint=/export/home tank/home

● Create home directories for several users
Note: automatically mounted at /export/home/{ahrens,bonwick,billm} thanks to inheritance

zfs create tank/home/ahrens
zfs create tank/home/bonwick
zfs create tank/home/billm

● Add more space to the pool

zpool add tank mirror c4d0 c5d0

ZFS Right Now!

Setting Properties
● Automatically NFS-export all home directories

zfs set sharenfs=rw tank/home

● Turn on compression for everything in the pool

zfs set compression=on tank

● Limit Eric to a quota of 10g

zfs set quota=10g tank/home/eschrock

● Guarantee Tabriz a reservation of 20g

zfs set reservation=20g tank/home/tabriz

ZFS Right Now!

ZFS Snapshots
● Read-only point-in-time copy of a filesystem

● Instantaneous creation, unlimited number
● No additional space used – blocks copied only when they change
● Accessible through .zfs/snapshot in root of each filesystem

● Allows users to recover files without sysadmin intervention

● Take a snapshot of Mark's home directory

zfs snapshot tank/home/marks@tuesday

● Roll back to a previous snapshot

zfs rollback tank/home/perrin@monday

● Take a look at Wednesday's version of foo.c

$ cat ~maybee/.zfs/snapshot/wednesday/foo.c

ZFS Right Now!

ZFS Clones
● Writable copy of a snapshot

● Instantaneous creation, unlimited number

● Ideal for storing many private copies of mostly-shared data
● Software installations
● Source code repositories
● Diskless clients
● Zones
● Virtual machines

● Create a clone of your OpenSolaris source code

zfs clone tank/solaris@monday tank/ws/lori/fix

ZFS Right Now!

ZFS Send / Receive (Backup / Restore)
● Powered by snapshots

● Full backup: any snapshot
● Incremental backup: any snapshot delta
● Very fast delta generation – cost proportional to data changed

● So efficient it can drive remote replication
● Generate a full backup

zfs send tank/fs@A >/backup/A

● Generate an incremental backup

zfs send -i tank/fs@A tank/fs@B >/backup/B-A

● Remote replication: send incremental once per minute

zfs send -i tank/fs@11:31 tank/fs@11:32 |
 ssh host zfs receive -d /tank/fs

mailto:tank/fs@A
mailto:tank/fs@A
mailto:tank/fs@B
mailto:tank/fs@11
mailto:tank/fs@11

ZFS Right Now!

ZFS Data Migration
● Host-neutral on-disk format

● Change server from x86 to SPARC, it just works
● Adaptive endianness: neither platform pays a tax

● Writes always use native endianness, set bit in block pointer
● Reads byteswap only if host endianness != block endianness

● ZFS takes care of everything
● Forget about device paths, config files, /etc/vfstab, etc.
● ZFS will share/unshare, mount/unmount, etc. as necessary

● Export pool from the old server

old# zpool export tank

● Physically move disks and import pool to the new server

new# zpool import tank

ZFS Right Now!

Forensics – Oh Yes You Did!
zpool history

History for 'builds':

2007-03-06.14:37:53 zpool create builds mirror c3d0 c4d0

2007-03-06.14:37:53 zfs set sharenfs=ro,rw=cathy:zion:steam builds

2007-03-06.14:37:54 zfs create builds/fixes

2007-03-06.14:45:59 zfs create builds/pipe

2007-03-06.15:19:13 zfs destroy builds/pipe

2007-03-21.15:48:31 zfs snapshot builds/fixes@mar20

2007-03-21.15:48:47 zfs clone builds/fixes@mar20 builds/unfixes

2007-03-27.08:57:03 zfs create -V 10g builds/test

2007-03-27.08:57:22 zfs set shareiscsi=on builds/test

2007-03-27.09:06:06 zfs set volsize=20g builds/test

2007-07-29.12:48:14 zpool upgrade builds

ZFS Right Now!

Where to Learn More
● Community: http://www.opensolaris.org/os/community/zfs
● Wikipedia: http://en.wikipedia.org/wiki/ZFS
● ZFS blogs: http://blogs.sun.com/main/tags/zfs

● ZFS internals (snapshots, RAID-Z, dynamic striping, etc.)
● Using iSCSI, CIFS, Zones, databases, remote replication and more
● Latest news on pNFS, Lustre, and ZFS crypto projects

● ZFS on your Mac: http://developer.apple.com/adcnews
● ZFS on FreeBSD: http://wiki.freebsd.org/ZFS
● ZFS on Linux/FUSE: http://zfs-on-fuse.blogspot.com
● ZFS as an appliance: http://www.nexenta.com

http://www.opensolaris.org/os/community/zfs
http://en.wikipedia.org/wiki/ZFS
http://blogs.sun.com/main/tags/zfs
http://developer.apple.com/adcnews
http://wiki.freebsd.org/ZFS
http://zfs-on-fuse.blogspot.com/
http://www.nexenta.com/

