
USENIX Association

Proceedings of the 17th Large Installation
Systems Administration Conference

San Diego, CA, USA
October 26–31, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Seeking Closure in an Open World: A
Behavioral Agent Approach to

Configuration Management
Alva Couch, John Hart, Elizabeth G. Idhaw, and Dominic Kallas – Tufts University

ABSTRACT

We present a new model of configuration management based upon a hierarchy of simple
communicating autonomous agents. Each of these agents is responsible for a ‘‘closure’’: a domain
of ‘‘semantic predictability’’ in which declarative commands to the agent have a simple, persistent,
portable, and documented effect upon subsequent observable behavior. Closures are built bottom-
up to form a management hierarchy based upon the pre-existing dependencies between subsystems
in a complex system. Closure agents decompose configuration management via a modularity of
effect and behavior that promises to eventually lead to self-organizing systems driven entirely by
behavioral specifications, where a system’s configuration is free of details that have no observable
effect upon system behavior.

Introduction

Most system administrators accept that skilled
system and network administration involves being a
generalist: integrating bits and pieces of intricate and
diverse minutiae into the skills to design a system,
provide a service, or troubleshoot a problem. The wiz-
ards who can perform this integration teach the
apprentices who are not yet wizards, and our configu-
ration management tools are built in the image of the
wizards, to allow more apprentices to function with
less wizards among them. In short, current tools are
aimed at teaching humans to manage an inherently
complex process, and to embrace and even contribute
to that complexity.

We believe that the complexities in a complex
system are often illusory. Many are the result of less
than thoughtful design, or at least, design not moti-
vated by a goal of decreasing complexity to make sys-
tems more manageable. In this paper, we outline a
strategy for reducing complexity and intricacy by
changing the level of abstraction at which we interact
with systems. If we adopt a new mindset and proceed
according to a new set of rules, much of the complex-
ity disappears. It is not defaulted or otherwise hidden
by clever lingual mechanisms; it is literally gone and
need not ever be considered again.

The key to this process is to ‘‘close the box’’ on
subsystems that are sufficiently mature and allow them
to become self-managing and self-healing in the absence
of an administrator. This is a bottom-up process of
administrative ‘‘practice hardening’’ in which we build
overall system robustness upon a foundation of highly
reliable low-level configuration subsystems that are
tightly and inextricably coupled with behavior. These
subsystems, together with a set of design rules for build-
ing interactive networks of subsystems, form a new

paradigm for system administration. Almost everyone
involved in configuration management is using some or
most of these rules; this paper is an attempt to write
down all of the known rules in one place.

With a few exceptions, most current configura-
tion management tools function at an inappropriate
level of abstraction. Specifications and declarations
concern systems and networks, when they should
instead document the behavior of closures and con-
duits between closures. A ‘‘closure’’ is a ‘‘domain of
semantic predictability,’’ a structure in which configu-
ration commands or parameter settings have a docu-
mented, predictable, and persistent effect upon the
externally observable behavior of software and hard-
ware managed by the closure(more precise definitions
will be discussed later). Closures are not entities that
live just within one machine, but can also span LANs
and networks. ‘‘Conduits’’ are methods of communi-
cation between closures, by which they can make their
needs known to other closures. A conduit can take
most any form, from a command-line interface to a
custom networking protocol.

The idea of closure is not new. Many closed-
source network devices and subsystems already
exhibit some form of closure; commands are guaran-
teed to work and to be free of external effects. Service
appliances and network switches are prime examples.
We study instead how to create and maintain closure
in an otherwise open environment subject to many
changes and updates. We seek predictability in an oth-
erwise unpredictable environment: ‘‘closure in an
open world.’’

Configuration Management Challenges

Current configuration management systems all
suffer from a similar set of problems that arise from
the nature of the task. Among these problems, the

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 125

Seeking Closure in an Open World: A Behavioral Agent Approach . . . Couch, et al.

most important for our discussion are the problems of
referents, unintended consequences, hidden precondi-
tions, latent variables, and incidental complexity.

The problem of referents [11, 18, 19] arises from
the complexity of the systems being configured. In a
large and complex network, how does one specify
how a particular subsystem should behave? This is a
matter of referring to the subsystem and its parameters
‘‘by name’’ and assigning values to each parameter.
The problem is that any naming scheme complex
enough to precisely specify a subsystem is too com-
plex to remember and use effectively. There are many
approaches to hiding the problem of referents with
clever language structuring [8, 11, 18, 19, 33].

For example, in Distr [11] and Arusha [18, 19],
low-level parameter value declarations can be reduced
or avoided via parameter defaults specified at a higher
level. Environmental acquisition [33] allows parame-
ter values to be inferred from the context in which a
host must operate, much as a red automobile typically
has red doors. Unfortunately, clever tricks such as
value inheritance and environmental acquisition do
not eliminate the problem; they simply transform the
problem of referents into the equivalent problem of
keeping inherited attributes correct in an increasingly
complex inheritance scheme. As we will see, the solu-
tion is not to refine the solution, but to change the
problem.

The problem of unintended consequences [15, 17,
40] arises because subsystems are often coupled in
unforeseen and even undocumented ways. Very com-
monly, replacing a dynamic library to repair one appli-
cation will break another. Similarly, installing one appli-
cation can edit, e.g., /etc/inetd.conf, so that another appli-
cation is disabled. We need some way of protecting our-
selves from doing things that harm more than help.

Unintended consequences are often the result of
hidden preconditions. Every management process,
whether automated or manual, only works in particu-
lar environments. If we forget the environment and
conditions under which a process is applicable, the
process may have unintended consequences. An ideal
process has minimal preconditions, and those precon-
ditions are explicitly defined.

In turn, all hidden preconditions are the result of
latent variables. A latent variable is a fact about a sys-
tem that remains unseen until it causes a failure. For
example, in a Linux server of about five years ago, the
fact that one network card in a Linux server was man-
ufactured by a particular vendor was unimportant, but
if one added another identical card, a well-known net-
working bug would cause packets to be sent on incor-
rect interfaces. The manufacturer of the initial card is
a latent variable that is not perceived to be a problem
until it is expressed (like a gene) by adding another
identical network card.

These problems obscure yet another problem that is
not generally acknowledged, but is far more expensive in

terms of human effort: the quandary of incidental com-
plexity. While our mission as system administrators is to
observe and assure particular kinds of system and net-
work behavior, 95% of the information we currently spec-
ify (or perhaps inherit and override) during ‘‘configuration
management’’ has no impact upon observable behavior.

A system is a graph of multitudes of interdepen-
dent minutiae, requiring knowledge of facts such as:

1. Where particular configuration files, programs,
and subsystems are stored.

2. Which environment variables affect which
applications.

3. Which disks are faster than others.
4. Which machines get which services from which

others.
Bothersome facts about this minutiae include that:

1. An effective system administrator must be able
to unravel all of it, ergo

2. One must set up patterns that are easy to
remember, so

3. It must be consistent from system to system,
even though

4. Its initial specification is not only subject to
human error, but can also drift over time due to
configuration changes.

The result of this culture is that configuration manage-
ment systems, faced with the tradition of human man-
agement of irrelevancy, streamline this useless man-
agement task instead of more appropriately eliminat-
ing it entirely.

A pervasive and systemic problem sometimes
requires a radical solution. If information is irrelevant
to behavior, we leave that information to a better
authority than ourselves: an expert system that figures
out the various minutiae necessary to assure a behav-
ior. This expert system takes the form of a suite of
small and simply constructed configuration engines
responsible for particular facets of behavior. These
engines communicate with one another through a hier-
archy that reflects the primary dependencies between
subsystems. They are designed bottom-up and utilized
top-down. A human communicates with the top level
in order to effect changes at lower levels.

To solve the problem of incidental complexity,
these configuration engines split configuration param-
eters into two distinct sets:

1. Interior parameters that are the responsibility of
agents, and are read-only at all times (except
during troubleshooting).

2. Exterior parameters that are the responsibility
of the system administrator and are always
read-write.

In a human-readable configuration, only exterior param-
eters matter, which greatly reduces the size of a ‘‘config-
uration.’’ This division also leads to a less-than-obvious
solution to the problem of referents. If referents are
behaviors, instead of parameters, the exterior space of
referents self-scales to a size a human administrator can
easily memorize and internalize.

126 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Couch, et al. Seeking Closure in an Open World: A Behavioral Agent Approach . . .

The agent approach also solves the problems of
unintended consequences and latent variables for the
core of a system, but not overall. Anything that is suit-
ably constrained cannot behave badly, but it is imprac-
tical to constrain everything. The highest level of any
system might need to remain open and evolving.

If as well, the exterior parameters are controlled
by constraining values rather than specifying literal
values, we have achieved the highest attainable level
of abstraction in specification, a strategy first pro-
posed by Burgess [7] and Anderson, et al. [2].

Closures

A ‘‘closure’’ is a programming language term
[41] for a name-binding environment in which setting
a variable and then reading it always gives the value to
which it was set, independent of the settings of other
things. In a closure, the meanings of names are inde-
pendent of one another, unique, and persistent. Perhaps
the simplest closure is {...} in C. For example,
{ int x=4; { int x=1,y=5; } }

defines two nested closures, each with a distinct idea of
the binding between variable x and a storage location.
In the outer closure, x has the value 4, while in the inner
closure, a different binding for x has the value 1. After
the inner closure and inside the outer one, the symbol x
briefly refers again to the one with value 4.

‘‘Closure’’ in a mathematical sense is a property
of a mathematical system in which operations within
the system do not produce results outside the system,
e.g., we say that the integers are ‘‘closed under addi-
tion’’ because the sum of any two integers is an inte-
ger. Likewise, the integers are not closed under divi-
sion, because 1/2 is not an integer. As another mathe-
matical meaning of closure, in real analysis, a set of
numbers is ‘‘closed’’ if the limit of any sequence of set
members is present in the set.

Generally, in a closed system, no matter what
one does under the rules, one obtains a result to which
the rules still apply.

We apply the term closure to system administration
in a form that embodies all of these prior meanings.

Principle 1: A closure is a subsystem with highly
predictable, reliable, and robust behavior in
response to configuration changes.

It is a domain of ‘‘semantic predictability’’ in which
the behaviors one requests are portrayed exactly as
requested and have a precisely predictable effect.

Coming to closure in a relatively static environ-
ment is easy; coping with change is the prime adversary
of closure. The key to handling change is to base con-
figuration management upon those attributes whose
structure changes least frequently. The implementation
of services is constantly changing and evolving, but the
nature of services – what they do and how they behave
– changes more slowly, if at all. We thus base our lan-
guage of configuration upon observable behavior rather

than parameter settings, where a behavior is observable
if one can determine its presence or absence by asking a
simple yes/no question. As software is updated and
upgraded, overall behavior changes little with each new
software revision, while the underlying low-level imple-
mentation may require regular and sometimes drastic
improvements.

Parts of a Closure
A closure has four parts:

1. A set of conditions that define the environment
in which the closure will operate properly. In
software engineering terminology (as well as in
the theory of program correctness [41]), these
are called preconditions.

2. A set of configuration operations that work
predictably when preconditions are met.

3. A set of conduits that allow exchange of infor-
mation with other closures.

4. A map from configuration operations and
parameter values to system behaviors, which
specifies how each configuration change must
affect the behavior of the overall system. In
software engineering terminology, these are
called postconditions.

The effect of a closure is that if one obeys precon-
ditions and uses only closure operations and conduits,
then the map from configuration to behavior will remain
a definitive description of behavior. If one violates any
of these restrictions, the map is no longer guaranteed.

We do not expect that anyone will argue about the
value of predictability. The controversial part is that one
must limit one’s environment and practice to assure that
predictability. It is not practical to allow ‘‘anything’’ to
be done to any machine – the result is almost never
maintainable or reproducible. In particular, one must not
even attempt to configure a system other than by its
approved conduits; to do so invites disaster.

Again, this concept is not new. Every software or
hardware product embodies some kind of closure. If
one installs the product as recommended (precondi-
tions), and interacts with it using configuration opera-
tions listed in the documentation, it will hopefully
behave as documented (postconditions).

Closures Without Agents
So how difficult is it to construct a closure? Prac-

tically, it is just a matter of limiting one’s operations
and certifying their effects individually and in concert.
It does not require an agent, and can instead consist
entirely of manual practices.

For example, at Tufts we certify only a few base-
line configurations for desktop computers, including
hardware and software specifications. These configu-
rations form a closure in which the results of common
upgrades become predictable. If a user deviates from a
baseline by employing custom hardware or software,
he moves outside the closure and (according to sup-
port rules) receives a lower level of support. If it is

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 127

Seeking Closure in an Open World: A Behavioral Agent Approach . . . Couch, et al.

impossible to repair his problems, staff will offer to
put him back into the closure (’baselining’) but will
not debug problems encountered by a user who volun-
tarily leaves the closure. The closure allows us to pro-
vide a relatively high level of service to people within
the closure, at the cost of aggressively discouraging
people from leaving it. This saves much support time
by avoiding costly troubleshooting sessions on sys-
tems outside the baseline.

Closure and Open Systems

Closures are not an attempt to ‘‘close systems,’’
and the systems in which closures operate remain oth-
erwise open.

Principle 2: A closure is a highly predictable sub-
system of an otherwise open system.

While it is a good thing to be able to extend systems
for any use, the act of extending them is often plagued
by latent variables. A closure adds sanity to an other-
wise open system by protecting a relatively mature
subsystem from the effects of open extensibility. We
protect the subsystem not by building physical barriers
around it, but by agreeing to manage subsystems in a
very disciplined and structured way. Closure of whole
systems is not always practical. Instead, we locate
subsystems that exhibit closure, and agree to leave
them alone to perform their appointed tasks.

Again, this is an old idea with a new name.
IP/DHCP is an example of such a closure. If we leave
it alone and configure it via well-documented proce-
dures, it will assure networking up to the session layer.
Applications can leave this function to the operating
system, thus ensuring predictability for IP functions.
Likewise, network appliances form closures at the ser-
vice level for file service, web service, proxying, etc.

Closures and Best Practices

There has been much discussion lately about the
concept of ‘‘best practices’’ and their role in organiza-
tional robustness of service organizations [26, 30].

Principle 3: An ideal (well-designed) closure is an
embodiment of best practices that never allows its
subsystem to enter an unapproved or invalid state.

The limitations imposed by a closure and its resulting
behavior are a standard amenable to validation and
verification. Within the standard there is guaranteed
predictability and interoperability; outside the stan-
dard, anything can happen.

Some closures are simple static preconditions on
otherwise open systems. Software for Linux systems is
plagued by incompatibilities between the distributions.
The Linux Standard Base (LSB) [42] is a closure that
limits the structure of the library binding environment
for Linux distributions so that vendor software is guar-
anteed to work. It specifies standards for how distribu-
tions locate system files and libraries. Vendor software
written to conform to the standards will work properly
in any distribution that conforms to the standards.

LSB has the interesting property that its closure
properties span distributions; any application that con-
forms to LSB standards and works properly in any one
conforming environment is guaranteed to work in all
conforming environments. There is no more need for
‘‘write once, debug everywhere;’’ debugging in one
conforming environment is sufficient.

Coming to Closure

Though it is possible to buy highly predictable
subsystems, a closure is not always something one
buys or downloads. It is mostly a change in the way
one thinks about the actions one takes in configuring a
network. The main content of a closure is ‘‘additional
rules of practice’’ that keep one from creating situa-
tions in which latent variables can appear. Break these
rules, and one no longer has a closure. Follow them,
and predictable behavior is assured.

The simplest closure of which we are aware is
‘‘Never delete a dynamic library.’’ This discipline
assures that you will be free of one latent effect, that
of deleting a library that is in use. If one only installs
software, and never overrides the contents of a
dynamic library, then proper function of most pro-
grams is assured. If one ever deletes or replaces a
dynamic library, havoc can result [15, 17]. All clo-
sures trade something for predictability and robust-
ness. This practice costs one some administrative flex-
ibility and disk space in return for a more stable and
predictable system.

Closures take many forms and scales. A network
appliance or thin client is a closure at the system level:
an autonomous component with predictable and
immutable behavior. DHCP can be viewed as a clo-
sure at the network level; it is a domain of predictable
behavior in which clients are always assigned reason-
able IP addresses. Network closure is also the purpose
of Oracle’s ‘‘StarNet’’ network middleware layer,
among others; in this case the goal is reliable and
secure communication with a database management
system. A good operating manual often forms a clo-
sure at the human level: a set of procedures that
‘‘always work.’’ All of these are subsystems that are
somehow forged to be highly predictable for what they
are intended to accomplish, regardless of whatever
else is going on in a complex system.

Conduits

A conduit is in the context of a closure has the
same meaning that it does in middleware. It is an
interface between closures that reliably allows infor-
mation exchange between them, and mediates config-
uration changes so that mistakes are less likely in
either communicating closure.

Conduits can take many forms. Ideal conduits
interface between subsystems with no administrative
intervention, e.g., the gethostbyname function that
interfaces with the domain name service.

128 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Couch, et al. Seeking Closure in an Open World: A Behavioral Agent Approach . . .

An Ideal Closure

Closures vary in the effectiveness with which
they eliminate latent effects. Almost everyone has to
manage one or more web servers. Let us explore how
practice would change if we tried to eliminate all
latent effects by building a closure around a web
server. This is going to take a little rethinking about
how we ‘‘configure’’ web servers, but is both possible
and practical.

In forming this closure, however, we will have to
violate some very common conventions of user interac-
tion, including shell accounts on the web server. We will
do this with the confidence that it closes the system
against unpredictable effects in ways that a shell-based
system cannot be closed. In creating the closure, we will
outline general principles one can apply to any situation.

Taxonomy of Behavior
To achieve a closure that ‘‘acts like a web

server,’’ we will lift details of the configuration of a
web server from its phenomenology as a server, i.e.,
the set of behaviors that make it a web server. The
goal will be to describe the server from the outside,
and allow the server to configure its internals without
human intervention.

Principle 4: An ideal closure’s configuration lan-
guage is derived from a taxonomy of desired behav-
iors, not from the internal taxonomy of the system.

What comprises a web server’s behavior? It has an IP
address, responds to one or more names and/or ports,
delivers content for each URL one provides, calls
CGIs, and perhaps calls extension modules or interacts
with database servers. So its configuration attributes
should include:

1. Identity: IP addresses, virtual names, certifi-
cates, ports on which to listen.

2. Customization: Names of required modules,
libraries, database bindings.

3. Content: A map from (virtual name, port) to a
hierarchy of files, including service constraints.

4. Auditing: Ability to retrieve descriptions of ser-
vice activity.

For now, let us consider this an exhaustive list of
everything we provide to the server or get back from
it. Everything else is going to be accomplished auto-
matically without intervention from us.

Our pattern-slaved nature as human beings leads
us to unavoidably fill in details where they are not
needed, so it is difficult at first glance to see just how
much we just left out of the web server’s configura-
tion. We left out:

1. The operating system to use.
2. The layout of the operating system.
3. The web server to use.
4. The representation of data.
5. The specific locations of files, including source,

object, libraries, modules, etc.
6. Performance tuning.

7. Everything the web server requires of its envi-
ronment that is not seen by the user.

Obviously these details must be ‘‘added back in’’ at some
later time. Ideally the closure itself provides all these
details during its efforts to install itself. We thus minimize
what the administrator has to specify and learn.

There is not really any need for an administrator to
know where files are kept on a functioning web server.
This information is only useful if the server fails and one
must troubleshoot it. If closure can arrange for it never to
fail or to be self-correcting, then information on its inter-
nal structure is no longer needed.
Isolation

Our first configuration action will be to remove
normal users and normal configuration tools from the
system that will be a web server:

Principle 5: A closure is isolated from subsystems
that might create latent effects. ed As part of our
contract with the closure, we will ‘‘let it manage
itself,’’ so we do not need the ability to manage it
or interact with it otherwise. This is good, because:

Principle 6: An ideal closure’s internal structure is
completely opaque to the user; it can vary with
circumstances and utilize the most efficient inter-
nal representation for a specific environment.

An excellent example of self-optimizing behavior may
be found in [2].

Our web closure will presume that it is the sole
manager of its configuration. Any violation of that
contract will seriously affect our closure’s ability to
manage itself, because there will be latent effects of
changes that the closure did not make during self-
management. Our closure’s ability to repair itself is
greatly tempered by being able to control what
changes occur and when. If it has complete control of
its configuration, this is a matter of simple feedback
algorithms, while if it did not have total control, it
would instead be forced to rely on pattern matching
and machine learning. We wish to avoid this due to the
typical unpredictability of such control mechanisms.

In our particular case, data will be stored in the
system in the way that’s most efficient for the system,
and need not reflect external architecture unless neces-
sary for some internal reason. The reasons for this are
obvious; the user and the storage medium are unneces-
sary constraints that can lower the efficiency with
which we can maintain the closure. By removing these
constraints, we also increase the size of the space of
alternatives for implementing a solution. In particular,
we can supply web pages in HTML while the closure
stores them in XML.
Conduits

Conduits are the sole interface between the
administrator and the closure.

Principle 7: A closure is self-centered and requires one
to communicate all configuration changes and gather
performance data through a gatekeeper conduit.

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 129

Seeking Closure in an Open World: A Behavioral Agent Approach . . . Couch, et al.

The gatekeeper conduit is the mediator during contrac-
tual disputes between administrator and closure. If you
ask a closure to do something it can’t do, the gate-
keeper will reject it:

Principle 8: A closure is self-policing and validates
configuration changes before making them.

This enforces integrity constraints that keep the clo-
sure configured in a proven way. The key to success-
ful closure is that every achievable configuration cor-
responds to one of a set of best practices [26, 30], so
that undesirable states are never entered.

The gatekeeper conduit may be a human being or
software. The conditions on what a gatekeeper (of any
kind) will accept must be carefully documented. Every
closure’s documentation must describe four things:

1. Prerequisites for setting up a closure, including
hardware, software, network resources, etc.

2. Techniques for interacting with the closure as a
holistic entity.

3. Postconditions and expectations: what will hap-
pen if you do this.

4. Consequences of violating preconditions: what
will happen if something breaks.

Documentation is particularly important since it is our
only clue to how a closure will behave in a specific sit-
uation.

For web services, there are at least three kinds of
required gatekeeper conduits.

1. Configuration: Determines how the server
behaves overall. This can be any kind of user
interface that describes behavior other than
content.

2. Content: For each virtual service, a conduit that
describes data to be served.

3. Auditing: Describes log content.
Configuration is done using nothing more than the
usual GUI or CLI (or preferably both) that describes
what virtual servers to implement and what special
behavior each should exhibit.

The content conduit is dramatically different. It
is a closed interface to providing content that can sup-
port one or more of:

1. One-way or two-way mirroring of a filesystem
available to developers.

2. An explicit CLI or GUI for creating content.
3. A database feed.

This roundabout way of providing content may seem
bizarre until one realizes that we are attempting to
completely eliminate operational coupling between the
closure and the outside world, except through con-
duits, and arrange for robust service even if conduits
are interrupted. Many sites already configure their
web servers this way for precisely the same reasons,
but call the practice ‘‘content staging.’’

Employing a conduit for content also allows the
closure to utilize its own representation for the content
that is independent of that provided by users. One
thing that one does not want to do is to give the

closure direct access to the files being updated by
users. This creates points of failure that do not exist if
these files are filtered through a conduit instead. For
example, there is no way that a file provided through a
conduit can have an invalid file protection, but a
human manually arranging to publish a file can easily
mis-protect the file in a variety of ways.

Environment
Few closures can be created in a vacuum. They

must take information from the network in order to ini-
tially configure themselves, either from the Internet or
from a specific host designated as a fileserver. They are
also frightfully dependent upon having the resources
they expect for disk space, memory, and network band-
width. All we can do is to limit a closure’s dependence
upon the outside world in some strategic way:

Principle 9: An ideal closure is self-contained; it
only depends upon external resources during con-
figuration and is otherwise uncoupled from its
network environment.

This eliminates many latent effects of changes in the
environment, such as reboots of other servers, etc. A
closure is like a binding contract: get this, do this, and
this will happen. There are negative consequences as
well as positive ones. Our web server will be very
unhappy if it is memory-starved, and non-functional if
it is disk-starved in storing content.

Preconditions
For our web server, let us presume that we docu-

ment the following requirements:
1. 128 MB or more of main memory.
2. 10 GB of available disk.
3. Intel pentium 300 or above.
4. Platform in the RedHat certified list.
5. Extra hardware in the RedHat certified devices

list.
6. Initially connected to a network supporting

DHCP, with access to an appropriate RedHat
repository.

This is more or less all we need to arrange an automatic
build of a webserver with no human intervention.

Awareness
Principle 10: An ideal closure is responsible for

assuring the integrity of its operating environ-
ment.

Documentation of the closure will state specific hard-
ware and resource requirements, and service software
will check for those requirements on an ongoing basis
and fail otherwise. The reason is obvious; the closure is
the best judge of what is needed for it to function. These
constraints could be as general as ensuring hardware
function or as specific as checking for integrity con-
straints in the operating environment. If it cannot change
its environment to suit, the closure will request service
from humans. You must then ‘‘adapt to service it.’’

In the case of our web server, the checks the clo-
sure should make are easy to construct. One can arrange

130 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Couch, et al. Seeking Closure in an Open World: A Behavioral Agent Approach . . .

to check for available memory, disk, and devices at boot
time, and fail if appropriate devices are not present. The
ideal closure assesses its environment and creates its ini-
tial configuration based upon what it finds.

Principle 11: An ideal closure is self-organizing
and self-installing.

An ideal closure could build itself in entirety on bare
metal from a floppy disk and network. This is not at
all unreasonable given the current state of the art,
though it does limit one’s operating system choices.
We are aware of many people who have developed
boot floppies for various kinds of services, notably
cache servers, routers, firewalls, and thin clients.

Security

It is past due for our software to take some of the
responsibility for its own security.

Principle 12: An ideal closure is self-hardening and
self-repairing, and patches itself for security prob-
lems when information on the problems becomes
available.

When an administrator decides that a patch is war-
ranted, the closure itself installs it. This seems scary
but is relatively easy to arrange, because the closure
already certified the environment in which the closure
operates. So we know whether a patch will install cor-
rectly if it installs correctly on another host running
the same closure.

But the state of current monitoring and response
technology goes far beyond simple patching. One can
easily construct a web service environment in which
available of service is constantly tested and the service
environment is restarted whenever it crashes. In many
cases, restarts are not emergencies and will simply
appear in the administrator’s normal log of activities
for a server.

Adaptability

A closure is responsible for any flexibility one
has in modifying hardware over time.

Principle 13: An ideal closure is self-reliant and
deals internally with time-varying hardware
changes and resource availability.

This could range from no flexibility, meaning that you
can’t change anything without a bare-metal rebuild, to
total flexibility, that arranges to deal elegantly with
complete machine replacement by periodically back-
ing up servers and cloning them on other hardware.

Caveats

There are several invariants of closures that may
not be obvious at first glance.

1. Closures are not necessarily portable. They
depend upon a contract more specific than to
run on any hardware whatever. They can be
customized to a specific environment to make a
new closure.

2. The contract for a closure is a homogeneity
constraint. It assures that every closure starts

building itself from the same basic set of
resources. Closures are scalable provided that
homogeneity constraints are satisfied system-
wide, and unscalable otherwise. A closure can
be replicated without bound once we know how
to build systems on which the closure can live.

3. Closures reduce what one has to watch about a
network and reduce possible troubleshooting
causes. Something else other than the administra-
tor is watching the closure. If anything goes
wrong with the closure itself, it will be caught by
the closure’s own management mechanisms.

The above example is extreme, and much milder
examples of closures can be created, e.g., we can
make a web server that co-exists with user services by
creating a different contract. We can create a closure
for IP Telephony by, e.g., standardizing sound cards
and drivers and creating an installer and maintenance
engine driven by a central knowledge base.

Some seemingly obvious facts about closures are
false. The union of several closures need not be a clo-
sure. Consider two closures:

1. rpm --install commands on an rpm-compliant
host with matching rpm repository.

2. make install in source directories.
Both of these commands are closures in the sense that
there is a sequence of appropriate operations that gives
any desired effect in each closed world.

But the union of these two closures is seldom a
closure. The problem comes from the way they inter-
act when a make install (using autoconf) binds to a
dynamic library provided by a distinct rpm -install. The
rpm closure, which has inverses when considered as a
closed world, no longer has inverses when considered
as part of the make install closure. If this library is
removed, the result of the make install will break. So
the rpm command that installed the library cannot be
undone without breaking the make install closure.

A Model of Closure

Further design principles require a precise defini-
tion of closures. This section is difficult reading and
can be skipped without much loss of continuity. Here
we precisely define the concept of closure and mathe-
matically illustrate some more esoteric principles of
closure design.

Our concept of closure will be a property of a set
of software agents. An agent is an autonomous pro-
cess, within a system or network, that accomplishes
changes based upon external commands from a system
administrator or other agents. Agents can be embodied
in physical processes or combined into a single pro-
cess with multiple functions, as in Stem [25].

In designing a closure, there are a few
inescapable and well-justified principles that limit our
design choices. To start,

Axiom 1: A usable set of agents must be conver-
gent, consistent, aware, and atomic [14].

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 131

Seeking Closure in an Open World: A Behavioral Agent Approach . . . Couch, et al.

1. A convergent agent is defined as a software
process that will do nothing unless something is
amiss, and will correct anything within its
domain of change that becomes non-compliant.
This property is necessary to limit the intrusive-
ness of using an agent, and limit downtime due
to agent actions. ‘‘If it ain’t broke, don’t fix it.’’

2. A set of agents is called consistent if agents
will not undo other agents’ actions. This we
formerly called homogeneity [14]. This is nec-
essary so that a set of agents will, at a particular
time, agree upon a state to assert for a system.

3. An agent is called aware if it knows whether an
error occurred in making a change. This is nec-
essary in order to ensure atomicity, below.

4. In database theory, an action is atomic if it
either succeeds and accomplishes a change, or
fails with no change whatever. Similarly, an
atomic agent leaves a system completely
unchanged when an error occurs during a con-
figuration change.

Convergence and consistency assure that cooperating
agents will not interfere with one another or the user.
Awareness and atomicity preserve integrity of the
underlying system in case of configuration failures,
and assures that if the system cannot be forced into
compliance with the ideal, that the act of enforcement
does not create further problems. In other words, ‘‘a
closure should do no harm.’’

Ideal agents treat the process of configuration as
if it consists of database transactions [22, 23], where
allowable transactions include constraints as well as
literal assertions of state. These transactions are sub-
ject to integrity constraints and will fail and do noth-
ing if a desired state cannot be achieved.

Alas, the above obvious properties of an agent
are not enough to allow us to construct a system man-
agement environment from cooperating agents. Infor-
mally, we say that ‘‘each agent manages a closure.’’
The exact and precise meaning of this takes some
work to develop. One deep problem concerns the
meaning of consistency between agents. The most
challenging problem is to design closures so that local
consistency between pairs of closures is sufficient to
assure global consistency of closures as a set. Pairwise
consistency requires up to O(n2) operations to verify,
where n is the number of closures, while global con-
sistency may require up to O(2n) consistency checks,
one for each subset. The rest of this section discusses
how to avoid the latter expensive process of consis-
tency checking.

Parameters and Configurations
In understanding the mathematics of closures, we

must first define the notion of what a closure does. In
the following, subsystems and closures (a special kind
of subsystem) are notated in capitals, while their
attributes are notated as script capitals subscripted
with the subsystem to which they apply, e.g., VA.

Definition 1: For each subsystem A, let VA be the
set of its configuration parameters.

‘V’ stands for variant. We purposefully leave the con-
cept of parameter relatively unconstrained. To handle
complex situations, some parameters may be ‘‘latent’’
or ‘‘unexpressed,’’ like ‘‘unexpressed genes.’’ For
example, in a web server, theoretically every directory
on the system has an access list, but only the access
lists of directories that serve as web content are
expressed by having an impact upon operation. So a
subsystem may have an infinite number of possible
parameters, though only a finite number are expressed
at any time by actually controlling behavior.

We next need to allow parameters to have values.
Axiom 2: Without loss of generality, we can con-

sider each configuration parameter value to be a
string from some fixed alphabet Σ.

Since a string can contain any structure, including XML,
arbitrary hierarchical relationships can be portrayed.

Definition 2: A configuration c of A is a mapping
c : VA → Σ*

where Σ is an alphabet of configuration symbols
and Σ* is the set of all words (i.e., sequences of
characters) that can be formed from the alphabet Σ.

Configurations are assertions that indicate what should
be true of a system. They are ideals; the actual param-
eter values on the system may differ due to external
influences. For p ö VA, c(p) represents its value in the
configuration c.

Definition 3: For a subsystem A, let UA denote the
set of all possible configurations.

‘U’ stands for universal. This is a very large set that,
while actually finite due to memory bounds, might as
well be infinite. Fortunately, we can limit ourselves to
studying a reasonably small subset.

Definition 4: For a subsystem A, let DA ä UA be
the set of all reasonable configurations of A.
These are configurations that, according to some
standard of practice, make sense.

‘D’ stands for domain. These configurations comprise
the domain of change that an an agent can understand
and manipulate. The contents of DA are a set of choice
configurations that exhibit appropriate constraints and
behaviors. The structure of these constraints will be a
design choice in building an agent.

At any particular time t, a subsystem A exhibits
exactly one configuration cA,t that may or may not be a
member of DA. In this paper, however, we will study
properties of configurations that do not depend upon
time, so that our model will ignore the time-varying
nature of configuration and concentrate instead upon
static structure. In the argument that follows, all
choices we make apply to a single time step. One
excellent time-varying model of configuration may be
studied in [7]; our time-varying model (which differs
somewhat) is left as future work.

132 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Couch, et al. Seeking Closure in an Open World: A Behavioral Agent Approach . . .

Policies
The following is borrowed from the work of

Burgess [7] and Anderson [2] but used in a new way.
Definition 5: For each subsystem A (at the time

step that we consider), a policy is a subset
QA ë DA.

The intent of a policy is to describe a set of options for
configuring a system. Each element of a policy
describes a reasonable configuration that can be
applied to a system. Ideally, the options in a policy
result in similar behaviors when applied to the system
being configured. Like configurations, policies are
ideals. They describe what should be set in the config-
uration of a machine, not what actually appears there
due to the effects of time and change.

Definition 6: A subsystem A’s configuration is
compliant with a policy QA (in the time step that
we consider) if the actual configuration cA ö QA.

If a system is compliant with a policy, all parameter
values specified in one configuration of the policy are
echoed in the actual configuration of the machine.

Definition 7: For a particular subsystem A, let P̃A
represent the set of all reasonable policies for A.

A reasonable policy is one that has been implemented,
validated, and incorporated into a site practice manual.
P̃A is a set of sets of configurations. Each QA ö P̃A is
a set of configurations, while each configuration
c ö QA is a reasonable configuration in DA. Again,
this is not the set of all possible policies, but rather the
set of all reasonable ones that we think will have
acceptable results. The former set is staggeringly
huge; the latter is no larger than the detail of one’s
practice manual.

Policies are ‘‘constraint spaces’’ in the sense of
Burgess [6, 7] or Anderson [2]. A policy is not a defi-
nition of what must happen, but rather a list of reason-
able options. In the current model, for simplicity, there
are no priorities or weights for policy options; any
option in the list is fine.

We realize that this is a misuse of the word pol-
icy (which many authors believe to be ‘‘that which is
determined by management’’) but at least, it is a con-
sistent misuse among this paper ’s references!

Behavior
One new idea of this paper is to utilize testing

and validation as the definition of external behavior.
This continues the work started in [15, 17].

Definition 8: A behavioral test is a yes/no question
that determines whether or not a configuration has
a particular property. For each subsystem A, let TA
be a set of behavioral tests that characterize its
external behavior.

These are yes/no questions that determine whether a
configuration has a particular property or not. Sample
tests might include:

• Does A run a web server on port 80?

• Does A not answer tftp requests?
• Does A have a directory named /var/local?

Questions do not have parameters; ‘‘Does A run a web
server on port 8080?’’ is a different question than the
one above.

Closures

Now we are ready to define the exact nature of a
closure.

Definition 9: A closure is a quintuple (A, VA, DA,
P̃A, TA) such that for any policy Q ö P̃A
(Q ä DA), any configuration c ö Q, and any test
f ö TA, the value of f(c) does not depend upon the
particular choice of c ö Q.

In other words, policy unambiguously determines
behavior. To ease notation, we refer to the quintuple
(A, VA, DA, P̃A, TA) as the closure A.

Note that the idea of closure depends very much
upon what we value (or wish to avoid) through testing:

Principle 14: Designing a closure requires choos-
ing first exactly which kinds of behaviors the clo-
sure should be able to produce by configuring a
system.

This is embodied in the tests TA that determine, among
other things, which behaviors are important and which
are frivolous. Important behaviors correspond to tests;
incidental or frivolous behaviors are those for which
there is no test included.

Note that this is as much a condition on the
structure of reasonable policies as it is upon their
effects. For example, if there is one and only one rea-
sonable policy, and tests always have the same results,
we have an administratively trivial closure for which
there is only one behavioral result. This means that:

Principle 15: Designing a closure requires carefully
delimiting what is reasonable and appropriate, as
integrity constraints on parameter space.

In most systems, randomly choosing values for param-
eters results in chaos. The choices for reasonable con-
figurations DA and reasonable policies P̃A exclude
such chaos.

If we know A is a closure, then there are maps
from configuration and policy to behavior.

Definition 10: For a closure A (which is the quintu-
ple (A, VA, DA, P̃A, TA)), let τA denote a map from
configurations to behaviors

τA : DA → (TA × {true, false})
such that for each configuration c ö DA,

τA(c) = {(f, f(c)) | f ö TA}
where f(c) is the (boolean) result of applying test f
to a system compliant with the configuration c.

The action of the test suite, TA, on a particular
configuration is to tabulate the results of running all
tests, filed by test name and result. The result is a set
of ordered pairs τA(c). Because A is a closure, each
f ö TA can appear in exactly one ordered pair, (f, f(c)).

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 133

Seeking Closure in an Open World: A Behavioral Agent Approach . . . Couch, et al.

Generalizing this to policies that are sets of con-
figurations:

Definition 11: For a closure A, let τ̃A denote a map
from policies to behaviors, where

τ̃A : P̃A → (TA × {true, false})
such that for each policy Q ö P̃A,

τ̃A(Q) = {(f, f(c)) | f ö TA, c ö Q}
where f(c) again represents the (boolean) result of
applying test f to a system compliant with the
configuration c.

As before (since A is a closure), each f ö TA appears in
exactly one pair, (f, f(Q)), in τ̃A(Q).

Note that both of these definitions are nonsense
for non-closures, because in the absence of a closure,
the results τA(c) and τ̃A(Q) may differ over time even
for constant choices of c and Q! By the definition, A is
a closure if and only if τ̃A makes sense as a function.

Provided that A is a closure, the contents of P̃A

are constrained. Each element of P̃A must be a subset
of some inverse image of a unique set of behavioral
test results, e.g., for a set of test results
L ä (TA × {true, false}),

τ−1
A (L) = {c ö DA | τA(c) = L}

Note that for every valid set of test results
L ä (TA × {true, false}), each test appears only once
on the left-hand side.

Definition 12: Let LA be the set of all possible test
results, i.e., all subsets of (TA × true, false) where
each first coordinate appears exactly once.

Then the inverse images of L ö LA under τA partition
DA into disjoint subsets, one per non-empty inverse
image. Each element of the partition is a candidate
policy for the closure, i.e., a set of configurations with
identical behavior. In choosing P̃A, for A to be a clo-
sure, each element of P̃A must be a subset of one
inverse image; otherwise policy would not uniquely
determine behavior.

Since multiple policies with the same behavior
represent wasted effort, without loss of generality we
can set

P̃A = { τ−1
A (L) | L ö LA } .

This is the set of all subsets of configurations corre-
sponding to unique observable behaviors L ö LA. Thus

Principle 16: The structure of parameter space for a
closure is dependent upon the limited taxonomy
of a finite number of desirable behaviors, not
upon the possible behaviors that result from arbi-
trary parameter settings.

The space of desirable parameter combinations P̃A for
a closure A is almost always much smaller than the set
of all possible parameter values. It is instead a com-
pendium of best practices for the target environment
[26, 30]. This expertise factor makes the inverse func-
tion practical to enumerate by iterating over and test-
ing all policy choices. Otherwise, determining the
inverse would be intractable.

It is particularly important to limit predictability to
a finite subset of objective tests. Many mistakes in rea-
soning have been made by presuming that behavior
includes ‘‘all’’ that a system can do. The observable
behaviors are a finite set, while ‘‘all behaviors’’ include
minutiae that are not important, e.g., the host’s specific
MAC address. By constraining the tests, we remove
tests that have no impact upon usability. Failing to con-
strain tests to a finite set is the root of several posed the-
oretical problems of system administration [20, 38].

Consistency
One of our tenets is that at any time, the set of all

closures operating upon a system must be ‘‘consis-
tent.’’ We have not yet precisely determined what con-
sistency means. If the closures have disjoint parameter
spaces, then they are trivially consistent because con-
flicts are impossible. Consistency is only nontrivial
when two closures share a resource or parameter. The
exact nature of that sharing is yet to be determined,
and there is a danger of over-limiting closures so that
they become impractical to construct. We must define
consistency for configurations, policies, and closures.

Configurations are consistent if they agree upon
the values of common parameters.

Definition 13: Two configurations c ö DA, c′ ö DB
are consistent if for every parameter p ö VA ú VB,
c(p) = c′(p).

Definition 14: A collection M of configurations is
consistent if any pair of configurations c, c′ ö M
are consistent.

In this case, consistency of pairs is sufficient to assure
consistency of arbitrary subsets. This is not true in
general.

Consistency of two policies means that the poli-
cies can both be applied at the same time without con-
flict:

Definition 15: For closures A and B with policies
QA and QB, policy QA admits QB (Q QB) if for
every c ö QA, there is a c′ ö QB such that
c(x) = c′(x) for all x ö VA ú VB.

In words, QA admits QB if for all configurations of A
compliant with A’s policy QA, there is a matching con-
figuration of B compliant with B’s policy QB. If every
possible configuration of either A or B is compatible
with some configuration of the other, we have consis-
tency of policies:

Definition 16: Policies QA and QB are consistent if
QA admits QB and QB admits QA (QA QB and
QB QA).

Consistency of two closures means that the poli-
cies for the two agents are coupled, so that on com-
mon parameters, a reasonable state for one is also rea-
sonable for the other. If the agent for one policy is
invoked before an agent for another consistent policy,
the second agent will not change parameters that the
first agent already corrected, unless these have in the
meantime been changed again by an outside force.

134 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Couch, et al. Seeking Closure in an Open World: A Behavioral Agent Approach . . .

The mystery here is how to choose policies for a
large set of closures that will be mutually consistent.
Informally, a set of closures S is mutually consistent if
for any subset

I = {I1, . . . , Ik} ë S
and any consistent choice for policies Qj ö P̃Ij

, there
are policies for the remainder of S that remain consis-
tent with this initial set of policy choices. This defini-
tion, however, is too naive; closures are not created
equal. Some are more likely to be controlled by
administrators than others, so that mutual consistency
must be based upon choosing policies for those distin-
guished closures first.

Dominance

Some closures are more important than others in
describing consistency.

Definition 17: Closure A dominates B (written
A Â B or B Á A) if for each policy QA ö P̃A,
there is at least one policy QB ö P̃B, such that QA
admits QB (QA QB).

A dominates B if it is possible to bring B into compli-
ance with A by choice of some policy for B. While con-
sistency is a property of a configuration, dominance is a
property of the sets of all policies: a constraint on the
globally achievable states for both A and B.

Definition 18: Closures A and B are mutually domi-
nant if A dominates B and B dominates A.

This is common when the closures are tightly coupled,
e.g., DNS and DHCP. Putting a host into DHCP should
correspond with putting it into DNS and vice-versa.

Some seemingly obvious statements about domi-
nance are false in general.

Proposition 1: Dominance is not necessarily transi-
tive (C Â B and B Â A does not necessarily
mean that C Â A).

Proof: Construct closures A, B, and C with
VA = {x, y}, VB = {y, z}, and VC = {x, z}, and let the
policies be assigned as follows (also see Figure 1):

P̃A = {x = 0, y = 0}

P̃B = {y = 0, z = 0}

P̃C = {x = 1, z = 0}
Then C Â B (x = 1, y = z = 0) and B Â A (x = y = z =
0), but C Â/ A (x values incompatible).

Dominance is important because it allows behav-
ior to be developed in a stepwise process. If A Â B,
then choosing a behavior (via a policy) for A partially
determines the allowable behaviors for B, with the
remaining options determined by the nature of B or the
administrator.

Consistency of Closures

Now we are ready to define consistency of clo-
sures. First we need to distinguish between con-
strained and unconstrained closures in an arbitrary set
of closures S:

Definition 19: In a set of closures S, a closure
A ö S is exterior if everything that dominates it is
mutually dominant with it, and interior otherwise.

An exterior closure is one whose parameter values
control the parameter values of other closures.

Definition 20: An exterior cover for a set of clo-
sures S is a subset I ë S where each u ö I is
exterior, every element s ö S is dominated by
some u ö I, and there are no mutually dominant
pairs of closures in I.

‘I’ stands for interface. An exterior cover is a set of
closures that, once configured, determine the configu-
ration of every closure (though perhaps not uniquely).
First, an exterior closure must be ‘‘at the highest
level’’ of a dominance hierarchy, with nothing domi-
nating any closure in it that is not mutually dominant
with the closure. We require that every element of S is
dominated by something in I, so that the configuration
of every element is thereby constrained. A mutually
dominant pair is redundant; only one of the pair need
be included in order to control both elements of the
pair. There are often many choices for an exterior
cover due to mutual dominance.

A

B

C

y=0

z=0

x=0

x=1

Figure 1: How transitivity of dominance fails.

An exterior cover for a set of closures is a choice
for how a human might communicate desires to a set
of communicating closures. The exterior closures are
the ones with which a human communicates; the inte-
rior ones are all implicitly configured by settings for
the exterior ones.

We can now characterize what it means for a set
of closures to be consistent:

Definition 21: A set of closures S is consistent if,
given any choice of policies for any exterior cover
I ä S, there are choices for policies for all non-
exterior closures in S − I (where − indicates set
difference), as well as choices of particular con-
figurations within each policy, so that the set of
all resulting configurations is consistent.

Remember that dominance allows us to determine
how to make a pair of closures consistent. Consis-
tency of a set of closures is a much stronger criterion

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 135

Seeking Closure in an Open World: A Behavioral Agent Approach . . . Couch, et al.

than pairwise dominance, and pairwise dominance is
not enough to assure consistency. In particular,

Proposition 2: A set S of closures in which for each
A and B, either A Â B or B Â A, and for which
Â is transitive, is not necessarily consistent!

Proof: Construct closures A, B, and C with
VA = {x, z}, VB = {y, z}, and VC = {x, y, z} and let the
policies be assigned as follows:

P̃A = { {x = 0, z = 0},
{x = 1, z = 1} }

P̃B = { {y = 0, z = 1},
{y = 1, z = 0} }

P̃C = { {x = y = 0, z = 0},
{x = y = 1, z = 1},
{x = y = 0, z = 1},
{x = y = 1, z = 0} }

Tr a n s i t i v i t y of dominance between these closures is obvi-
ous from inspection. A and B form an exterior cover, but
there is no policy globally consistent with x = 0, z = 0 in
P̃A, because y must be 1 in P̃B and 0 in P̃C. By the struc-
ture of A, B, and C, there are two conflicting assignments
for the same parameter y.

But, with a few more conditions, we can assure
global consistency of closures.

Proposition 3: Let S be a set of closures such that:
1. For each A, B ö S where VA úVB is non-

empty, either A Â B or B Â A.
2. If A Â B, then VA ò VB.

Then S is consistent.
Proof: Note first that in this case, for closures A, B, C,
if A Â B Â C, then VA ò VB ò VC, so that by domi-
nance, values of VA determine the values in VC. Thus
A Â C, and Â is transitive.

Note also that any conforming set of closures has
the structure of a forest of disjoint trees, as illustrated
in Figure 2. Dominant closures are ancestors of domi-
nated closures, where a closure is dominant whenever
it contains more parameters than another.

S1

S2

S3

S4

S1

S2S3

S4

Parameter Space Dominance
Relationships

Figure 2: Subset relationships in parameter space
exhibit a tree structure.

If S contains one closure, we are done. If S con-
tains two closures, then either their parameter sets are
disjoint or one closure dominates the other. In the for-
mer case, we are done, because the two closures agree
on an empty set of common parameters. In the latter

case, the dominating closure contains the parameter
space of the other, so by definition of dominance, the
closures agree on parameter values and are consistent.

If S contains three closures A, B, C, then if any
one has a set of parameters that is disjoint from the
other parameter sets, then we have only two closures
with common parameters, and we are done by the pre-
vious argument. So presume that all three parameter
sets have elements in common. By enumerating the
possibilities for dominance, one of the three closures
must always contain all parameters of the others and
dominate the other two, so we are done.

Now assume that the proposition is true for n clo-
sures, and consider n + 1 closures {S1, S2, . . . , Sn+1}.
This set must contain at least one interior closure Sk that
is mutually dominant with anything that it dominates;
this Sk is a lower bound for the finite set of closures
under Â. By induction, the theorem is true for

{S1, S2, . . . , Sk−1, Sk+1, . . . , Sn+1}
so that the latter set of closures (without Sk) is consistent.

Now consider the possible configurations of Sk.
As it is an interior node, either its parameter space is
disjoint from that of all other closures (and it stands
alone) or it is dominated by some other closure Sm
(with which it may be mutually dominant). If its
parameter space is disjoint from all others, it is triv-
ially consistent with the rest and we are done. If there
is overlap, then choose some other closure Sm that
dominates Sk (Figure 3). As Sm is a member of the
consistent set of closures except for Sk, setting Sk’s
configuration from Sm results in a consistent set of
configurations overall. We know we can do this, and
that it unambiguously instantiates all parameters,
because Sm Â Sk and V(Sm) ò V(Sk).

Sm

Sk

Parameter Space

Figure 3: Sk is dominated by Sm.

The proposition describes a convenient way to
assure consistency of closures from a condition on all
pairs of closures:

Principle 17: To maintain consistency of closures, it
is sufficient to maintain copies of parameters and
values of dominated closures inside the parameter
space of dominating closures.

136 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Couch, et al. Seeking Closure in an Open World: A Behavioral Agent Approach . . .

The proposition and principle are not optimal. One can
organize one’s closures as a tree, with one closure con-
taining the parameters for all the others, and consis-
tency is assured. This does not rule out other schemes
for assuring consistency. There are many consistent
sets of closures that do not obey this stricture. There is
room for much future work on the optimal structure of
consistent sets of closures.

For now, without further theory, higher-level clo-
sures must maintain copies of lower-level configura-
tion data, or face potential inconsistencies. As a side-
effect, this inclusion makes dominance transitive. This
copying may seem a bad thing but alas, not all hope is
lost, because what dominating closures have to copy is
actually rather limited. The structure imposed by the
proposition leads to a strict hierarchy (tree) of clo-
sures, where one overarching closure contains (or has
knowledge of) all of parameter space.

Exterior Parameters

An exterior parameter of a closure is a parame-
ter that – according to the previous principle – we
must copy upward in a chain of closures.

Definition 22: A set of parameters E ëVA is exte-
rior if for all c ö DA, the values in

c|E = {(p, c(p)) | p ö E}
uniquely determine the outcome of tests in TA.

This is a global constraint on all achievable configura-
tions. c|E is read ‘‘c restricted to domain E.’’ In other
words, given the values of parameters in E, all policies
compliant with these parameter values have identical
behavior. More formally, given E ë VA and a configu-
ration c, the configurations that agree with values in
c|E are interchangeable. This means that

{D ö DA | " p ö E, c|E(p) = D(p)}
all have identical behavior.

A set of parameters is exterior if, given these, the
behavior of the closure is completely determined, regard-
less of the other parameters, modulo the behaviors we
can observe. Interior parameter values are dependent
upon the exterior parameter values. If a tree falls in the
forest and no one hears it, it does not make a sound!

Interior parameters most frequently appear in
very complex systems, e.g., web servers. For example,
the port number of a virtual server is exterior; the
name of its root directory may not be. The former is
necessary to pass any behavioral test; the latter may
change without affecting external behavior at all.

It immediately follows that:
Proposition 4: In a consistent set of closures,

behavior is completely determined by the values
for all exterior parameters of all closures.

Proof: Let S1, . . ., Sn be a consistent set of closures.
Let V = ∪i VSi

represent the combined set of all
parameters. Let c:V → Σ * be a consistent configura-
tion for all parameters of all closures.

By definition of exterior parameters, in a particu-
lar closure Si, the values of c restricted to exterior
parameters ESi

completely determine the behavior of
that closure. As Si was arbitrary, this is true overall.

For consistency’s sake, when we make copies of
parameters in dominating closures, only the exterior
parameters need to be copied in this manner. In other
words:

Principle 18: At any level of a dominance hierar-
chy, all the exterior parameters of dominated clo-
sures need to be present as part of the configura-
tion.

This does not mean that these parameters are necessar-
ily exterior at the current level; they may be interior
and their values under control of the dominant closure
or some other dominated closure.

For example, in an intranet closure, the port on
which an internal webserver runs is interior to the
intranet but exterior to the servers serving the intranet.

Note that the fact that a parameter is exterior
means that it determines interior parameters, not that
interior parameters do not exist. The exterior com-
mand ‘‘be a fast webserver’’ instantiates a large num-
ber of interior parameters, including speed of CPU,
disk, ethernet, etc. The latter comprise the options that
one can take in creating a fast web server, and the pos-
sibility of multiple policies that accomplish this allows
that ‘‘there’s more than one way to do it.’’

Interface
So far, we have considered the internal structure

of a closure, including local parameters and propaga-
tion of exterior parameters. All configuration manage-
ment tools so far define their interface in terms of this
parameter space. This is a complex and trying task; it
is much easier to base the interface on behavior rather
than parameterization.

Note that in our model, the reasonable policies
P̃A of a closure A map to a set of behaviors

τ̃A(P̃A) = { τ̃(Q) | Q ö P̃A }
ideally in a one-one fashion, because P̃A is constructed
as the inverse image of the test space. This means that
the behaviors determine the reasonable parameter sets
that assure each behavior. Thus it is possible to

Principle 19: Specify behavior, and allow the con-
figuration management system to derive appropri-
ate parameters to assure that behavior.

This idea is borrowed from Anderson [2]. In the
current version of LCFG, one maintains grids of com-
puters by specifying constraint spaces for their configu-
ration, from which a reasonable configuration is chosen.
For example, one simply asserts that ‘‘every network has
a DHCP server,’’ and the SmartFrog framework allows
stations to vote on the best location for the DHCP server.
In the case of LCFG, constraints are still formulated
upon configuration parameters, whereas in our case,
constraints ideally act upon behavior, independent of the

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 137

Seeking Closure in an Open World: A Behavioral Agent Approach . . . Couch, et al.

structure of parameter space. This is admittedly a diffi-
cult distinction to make, and one may argue that the
structure of LCFG’s parameter space accomplishes the
same objective.

This has a subtle effect upon parameter propaga-
tion upward across dominance boundaries. We already
know that it is only necessary to expose exterior
parameters, and that behavior induces the appropriate
parameter configurations. An upper closure that is
informed enough to know the map from behavior to
parameter values need not store the values; the desired
behaviors are enough to store.

Comparison With Other Approaches

To understand the differences between this
approach and typical configuration management sys-
tems, consider how we would configure typical net-
work services using the new system. We decompose the
problem of providing service into a dominance hierar-
chy in which the leaves are the files and processes that
control service provision. In a typical UNIX system,
these files might include /etc/inetd.conf, /etc/services,
/etc/protocols, /etc/hosts.allow, /etc/hosts.deny, and other
files intended to configure specific services.

In traditional configuration management, the
contents of each of these files is generated by custom
scripts from an overall specification [1, 2, 18, 19, 22,
23, 36] or edited in place by incremental scripts [20,
37, 38] or convergent rules [4, 5, 6, 12]. In our system,
each is instead wrapped by an agent that treats the
underlying file more like a database rather than a flat
file. This agent takes responsibility for all changes to
the file and normalizes the form of the file (by sorting)
so that the effects of independent changes to the file
do not depend upon the order of changes. These
agents are convergent in a stronger sense than
Cfengine file editing (as proven mathematically in
[16]) and replace convergent and scripted file editing
with a more stable and predictable alternative.

Higher-level configuration management is
accomplished by agents that become clients of file-
level agents. A ‘‘service’’ agent interacts with the file
agents for the files that control a service, and with
‘‘process’’ agents that manages the existence and
restart of particular daemons. The service agent
receives data on which services should be present and
propagates that to the configuration files by convers-
ing with appropriate file agents. Non-behavioral
attributes of configuration (e.g., exactly where specific
files live) are handled by the closures that manage
content of the files, and are no longer part of the con-
figuration of a system.

We are all ‘‘washed by the very same rain’’ [29]
and many recent innovations in configuration manage-
ment have very similar characteristics to these agents.
The behavior of agents is similar to distributed file gen-
eration procedures in LCFG [1, 2], Arusha [18, 19], and
Psgconf [36], and ‘‘embody expert knowledge about

how to configure a system’’ [39]. LCFG author Paul
Anderson is considering reforming LCFG’s language
around specifying ‘‘constraints’’ rather than ‘‘parame-
ters.’’ In many ways, everyone is converging upon one
way of thinking: specify external behavior, and leave
everything else to the configuration tool.

There is one extreme contrast between our model
and every other model of configuration management.
In every other model, closures are systematically vio-
lated by reverse-engineering appropriate parameter
values and setting these values directly by file genera-
tion or editing. This seems convenient but has a
deadly result. It means that the administrator configur-
ing the management tool has to have complete knowl-
edge of the semantics of interior and exterior parame-
ter space of all closures in order to automate adminis-
tration, including interior parameter semantics for all
possible versions of that parameter space (e.g., for
multiple operating systems and hardware platforms).
We suggest a controversial departure from this:

Principle 20: Even advanced configuration man-
agement tools should utilize conduits rather than
direct file editing to manage closures.

Tools must avoid end runs around protections and
integrity constraints built into closures. The manage-
ment tool need not know the fine-grained semantics of
interior parameters, and can concentrate on exterior
behavior. The result is to naturally distribute knowl-
edge about the system in two places: a high-level
description of behavior in the configuration manage-
ment tool, and a low-level description of how to
assure behavior (via interior parameters) in the closure
itself. This distribution makes it possible to configure
networks with a portable high-level language that
becomes customized when applied to specific archi-
tectures or platforms.

There are many examples where use of an
advanced configuration management tool such as
Cfengine destroys a closure. The most obvious prob-
lems occur in trying to use Cfengine for package man-
agement [20]. The master RPM repository for a particu-
lar version of RedHat Linux, together with the rpm com-
mand that unravels and installs it, is a strong closure
[17], but only if the rpm command is used as intended,
and only when no other effects are interposed (such as
editing the files that rpm edits during post-install scripts).
Interspersing arbitrary configuration commands between
a series of package installs can lead to validation drift
[17] and eventual failure of the system.

Initial Prototypes

To prove the concept of a closure, we decided to
create three prototypes in the context of a group Mas-
ters project in System Administration at Tufts Univer-
sity. Concurrently, Prof. Couch continued to develop
the mathematical theory of closures. The most impor-
tant lesson we learned is that in a race between devel-
oping theory and prototypes, theory almost always

138 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Couch, et al. Seeking Closure in an Open World: A Behavioral Agent Approach . . .

matures faster. The emerging theory led us to critique
the initial designs of the closures in quite unexpected
ways, and led to a stronger understanding of the the-
ory as well.

We began our study of closures by trying to
replace the somewhat problematic ‘‘file editing’’ fea-
tures of Cfengine with a more strongly convergent
substitute agent, through which all editing transactions
could flow under control of Cfengine. This agent
understands the structure of the file being edited, as
well as the desired output format for the file. Upon
receiving editing commands inspired by SQL, the
agent parses the file, makes changes, and rewrites the
file according to specifications.

The second prototype is a conduit for editing
configuration files that understands policy and
integrity constraints on file contents. XML [3, 9, 27,
44] declarations describe the format of the incoming
file, the desired output, and the range of allowable
changes to the file. The file is parsed through a
stream-parser based upon Babble [13] and the output
generated through use of XSLT stylesheets. This is
similar to TemplateTree II [34] except that the whole
configuration file is parsed and all configurable vari-
ants exposed.

The third prototype uses the first prototype to
handle high-level configuration data. It expresses
changes in service as changes in configuration, and
converses with the relevant file and process agents to
affect the changes. Its own high-level file format is
amenable to editing via the second prototype, so that
the circle is complete and one can specify low-level
effects with high-level commands.

The focus of all these early prototypes is basic
service provision and security. The long-term goal of
this work is to create agents that completely encapsu-
late the process of configuring an Apache web server,
so that virtual services can be created flawlessly with-
out any chance of disrupting other virtual services.

Encapsulating File Editing

It is generally agreed by practitioners that on-the-
fly file editing is a weakness of many configuration
management strategies. Many avoid explicit editing by
generating all file contents from databases. As an
exercise, we studied instead how one could encapsu-
late file editing into a closure that protects against typ-
ical file-editing mistakes.

Atomicity
As a first attempt to solve this problem, we built

a prototype flat file configurator (FFC) that encapsu-
lates the idea of editing a field-based configuration file
from /etc, such as services, inetd.conf, etc. This particu-
lar closure made all updates atomic. The closure is an
agent that maintains the contents of a file via database-
like commands with a syntax inspired by SQL. These
commands include:

• load /etc/services: Make contents available for
editing.

• in /etc/services: Set a context in which edits will
occur.

• insert what (service=’tftp’, port=’8888’, proto=’tcp’) :
Add a line to the in-memory version of /etc/ser-
vices.

• delete where (service=’dns’ and proto=’udp’) :
Delete a line from the in-memory version of
/etc/services.

• update who (first 5) where (proto=’tcp’) what
(proto=’udp’) : Change the first five entries in the
file having protocol tcp to protocol udp.

• update who (last 1) where (service=’dns’) what
(proto=’udp’): Change the last line where service
is dns to have protocol udp.

• display: Show contents of file on terminal.
• display as XML: Show contents as XML.
• write: Update original file with in-memory data.
• write to /etc/services.new: Posts results to a new

file.
• end in: Terminate editing context.

These commands preserve the order of the input file
when updating and deleting lines, and insert new lines
at the end. Updates leave data in the same position in
the file. Although the closure does not allow com-
pletely duplicate lines, it is possible to create files that
have two port entries for the same service and proto-
col. This usually results in an invalid services file.

This is a fine first attempt, but new theory shows
that it is not a particularly strong closure. There is a
much better approach.
Invariance

The closure above solves the problem of editing
but leaves the problem of file integrity unaddressed. A
suitable closure for /etc/services must preserve three
invariants of the file:

1. The file is sorted in a deterministic order by
port number, protocol, then service name.

2. The file has at most one entry for each service
and protocol combination.

3. There is no other content to the file.
One reason for this approach is to assure that a list of
edits, applied to two copies of the same initial file, will
both have identical Tripwire [43] or Aide [31] signatures.

To make a better closure, we must limit the set of
commands to those that cannot violate these invari-
ants, and construct them so that they do not:

• assert what (service=’tftp’, port=’8888’, proto=’tcp’):
Insures that there is a line for service tftp. This
will change an existing line if it is present.

• retract where (service=’tftp’): Insures that there is
no line describing service tftp. This will delete a
line only if present.

• commit: Commits changes to the file to disk.

These commands change content in a stateless
manner [16] so that the result of editing is invariant of
the order of individual assertions and retractions of data.

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 139

Seeking Closure in an Open World: A Behavioral Agent Approach . . . Couch, et al.

The lesson learned from this example is that the
strength of a closure is proportional to the lack of
irrelevancy in the command set and its inability to
express less-than-ideal states. Expressive power is an
enemy of closure and predictability. This new com-
mand set has the following properties:

• Commands always succeed and there is no
error state (barring hardware failure)

• Every command preserves the invariants of
keeping the file in sorted order and having one
line per service.

• The commands are not based upon a parameter
model of the file, but upon a holistic model of
the meaningful states of the file.

While it has been proposed that we should think of
individual files as databases [22, 23], this shows that
thinking of them in that way is too powerful, and only
by limiting the operations on a file to a small set that
preserves invariants can one truly construct a closure
on the file. The database model is too powerful and
flexible to create the appropriate effect.

The above attempt is a closure, but is still not a
particularly strong one. It preserves the integrity of the
structure of the file, but does not reflect content policy
above and beyond that integrity. To go further, knowl-
edge of this policy and of best practices for content of
/etc/services must be included in the agent. It does not
matter whether the closure understands whether a
state is valid or not; we simply have to arrange by
some means that no invalid state can be assured by the
agent. This is not understanding; just syntax.

Policies
The prototype above does not go far enough to

eliminate errors. The strength of a true closure for
/etc/services lies in its ability to avoid invalid or unde-
sirable states. For most sites, this means that the ports
of several well-known services should not be possible
to change. As well, it should not be possible to delete
or modify certain well-known service records whose
absence will create havoc, e.g., time. These assump-
tions – part of typical site policies – are not repre-
sentable easily in database form, and the database
analogy for closures again breaks down.

To implement this kind of closure, the command
set has to be insensitive to certain kinds of changes
and may not require full data in order to make an
assertion of state. For example, the well-behaved clo-
sure agent might presume that
assert service=ssh

always implies protocol tcp and port 22, so these do
not need to be specified. If one tells this closure to
assert service=ssh, port=33

then it has every right to ignore the request and/or raise
an exception. This is an assertion of invalid state accord-
ing to a site policy that is itself an expression of accepted
practice according to the site’s practice manual. Like-
wise, the same closure will reject suggestions like

retract service=ldap

so that a user has some hope of logging into the host.
The feature of limiting configuration actions based
upon site policy was first developed in Slink [10].
Implementation

Implementing such a closure is actually relatively
straightforward. One first describes the structure of a flat
file as an XML declaration, as in Babble [13] (Figure 4).
This defines the variant parts of a typical line in /etc/ser-
vices in the same way that Babble defines the variants in
a terminal transaction stream. This declaration is used
both to parse and regenerate the file during each editing
transaction. Similar declarations could be used to con-
strain content in creating the proposed changes above,
including listings of defaults.

<file fileName="services">
<line>
<comment marker=’#’ />
<var name=’service’

regexp="[A-Za-z0-9_−]+" />
<whitespace/>
<var name=’port’

regexp=’[0-9]+’ />
<literal>/</literal>
<var name=’proto’/>
<whitespace />
<var name=’alias’

regexp=’[ˆ#]*’
optional="true" />

<var name=’comment’
regexp=’#.*’
optional="true" />

</line>
</file>

Figure 4: Declaring database structure of the services
file.

Prototype Status
This is the most evolved of all the prototypes,

and is fully functional. It is currently implemented as a
single Perl script with a command-line interface. A
second configuration file can bind particular structural
configurations to the various files in /etc (though at
present, only the /etc/services interface has been exten-
sively tested).
Critique

File-editing is a necessary process, but a poor level
at which to form a really strong useful closure. Some
part of a closure must understand more than the syntax
of the file. Basing one’s whole strategy upon editing, as
in Cfengine, does not form strong closures, even if the
editing itself is strongly closed as above. More con-
straints are required than pure syntax can provide.

Constrained Editing

The second prototype implements an interactive
web-based editor for configuration files that under-
stands structural limits of each kind of file. The editor
makes it possible to add any legal entry to the file

140 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Couch, et al. Seeking Closure in an Open World: A Behavioral Agent Approach . . .

according to a predeclared policy, but prevents adding
any illegal entries to the file.

xsysconf.cgi

parser

XSLT stylesheet

/etc/services

services.xml

/etc/services

Figure 5: Editing a flat file via XML.

<xmft:file path="/etc/services">
<xmft:repeat sorted-by="port" keys="service:port+prot" name="lines">
<xmft:line>

<xmft:var type="string" desc="service name" name="service">
This is the service name. This should correspond to the same
service in inetd.conf.

</xmft:var>
<xmft:whitespace/>
<xmft:var type="integer" desc="ip port number" name="port">
This is the Internet Port number of a service. The pair of
port number and protocol must be unique in the file.

</xmft:var>
<xmft:text>/</xmft:text>
<xmft:choice type="protocol name" name="prot">
<xmft:option><xmft:text>tcp</xmft:text></xmft:option>
<xmft:option><xmft:text>udp</xmft:text></xmft:option>

</xmft:choice>
<xmft:repeat>
<xmft:whitespace/>
<xmft:var type="string" desc="protocol alias" name="alias">
</xmft:var>

</xmft:repeat>
<xmft:optional><xmft:whitespace/></xmft:optional>
<xmft:optional>
<xmft:text>#</xmft:text>
<xmft:optional><xmft:whitespace/></xmft:optional>
<xmft:var type="string" name="comment">
This is a comment describing the service defined by this line

</xmft:var>
</xmft:optional>

</xmft:line>
</xmft:repeat>

</xmft:file>

Figure 6: Declaring variant structure of the services file.

The parser is configured to edit a particular kind
of file by specifying the constraints upon the file in
XML, using a syntax again similar to that of BABBLE
[13] but more complex than that for the flat-file config-
urator above (FFC). For /etc/services, the constraint file
is shown in Figure 6. The var fields describe variant
text, while the repeat, optional, choice, and text elements
have the obvious meanings. The comments in each kind
of variable are a description provided to the user as help
text. While this file may seem complex, it is nothing

more than a detailed and highly documented regular
expression! It says that a services file consists of ser-
vices entries, one per line, where each line consists of a
service name, a port, a forward slash, a protocol name,
and optionally a list of aliases and/or a comment.

Using this declaration, the parser converts the
flat format of the source file to XML. The /etc/services
source file:

ssh 22/tcp ssh-2 ssh2 # secure shell
telnet 23/tcp ncsa-telnet

is translated into the XML in Figure 7. It is upon this
intermediate form that editing takes place. There is
presently one design flaw in the prototype: if no alias
exists when the initial record is created, none can be
added.

The editing process is a web-based CGI script
that presents editing options as pulldown menus and
text fields (Figure 8). One can change or add fields by
pressing the appropriate buttons or changing values
and pressing ‘‘write.’’

Prototype Status

Currently, the only fully implemented part is the
CGI-based editor for XML. The translators to and
from XML are not yet implemented, though the trans-
lator into XML is almost identical with that for FFC

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 141

Seeking Closure in an Open World: A Behavioral Agent Approach . . . Couch, et al.

above, and the XSLT for generating output is almost
identical to that of Finke [23]. Thus we had high con-
fidence in our future ability to implement these, and
left them undone in this proof-of-concept prototype.

Figure 8: HTML editing form for services file.

<file path="/etc/services">
<repeat name="lines">
<record>
<repeat>
<alias mode="optional" thing="var" type="string">ssh-2</alias>
<alias mode="optional" thing="var" type="string">ssh2</alias>

</repeat>
<comment mode="optional" thing="var" type="string">secure shell</comment>
<port mode="required" thing="var" type="integer">22</port>
<prot options="tcp,udp" mode="required" thing="choice">tcp</prot>
<service mode="required" thing="var" type="string">ssh</service>

</record>
<record>
<repeat>
<alias mode="optional" thing="var" type="string">ncsa-telnet</alias>

</repeat>
<comment mode="optional" thing="var" type="string"></comment>
<port mode="required" thing="var" type="integer">23</port>
<prot options="tcp,udp" mode="required" thing="choice">tcp</prot>
<service mode="required" thing="var" type="string">telnet</service>

</record>
</repeat>

</file>

Figure 7: Translation of a small services file into XML.

Critique
Again, theory developed in concert with this pro-

totype changed our thinking about it. The missing and

crucial element of this editor is the ability to define
constraints beyond simple syntactic correctness; the
exact same constraints needed for a fully useful ver-
sion of the FFC above.

Service Configuration

As an example of a high-level agent, we also
implemented a service configuration agent. This was our
first attempt to build a configuration environment based
upon multiple agents acting together. The top-level agent
is told what services to configure, and tells lower-level
agents what to add to particular configuration files.
While this prototype is the most challenging and least
complete of the ones we attempted, it does serve to
demonstrate that high-level integration is possible.

Implementation
The editor is the most complex of the prototypes,

and contains three parts (Figure 5):
1. A parser that parses a flat file and converts it to

XML.
2. A CGI-based editor that uses XSLT to define

an interactive web-based editing session for the
XML file’s contents, in HTML.

3. An XSLT renderer that translates the XML file
back to a flat file.

Architecture
The service configuration closure involves many

component closures, as illustrated in the dominance
diagram in Figure 9. Closures above dominate clo-
sures below.

1. The configuration closure dominates all others.
2. The service closure is the highest-level closure

for services. It manages all aspects of services,
including whether they are running or not, as
well as current runtime state.

142 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Couch, et al. Seeking Closure in an Open World: A Behavioral Agent Approach . . .

3. The process closure starts and stops individual
processes.

configuration

process

service

file package

inetd.confservices ftp inetd

Figure 9: Dominance hierarchy for the service con-
figuration agent.

4. The file closure is the lowest-level closure of
the system, that only receives commands. It is
responsible for editing files to contain appropri-
ate configuration lines.

5. The package closure manages installation and
removal of packages using RPM.

configuration:
assert service ftp
service:

assert ftp
file:
assert file "
load /etc/services
in /etc/services:
insert what (service=’ftp-data’, ...)
insert what (service=’ftp’, ...)
write

end in
"

package:
assert ftp

file:
assert file "
load /etc/inetd.conf
in /etc/inetd.conf:
insert what (service=’ftp’, ...)
write

end in
"

configuration:
start service ftp
service:
process start ftp
process:
start ftp

Figure 10: Communications between agents in assuring services.

Many others are also present and planned but omitted
due to space constraints. In typical use, the service
closure contacts the file closure to affect changes in
configuration, the process closure to start and stop ser-
vice processes, and the package closure to install new
service files.

All closures have the same commands assert and
retract. Assert makes something available to run within

the configuration, while retract makes it unavailable.
All closures also have a show command that reports on
current status. Most closures have start and stop, that
control whether something is executing or dormant.

The Configuration Closure
The configuration closure is the main user inter-

face to the system. For some idea of the form of the
assert service tftp

creates the service tftp on its normal port, while
assert service tftp port=6699

creates the service on a different port. The command
retract service tftp

removes a service, while
restart service tftp

administrator ’s interface, the command restarts all tftp
daemons for an installed service tftp So far, this looks
very similar to print managers such as lpc. The differ-
ence is in how this is implemented. Rather than doing
the work in one large program, the service closure farms
out work to subclosures that it dominates. For example,
assert ftp results in the chain of assertions shown in Fig-
ure 10. Each line ending in a colon determines a closure
context in which the commands below it are executed.
Ellipses signify detail that is omitted for clarity.

The point of this process – and what distinguishes
it from command-line managers such as lpc – is its
structure, not its interface. High-level commands are
broken down into low-level commands that include

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 143

Seeking Closure in an Open World: A Behavioral Agent Approach . . . Couch, et al.

interior parameters implied by the high-level com-
mands. The echoing of the same command-line struc-
ture at each level – assert and retract – makes it easy to
implement the various closures.

Critique

The only problem with this prototype is that it
was the most ambitious of the group, and its design
changed much more than the others during develop-
ment, so that it is not yet fully functional. File editing
is problematic, because the closure was built before
the file editing closure was completed, and does not
communicate well with the existing file editing clo-
sure. The theoretical result that exterior parameters of
a closure must be present in each closure that domi-
nates it is echoed in the structure of this prototype,
even though the prototype was developed completely
independent from the theory.

Conclusions

This is the beginning of a new and long journey,
but the conclusion of another. For years, we struggled
to define causality in a complex system [15, 17, 40].
We conclude that causality in a realistic system is a
myth unless we synthesize it ourselves through the dis-
cipline of closure. Many principles of practice guide us,
but there is still much work to be done, both on exam-
ples of closures and more clever principles of practice.
Future Work

It is summer, our masters project activity is a
pleasant memory, and all the students involved have
graduated, but obviously there is still much to be done.
In the immediate future a new team of students will be
completing a second generation of prototypes that are
deployable in practice, by adding policy and practice
awareness. On the theory side, we plan to more exten-
sively study the algebraic properties of closure by
applying the theory of semigroups [24, 28, 32], in a
manner similar to that of [16].

Another knotty problem is to be able to effi-
ciently define (and ultimately, automatically derive)
the sometimes subtle maps between configuration and
behavior. This is very much dependent upon the vari-
ous ‘‘Book of Knowledge’’ projects [26, 30] to pro-
vide us with the words and practices that the closures
should employ. This is really a problem in knowledge
representation, and we envision using inductive logic
programming [12] to complete exterior specifications
with adequate values for interior parameters.

The reason that we carefully say adequate rather
than optimal is that – due to its relation with graph the-
ory – the problem of finding optimal parameter settings
is often intractable. As an administrator, one would not
even try; one would settle for settings that are good
enough. Our automated agents should do likewise.

The map between exterior and interior parame-
ters must take a concise, readable form that is easy to
validate and certify. While working on our prototypes,

we realized that the Stem [25] framework for network
programming provides an ideal environment for
exploring closures. Future development will focus on
placing the closures in a Stem framework, using built-
in Stem message passing to implement conduits.

It will be difficult to integrate this method of
management with existing configuration management
practices. The most difficult problem is to arrange iso-
lation of closures and avoid any chance of corrupting a
closure outside a conduit. This is beyond the capabili-
ties of current file protection schemes, and might even
require a new model of protection for filesystems sim-
ilar to the model that protects memory at runtime.

We have shown so far that traditional hierarchi-
cal control flow can exhibit closure in an expedient
fashion, but have not ruled out many other forms of
control. The mathematical framework we developed
allows many other kinds of communication, including
peer-peer and even clique, in which one agent of a
group arbitrarily appoints itself as the master of the
group similarly to the way this is done in LCFG.

These are all difficult problems but – from our
experience – all are tractable. Further, once each prob-
lem is solved once, the effects last forever. We think it
will be worth the effort.
Some Lessons Learned

The theory of closures has some surprising rami-
fications for practice. Closures are only as strong as
the discipline with which they are managed. This dis-
cipline includes only making changes via approved
mechanisms. For example, the master RedHat reposi-
tory is a closure if managed properly with rpm, but
stops being a closure if one works outside rpm’s
framework, e.g., with make.

The most astonishing lesson learned is that com-
mon automation practices can destroy or weaken clo-
sures that already exist. For example, suppose that one
wishes to install an RPM package via Cfengine. A
common practice is to perform the RPM installation
on one host, reverse-engineer its effects, recode the
installation into a series of convergent Cfengine decla-
rations, and use Cfengine to assure compliance with
the declarations instead of running the original instal-
lation on each new host. The problem with this prac-
tice is that the original closure was only valid if RPM
installation was used; this new method cannot, e.g.,
predict all of the potential effects of a post-install
script when the script is executed on a previously
unforeseen kind of host. Worse, the re-engineering has
to be redone each time a new version of the package
appears. This observation gives some credence to the
order-based infrastructure-building strategies dis-
cussed in [37, 38].

The fact that ‘‘order matters’’ [38] is, however, a
symptom of a deeper problem. Every configuration
action is (as claimed in [38]) a computer program. As
with any computer program, there is a set of precondi-
tions that specify what must be true within a system

144 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Couch, et al. Seeking Closure in an Open World: A Behavioral Agent Approach . . .

before the action will work. In [37, 38], one avoids
facing the preconditions by replacing them with order
constraint, where the appropriate order of operations is
something observed in practice. This is only necessary
if preconditions cannot be understood. Order only
matters if we do not understand enough about precon-
ditions to be able to vary the order. Our initial theory
work suggests that preconditions can be modeled in
very much the same way as behaviors; they are a
tractable and fairly simple set of conditions upon a
much larger and more complex system. With a full
understanding of preconditions, order no longer mat-
ters. This fact merits further investigation.
Coming to Closure

The current practice of configuration manage-
ment has high inertia. Many people, trained in the old
ways, will find it difficult to adapt to the constraints
that closures impose. Many configuration manage-
ment tools will impede rather than help the process,
because of their inherent inability to talk with con-
duits, as well as the tools’ implicit support and encour-
agement of the closure-weakening reverse-engineering
process described above. Vendors will impede the pro-
cess by failing to provide closures themselves.

How can we evolve current practice toward
effective closures? There are several steps:

1. Understand the concept of a closure
2. Identify and treasure the ones already present.
3. Avoid compromising existing closures.
4. Proactively look for domains of application.
5. Deploy win-win closures (that do not enforce

limits on users) first.
6. Justify one-sided closures (that limit users) in

terms of reduced lifecycle cost.
Our profession has not sufficiently evolved from argu-
ing from ‘‘cost of equipment’’ to ‘‘cost of ownership.’’
[35] If one’s thinking is based upon cost of equipment
and software, closure makes no sense. When one fac-
tors in the cost of administration, closure becomes a
cost-saving mechanism.
A Vision of the Future

The evolving theory of closures promises a com-
pletely different of role for future system administra-
tors than what they have today. Networks will not con-
sist of ‘‘machines,’’ but rather will be built of ‘‘clo-
sures’’ that span machines. When one places a new
machine into a network, the closures operating within
the network will discover it and configure it to talk
with them. If this succeeds, no administrator interven-
tion will be required; the machine will simply start
working properly. If it fails, one must debug the clo-
sures (or the machine) to see why the closures did not
properly integrate the machine into the network and
install themselves for future use.

In the new scheme, the administrator’s job is no
longer to remember complex and detailed minutiae,
but instead to keep an internal model of the big picture
and how things fit together in a large and universal

block diagram. Low-level knowledge (how a closure
works) is much less important than high-level knowl-
edge (which closures are compatible with which oth-
ers). Dependency analysis and troubleshooting
become jobs of specialists rather than generalists, and
are not part of typical practice. Typical practice is to
choose closures that work, install them, and watch
them work. If they do not work properly, they must be
incompatible, and one then chooses another more
compatible set. Troubleshooting is to some extent
replaced by shopping. Patching and upgrades are
largely software functions rather than job functions.

Another fundamental difference in this brave
new world is that one must systematically avoid work-
ing around the protections created by a closure. To
publish content on the world-wide web, one tells a
closure to publish it, and never tries this process by
hand. There is only one defense against users who
would work around closures, which is to make this
impossible by, e.g., placing web servers on machines
to which users do not have shell access.

The most profound change is in how the admin-
istrator can view the profession. We have always
thought that system administration was in actuality
community building: to paraphrase Burgess, ‘‘forming
cooperative communities of people and machines.’’
[7] With closures, this community building becomes
the substance of the job as well as the dream. Closures
are community members that take some of the worry
out of keeping the community working properly.

With closures, we can begin to evolve to a
methodology for system administration that is more
predictable. This will not make the job of administra-
tor obsolete; just a lot more pleasant and rewarding.

Acknowledgements

This work is not the product of individuals, but
of a coordinated inquiry among a large and diverse
intellectual community. We are grateful to the Large-
Scale System Configuration mailing list (lssconf) for
providing sustained discussion of the strategies for
configuration management and their impact. Yizhan
Sun provided detailed, in-depth comments and correc-
tions to the mathematics. Special thanks to Rob Kol-
stad and Adam Moskowitz for insightful comments
(on the first sketch of the paper) that pushed our think-
ing to a new level. Special thanks to George Leger and
shepherd Æleen Frisch for extremely careful proof-
reading and copy editing. Special thanks to Mark
Burgess, Paul Anderson, Steve Traugott, Mark Roth,
and Luke Kanies, for providing the main fuel for this
debate with their ground-breaking work. This work
was supported in part by a generous equipment grant
from Network Appliance Corporation.

Author Biographies

Alva L. Couch attended the North Carolina
School of the Arts in his home state as a high school

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 145

Seeking Closure in an Open World: A Behavioral Agent Approach . . . Couch, et al.

major in bassoon and contrabassoon performance. He
received an S.B. in Architecture from M. I. T. in 1978,
after which he worked for four years as a systems ana-
lyst and administrator at Harvard Medical School.

Returning to school, he received an M.S. in
Mathematics from Tufts in 1987 and a Ph.D. in Math-
ematics from Tufts in 1988. He joined the the faculty
of Tufts Department of Computer Science in the fall
of 1988, and is currently an Associate Professor of
Computer Science.

Prof. Couch is the author of several software sys-
tems for visualization and system administration,
including Seecube (1987), Seeplex (1990), Slink (1996),
Distr (1997), and Babble (2000). He can be reached by
surface mail at the Department of Computer Science,
161 College Avenue, Tufts University, Medford, MA
02155. He can be reached via electronic mail as
couch@cs.tufts.edu . His work phone is (617)627-3674.

John Hart has worked with Prof. Couch on con-
figuration management for more than five years, first
authoring the ‘YoKeL’ configuration language (Yet
anOther Configuration Engine and Language) front-
end to Prof. Couch’s Prolog system administration
interface. He received a Bachelor’s degree in Com-
puter Engineering from Tufts University in 2001 and a
Masters degree in Computer Science from Tufts in
2003. While at Tufts, he worked as an undergraduate
and graduate teaching assistant, LAN administrator,
and as a consultant on web design, system administra-
tion, and other tasks. John can be reached via surface
mail at 215 N. 2nd St., Olean, NY 14760, or electroni-
cally at jhart@cs.tufts.edu .

A native of Montana, Elizabeth G. Idhaw lived
in Sanford, Maine until graduating high school. Her
interest in computer engineering brought her to Lehigh
University in Pennsylvania, where she earned a Bach-
elor of Science degree in that field. After graduating in
1998, she moved to Massachusetts to work as an
AlphaServer Hardware Engineer for Compaq Com-
puter Corporation in Marlborough. She returned to
school in 2001 for graduate study in Computer Sci-
ence at Tufts University. With a Master of Science
degree under her belt, she began work as a Senior Net-
work and Distributed Systems Engineer for The Mitre
Corporation of Bedford, Massachusetts. She can be
reached by electronic mail at greenlee@cs.tufts.edu .

Dominic H. Kallas hails from Arlington, Mas-
sachusetts. He received his Bachelor of Science
degree in Electrical Engineering from Tufts University
in 1999 and continued to a Master of Science degree
in Electrical Engineering, completed in 2003. His con-
centration is in Wireless Communications, and he is
interested in network design and signal processing. He
welcomes e-mail at dkallas@cs.tufts.edu.

References

[1] Anderson, P., ‘‘Towards a High-Level Machine
Configuration System,’’ Proc. LISA-VIII, Usenix
Assoc., 1994.

[2] Anderson, P., P. Goldsack, and J. Patterson,
‘‘SmartFrog Meets LCFG: Autonomous Recon-
figuration with Central Policy Control,’’ Proc.
LISA XVII, USENIX Assoc., pp. 219-228, San
Diego, CA, 2003.

[3] Bohlman, E., ‘‘Parsing XML, Part 1,’’ http://
www.perlmonth.com/perlmonth/issue4/perl_xml.
html .

[4] Burgess, Mark, ‘‘A Site Configuration Engine,’’
Computing Systems, Vol. 8, 1995.

[5] Burgess, Mark and R. Ralston, ‘‘Distributed
Resource Administration Using Cfengine,’’ Soft-
ware: Practice and Experience, Vol. 27, 1997.

[6] Burgess, Mark, ‘‘Computer Immunology,’’ Proc.
LISA-XII, Boston, MA, Usenix, 1998.

[7] Burgess, Mark, ‘‘Theoretical System Administra-
tion,’’ Proc. LISA-XIV, New Orleans, LA,
Usenix, 2000.

[8] Cons, Lionel and Piotr Poznanski, ‘‘Pan: A
High-Level Configuration Language,’’ Proc.
LISA XVI, USENIX, Philadelphia, PA, 2002.

[9] Cooper, C., ‘‘XML::Parser – A Perl Module for
Parsing XML Documents,’’ http://search.cpan.
org/author/COOPERCL/XML-Parser-2.31/Parser.
pm .

[10] Couch, Alva, ‘‘SLINK: Simple, Effective
Filesystem Maintenance Abstractions for Com-
munity-based Administration,’’ Proc. LISA X,
Usenix, 1996.

[11] Couch, Alva, ‘‘Chaos out of Order: A Simple,
Scalable File Distribution Facility for ‘Intention-
ally Heterogeneous’ Networks,’’ Proc. LISA XI,
Usenix, 1997.

[12] Couch, Alva and M. Gilfix, ‘‘It’s Elementary,
Dear Watson: Applying Logic Programming to
Convergent System Management Processes,’’
Proc. LISA XIII, Usenix, 1999.

[13] Couch, Alva, ‘‘An Expectant Chat about Script
Maturity,’’ Proc. LISA XIV, Usenix, 2000.

[14] Couch, Alva and Noah Daniels, ‘‘The Mael-
strom: Network Service Debugging via ‘Ineffec-
tive Procedures’ ,’’ Proc. LISA XV, Usenix, 2001.

[15] Couch, Alva and Y. Sun, ‘‘Global Impact Analy-
sis of Dynamic Library Dependencies,’’ Proc.
LISA XV, Usenix, San Diego, CA, 2001.

[16] Couch, A. and Y. Sun, ‘‘On the Algebraic Struc-
ture of Convergence,’’ to appear in Proc.
DSOM’03, Elsevier, Heidelberg, DE, Oct., 2003.

[17] Hart, J. and J. D’Amelia, ‘‘An Analysis of RPM
Validation Drift,’’ Proc. LISA XVI, Usenix
Assoc., San Diego, CA, 2002.

[18] Holgate, M. and W. Partain, ‘‘The Arusha Pro-
ject: A Framework for Collaborative Unix Sys-
tem Administration,’’ Proc. LISA XV, Usenix,
San Diego CA, 2001.

[19] Holgate, M., W. Partain, et al., The Arusha Pro-
ject Web Site http://ark.sourceforge.net .

146 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Couch, et al. Seeking Closure in an Open World: A Behavioral Agent Approach . . .

[20] Kanies, L., ‘‘Practical and Theoretical Experi-
ence with ISconf and Cfengine,’’ Proc. LISA XV,
USENIX Assoc., San Diego CA, 2001.

[21] Sandnes, Frode Eika, ‘‘Scheduling Partially
Ordered Events in a Randomised Framework –
Empirical Results and Implications for Auto-
matic Configuration Management,’’ Proc. LISA
XV, Usenix, San Diego CA, 2001.

[22] Finke, Jon, ‘‘An Improved Approach for Gener-
ating Configuration Files from a Database,’’
Proc. LISA XIV, Usenix, 2000.

[23] Finke, Jon, ‘‘Generating Configuration Files:
The Director’s Cut,’’ Proc. LISA XVII, USENIX
Assoc., pp. 201-210, San Diego, CA, 2003.

[24] Grillet, P. A., Semigroups: An Introduction to the
Structure Theory, Marcel Dekker, Inc, New
York, NY, 1995.

[25] Guttman, U., ‘‘Stem: A Sysadmin Enabler,’’
Proc. LISA XVI, Usenix, Philadelphia, PA, 2002.

[26] Halprin, G., et al., ‘‘SA-BOK (The Systems
Administration Body of Knowledge),’’
http://www.sysadmin.com.au/sa-bok.html .

[27] Harold, E. and S. Means, ‘‘XML in a Nutshell,
2nd Edition,’’ O’Reilly, Inc, 2002.

[28] Howie, J. M., An Introduction to Semigroup The-
ory, Academic Press, 1976.

[29] Humphries, Pat, Same Rain (Audio CD), Moving
Forward Music, 1992.

[30] Kolstad, R., et al., The Sysadmin Book of Knowl-
edge Gateway, (private site).

[31] Lehti, Rami, ‘‘AIDE – Advanced Intrusion
Detection Environment,’’ http://www.cs.tut.fi/
rammer/aide.html .

[32] Ljapin, E. S., Semigroups, American Mathemati-
cal Society, Providence, RI, 1963.

[33] Logan, Mark, Matthias Felleisen, and David
Blank-Edelman, ‘‘Environmental Acquisition in
Network Management’’ Proc. LISA XVI, Usenix,
Philadelphia, PA, 2002.

[34] Oetiker, T.,‘‘TemplateTree II: The Post-Installa-
tion Setup Tool,’’ Proc. LISA XV, Usenix, San
Diego, CA, 2001.

[35] Patterson, J., ‘‘A Simple Model of the Cost of
Downtime,’’ Proc. LISA XVI, Usenix, Philadel-
phia, PA, 2002.

[36] Roth, M. D., ‘‘Preventing Wheel Reinvention:
The Psgconf System Configuration Framework,’’
Proc. LISA XVII, pp. 211-218, USENIX, San
Diego, CA, 2003.

[37] Traugott, Steve and Joel Huddleston, ‘‘Boot-
strapping an Infrastructure,’’ Proc LISA XII,
Usenix, Boston, MA, 1998.

[38] Traugott, Steve and Lance Brown, ‘‘Why Order
Matters: Turing Equivalence in Automated Sys-
tems Administration,’’ Proc. LISA XVI, Usenix,
Philadelphia, PA, 2002.

[39] Sapuntzakis, C., D. Brumley, R. Chandra, N.

Zeldovich, J. Chow, J. Norris, M. S. Lam, and
M. Rosenblum, ‘‘Virtual Appliances for Deploy-
ing and Maintaining Software,’’ Proc. LISA
XVII, pp. 186-200, USENIX, San Diego, CA,
2003.

[40] Wang, Yi-Min, Chad Verbowski, John Dunagan,
Yu Chen, Chun Yuan, Helen J. Wang, and Zheng
Zhang, ‘‘STRIDER: A Black-box, State-based
Approach to Change and Configuration Manage-
ment and Support,’’ Proc. LISA XVII, pp.
165-178, Usenix, San Diego, CA, 2003.

[41] Watt, D., Programming Language Syntax and
Semantics, Prentice Hall, 1991.

[42] The Linux Standard Base Project,
http://www.linuxbase.org .

[43] Tripwire, Inc, The Tripwire Security Scanner,
http://www.tripwire.com .

[44] XML Working Group, XML Schema Specifica-
tion, http://www.w3c.org .

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 147

148 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

