
LISA 2004 (1)

What is This Thing Called
“System Configuration”?

What is This Thing Called
“System Configuration”?

Tufts University
Computer Science

PAUL ANDERSON
dcspaul@inf.ed.ac.uk

Alva Couch
couch@cs.tufts.edu



LISA 2004 (2)

OverviewOverview

 The configuration problem

 Configuration specification
• Types of specification

 Some language issues
• Federated configurations
• Autonomics
• The role of theory

 Non-language issues
• Decentralization, …

 Conclusions

If we have no clear
way of stating the
required
configuration, then
we can’t create a
tool to implement
it!

Paul says:



LISA 2004 (3)

ConfigurationHardware

“Fabric”
performing
according to
specification

Software

Specifications
& Policies

The configuration
problem
The configuration
problem

Feedback
(monitoring) and
autonomic
reconfiguration

Paul says:



LISA 2004 (4)

The configuration
problem
The configuration
problem

 Starting with:
• Several hundred new PCs with empty disks
• A Repository of all the necessary software packages
• A specification of the required service

 Load the software and configure the machines to
provide the required functionality

 This involves many internal services –
DNS, LDAP, DHCP, NFS, NIS, SMTP, Web …

 Reconfigure the machines as the required service
specification changes

 Reconfigure as the environment changes

Paul says:



LISA 2004 (5)

Some context on
configuration management
Some context on
configuration management
 “So easy that it’s hard.”

 “Set the same bits on every disk.” – NOT.

 Very dynamic research community: annual LISA
workshop, technical papers, etc.

 Perhaps too dynamic: “religious” controversies
about tools; “Infrastructure Mafia”.

 Goal in this talk: get beyond religion and tools;
understand nature of good practice.

 Key question: what is “good enough practice?”

Alva says:



LISA 2004 (6)

Good enough?Good enough?

 What is “good enough?”

 Inside every hard computer science problem,
there’s an easy one straining to get out.

 Key: “best” _ “good enough”.

 It’s “good enough” if its cost is reasonable given
its value…

Alva says:



LISA 2004 (7)

Are you already doing
configuration management?
Are you already doing
configuration management?
 Common occurrence: “closet” configuration

management
• Provide base services
• Insure consistency
• Cope with scale
• Cope with change
• Automate common algorithms

 Are you doing this and don’t realize it?

 All too common: SAs approach Configuration
Management “through the back door”.

Alva says:



LISA 2004 (8)

Specifying a
configuration
Specifying a
configuration

“Behaviour” or “implementation”  ?

“Host-level”  or  “network-level” ?

“Procedural” or
“declarative” ?

“Complete” or
“partial” ?

Paul says:



LISA 2004 (9)

“Behaviour” or
“implementation”
“Behaviour” or
“implementation”

 At the highest-level we want to be able to specify
the desired behaviour of the system:
• I want an SMTP service on port 25 of mail.foo.com
• I want a response time of 1sec from my web service

 At present, this is normally translated manually
into an implementation specification:
• I want sendmail installed on some machine, etc …

 The correspondence between the behaviour and
the implementation can only be validated by
monitoring and feedback
• Behaviour depends heavily on external events

Paul says:



LISA 2004 (10)

Implementing behaviourImplementing behaviour

 All current tools really take implementation
specifications

 The translation from the required behaviour is
nearly always manual
• Although validation may be automatic

 Automatic tools can use rules to implement
limited variations of behaviour:
• Add an extra web server if the response is too slow

 Could we have something more general?
• Would we want it ?

Paul says:



LISA 2004 (11)

“Host-level” or
“network-level”
“Host-level” or
“network-level”
 Configuring services often requires cooperating

configurations on many different hosts:
• Configure host X as a web server
• Configure the DNS to alias www.foo.com to X
• Configure the firewall to pass http to host X

 A network-level specification allows us to model
the service as an entity and automatically
generate the host-level configuration data
• There is no scope for mismatch between cooperating

hosts parameters
 Note that network-level specifications are

essential for autonomic fault-tolerance

Paul says:



LISA 2004 (12)

“Procedural” or
“declarative”
“Procedural” or
“declarative”

 “Procedural” configurations specify a set of
actions to perform

 Procedural configurations do not capture the
“intent” of the action and cannot be validated
• If the environment changes, the same actions may

have very different consequences
 “Declarative” configurations specify the desired

final state

 Of course, action are required at some point to
physically change a configuration
• Tools can compute the required actions from

declarative specifications of intent

Paul says:



LISA 2004 (13)

A subtle distinctionA subtle distinction

 Declarative: implementation of directives might
be ordered, but order is somehow “obvious” or
“implied” by context.

 Procedural: specific ordering is the only way to
get it to work; no “obvious” ordering other than
the one given.

 Example: RPMs: Implicit order determined by
dependencies _ list is declarative.

 Example: scripts: must keep lines in order _
script is procedural.

Alva says:



LISA 2004 (14)

A declarative exampleA declarative example

 Declarative (requirement)
• Host X uses host M as the mail server

 Non-declarative (implementation)
• “Run this script on host X to edit the sendmail.cf

file”

 If we have only the implementation, then the
intent is not clear
• We cannot reason about the desired configuration
• We cannot validate security policy, for example
• And many other problems, such as order-sensitivity!

Paul says:



LISA 2004 (15)

Why declarative? Why declarative? 

 Make specifications simpler.

 Leave implementation to a tool.

 More portable.

 Allows flexible response.

 Easier to compose differing requirements.

Alva says:



LISA 2004 (16)

Why procedural?Why procedural?

 Closer to normal manual configuration.

 Short learning curve for automating procedure.

 Intuitive mechanism for specifying what to do.

 Interoperable with many existing management
tools (rpm, make, rdist, rsync, etc)

Alva says:



LISA 2004 (17)

Evolution of management
strategies
Evolution of management
strategies

Unstructured changes

Scripting/documentation

Declarative recipes for one host

Declarative recipes for a fabric

Perl, bash

Cfengine,lcfg,bcfg2,psgconf,…

Lcfg,pan,tivoli,…

Pikt, isconf

Manual commands

Alva says:

Script management systems



LISA 2004 (18)

A common myth
dispelled
A common myth
dispelled
 Many people seem to believe that the choice of

tool determines ease of configuration
management.

 In fact, it’s the practice of using the tool that
determines how well the tool works.

 Choice of tool makes little difference; discipline
of use is everything.

Alva says:



LISA 2004 (19)

“Complete” or “partial”“Complete” or “partial”

 A “complete” specification ties down all the
parameters about which we are interested

 A “partial” specification assumes that some of
the configuration parameters are controlled from
elsewhere
• Sometimes, this is necessary – e.g. DHCP

 There is a great danger with partial specifications
of creating configurations with unpredictable
values for important parameters
• If we don’t specify it, then we have to be sure that

someone else is managing it, or that we don’t care!



LISA 2004 (20)

Perhaps better nomenclature:
proscriptive or incremental
Perhaps better nomenclature:
proscriptive or incremental
 Proscriptive: somehow specify everything

about the configuration of a host or network.

 Incremental: specify some aspects of systems;
leave others to other management processes.

 Example: build from bare metal: proscriptive

 Example: take over a legacy machine without a
rebuild: incremental.



LISA 2004 (21)

Common beginners’ mistake:
not being proscriptive enough
Common beginners’ mistake:
not being proscriptive enough
 Game of configuration management: make a lot

of stations and/or servers cooperate and work
similarly.

 Enemy of configuration management: “latent
preconditions” differ among hosts, and are
unmanaged by any process.

 Example: half the hosts don’t contain an entry in
/etc/hosts for foo.bar.com
• OK if you don’t need services from that host.
• Bad when it somehow becomes your master

fileserver!



LISA 2004 (22)

Evolution of proscriptionEvolution of proscription

Ad-hoc: control whatever’s convenient

Incremental: control a few things

Bare metal: rebuild from scratch

Can repeat a build 
with exact same effect

Can recover from 
unforeseen developments. “convergent”

Alva says:

“abuse of cfengine”

“reproducible”

“deterministic”



LISA 2004 (23)

Typical current
practice
Typical current
practice

 Behavioural specifications are translated manually into
implementations
• Apart from a few limited special cases

 Most configuration specifications are host-level, rather
than fabric-level
• The best tools are capable of some fabric-level specification

 Complete configuration specifications are possible (and
desirable!)
• But not used widely, due to the learning curve of the tools

 Declarative (to some degree) specifications are common
and widely accepted as a “good thing”

Paul says:



LISA 2004 (24)

A little mysteryA little mystery

 Paul:
• uses “fabric” management.
• Declarative language.
• Autonomic reconfiguration.
• Rather complex learning curve.

 Alva:
• uses “host” management.
• RPM-based solution (non-declarative).
• Scheduled wipe-and-rebuild.
• Very simple tools.

 Why?

Alva says:



LISA 2004 (25)

Backing into
configuration management
Backing into
configuration management

Alva says:

Time and Scale

incremental proscriptive

federatedad-hoc

Co
st

 p
er

 u
ni

t t
im

e



LISA 2004 (26)

Slamming into cost and
implementation barriers
Slamming into cost and
implementation barriers

Time and Scale

Co
st

 p
er

 u
ni

t t
im

e

Retraining

Loss of “memory”

Loss of ownership

Alva says:



LISA 2004 (27)

Backing into
process maturity
Backing into
process maturity

Time and Scale

Co
st

 p
er

 u
ni

t t
im

e

 documentability interchangeability

reproducibility

Alva says:



LISA 2004 (28)

Lifecycle cost is
a sum of unit costs
Lifecycle cost is
a sum of unit costs

Time and Scale

Li
fe

cy
cl

e 
co

st

ad-hoc incremental

proscriptive

federated

Where are the
crossings?

Alva says:

Slope is
unit cost



LISA 2004 (29)

Alva says:A little mystery solvedA little mystery solved

Time and Scale

Li
fe

cy
cl

e 
co

st
Alva says:

Pa
ul

Al
va

} difference
  in cost!



LISA 2004 (30)

From whence come costs?From whence come costs? Alva says:

lifecycle
maintenance

planning
installation

troubleshooting

risksthreats

insurance

changesrequests downtime incidents

adoption

training

heterogeneity

scale

expectations

policy

A _ B means “cost of A drives cost of B”

testing



LISA 2004 (31)

Manual managementManual management Alva says:

lifecycle
maintenance

planning
installation

troubleshooting

risksthreats

insurance

changesrequests downtime incidents

adoption

training

heterogeneity

scale

expectations

policy

A _ B means “cost of A drives cost of B”

testing



LISA 2004 (32)

Incremental managementIncremental management Alva says:

lifecycle
maintenance

planning
installation

troubleshooting

risksthreats

insurance

changesrequests downtime incidents

adoption

training

heterogeneity

scale

expectations

policy

A _ B means “cost of A drives cost of B”

testing



LISA 2004 (33)

Proscriptive managementProscriptive management Alva says:

lifecycle
maintenance

planning
installation

troubleshooting

risksthreats

insurance

changesrequests downtime incidents

adoption

training

heterogeneity

scale

expectations

policy

A _ B means “cost of A drives cost of B”

testing



LISA 2004 (34)

Federated managementFederated management Alva says:

lifecycle
maintenance

planning
installation

troubleshooting

risksthreats

insurance

changesrequests downtime incidents

adoption

training

heterogeneity

scale

expectations

policy

A _ B means “cost of A drives cost of B”

testing



LISA 2004 (35)

Some language issuesSome language issues

Federated configurations

Autonomics
Theory

Special-purpose languages

Paul says:



LISA 2004 (36)

Configuration languagesConfiguration languages

 Configuration languages are essentially “data
description” languages
• I.e. declarative languages which determine the

contents of the configuration files
 Configuration languages are different from

programming languages
• Which usually describe algorithms (as well as data)

 Structuring and managing the configuration
information is one of the major current problems
• We have 1000 hosts x 5000 parameters

 Some example problems follow …



LISA 2004 (37)

Federated configurationsFederated configurations

 Existing configuration languages provide
mechanisms such as hierarchical prototypes, or
host “classes” for structuring the configuration
data

 These are insufficient for modern “federated”
installations where many people are responsible
for different “aspects” of the same system
• Classes (aspects) overlap
• Real, or apparent, conflicts arise frequently

 Languages need better features to support this



LISA 2004 (38)

Aspect compositionAspect composition
 The language forces

explicit values to be
specified:

 Aspect A
• Use server Y

 Aspect B
• Use server X

 This conflict is
irreconcilable without
human intervention
because we don’t know
the intention

 The user really only wants
to say …

 Aspect A
• Use any server on my

Ethernet segment

 Aspect B
• Use one of the servers X,Y

or Z

 These constraints can be
satisfied to
• Use server Y

(assuming Y is on the right
segment)

Paul says:



LISA 2004 (39)

AutonomicsAutonomics

 To create systems from higher-level
specifications, we need “autonomic” behaviour
• Add more web servers if the response is slow
• Configure a new DNS server if an existing one dies

 To do this in a declarative way, the language
needs to support much “looser” specifications
• I.e. The user should specify no more than is

necessary, so that the system has freedom to assign
other values

• E.g. “I want two DHCP servers on each Ethernet
segment”

 This is a similar requirement to the loose
constraints required for aspect composition

Paul says:



LISA 2004 (40)

A fault tolerance exampleA fault tolerance example

 Traditional “fault-tolerance” systems are usually
based on event-action rules. For example:

 A declarative configuration:
• Hosts X, Y and Z are my web servers

 An event-action rule:
• If a web server goes down …
• Then configure the backup server S as a web server

 Note that the procedural rule has broken the
declarative nature of the original specification
• This is no longer true



LISA 2004 (41)

The role of theoryThe role of theory

 Basic CS theory has helped to develop better
programming languages which are easier to use and
more likely to produce “correct” programs

 Corresponding theories for configuration languages are
only in their infancy
• What is a “configuration” ?
• What is the effect of some fragment of configuration

specification in some language?
• We can look at the formal semantics of configuration languages

 The two previous problems suggest that constraint-
based languages may be useful
• But general-purpose constraint solvers are not viable at every

level

Paul says:



LISA 2004 (42)

Programming language
development
Programming language
development

 Unstructured programming
is very hard to relate to
the outcome of the
program:
• 1: blah blah
• …
• 2: if X then goto 4
• …
• 3: if Y then goto 1
• …

 Most current configuration
specifications are
comparable to this level!

 The structured equivalent
relates more closely to the
declarative purpose of the
code:
• While (condition) do
• …
• End

 Providing that the loop
terminates, we can be sure
that the condition is false
at the end

Paul says:



LISA 2004 (43)

Non-language issuesNon-language issues
 Decentralization

• Centralized generation and distribution of configurations is
becoming less feasible

• Centralized control of the specification seems likely to become
an unreasonable assumption

• Decentralization complicates all the following issues

 Autonomics
• Dealing with uncertainty
• Monitoring and feedback
• Recovery strategies

 Security and trust are major unsolved problems

 Planning and sequencing of complex, related
configuration changes

 Lack of standards for configuration APIs and models
• Is a problem for tool development and collaboration

Paul says:



LISA 2004 (44)

ConclusionsConclusions

 Increases in scale and complexity require more formal,
higher-level approaches to system configuration
• Autonomics, federation, decentralization, …

 Best current practice involves fabric-level, complete,
declarative specifications
• Behavioural specifications cannot yet be translated

automatically into implementations

 For many people, this involves a significant change in
practice, complicated because …
• Current tools involve steep learning curves
• It must be possible to trust the tool to make significant

decisions automatically
• There are no widely useful standards

Paul says:



LISA 2004 (45)

Conclusions (cont’d)Conclusions (cont’d)

 Concentrate on appropriate practice, not
appropriate tools:
• Avoid “closet” configuration management: face the

problem and take control.
• Be proscriptive rather than incremental.
• Evolve toward declarative specification.
• Evolve toward federated management.
• Plan based upon lifecycle cost rather than unit cost.

 Consider the cost of not applying configuration
management.

Alva says:



LISA 2004 (46)

ReferencesReferences

 Lssconf - An informal research collaboration

• Annual LISA workshops  & mailing list
• http://homepages.informatics.ed.ac.uk/group/lssconf/

 The LCFG Project
• The configuration tool developed in the School of

Informatics at Edinburgh University
• http://www.lcfg.org

Paul says:



LISA 2004 (47)

What is This Thing Called
“System Configuration”?

What is This Thing Called
“System Configuration”?

PAUL ANDERSON
dcspaul@inf.ed.ac.uk

Alva Couch
couch@cs.tufts.edu

Tufts University
Computer Science


