USENIX Association

Proceedings of the
LISA 2001 15" Systems
Administration Conference

San Diego, Cdlifornia, USA
December 2—7, 2001

USENIX
SAGE

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.




Performance Evaluation of
Linux Virtual Server

Patrick O’Rourke and Mike Keefe — Mission Critical Linux, Inc.
ABSTRACT

Linux Virtual Server (LVS) is an open source technology which can be used to construct a scalable
and highly available server using a collection of real servers. LVS load balances a variety of network
services among multiple machines by manipulating packets as they are processed by the Linux TCP/IP
stack. One of the most common roles for LVS is to act as a front end to a farm of web servers.

This paper documents a series of experiments performed on LVS by Mission Critical Linux,
Inc. in a cooperative effort with Intel Corporation. The objective of these experiments was to
evaluate LVS’s ability to distribute web requests among several servers. We investigated a variety
of LVS configurations and offer a comparison of LVS’s ability to scale on Linux 2.2 versus Linux
2.4. In contrast to similar evaluations, our entire test effort was accomplished using open source
software on Linux based platforms.

Our results show that in a uni-processor environment the performance of LVS on Linux 2.4 is
on par with Linux 2.2, however in a multi-processor configuration, Linux 2.4 significantly
surpasses Linux 2.2. LVS on Linux 2.2 actually exhibits minimal scaling in a multi-processor
environment. We reveal the detrimental impact that multiple devices sharing interrupts can have
on LVS throughput. A comparison of LVS to a commercial load balancer indicates that LVS is a
viable alternative to the more expensive, proprietary solution. Our results show that LVS is nearly
twice as cost effective in terms of price/performance when compared to the hardware based load
balancer. Lastly, we document the steps necessary to enhance the capabilities of our load generator

which in turn reduces the amount of client hardware needed.

Introduction

Linux Virtual Server [1] is an enhancement to
the Linux operating system which permits a set of
servers to offer network services (e.g., ftp, http, ...) as
a single virtual server. The aggregate capabilities of
the individual hosts, or real servers,! comprising the
LVS cluster often exceed those of any one of the con-
stituent systems as a stand alone entity. Reliability is
also increased because services are backed by multiple
machines, thereby avoiding the single point of failure
one would have with a single server.

Although LVS benefits from a very active user
community, there seems to be a void in the reporting of
concrete performance data. This paper documents a
series of experiments Mission Critical Linux, Inc. per-
formed on LVS in order obtain a basic understanding of
LVS’s performance and scalability. One of the most
common roles for LVS is to load balance HTTP
requests [2], thus our primary focus was on the ability
of LVS to distribute a prescribed workload among a set
of backend web servers. A secondary objective was to
get a sense of how well LVS compared to some of the
commercially available, hardware based load balancers.

Linux Virtual Server Overview

This section is a brief overview of the LVS archi-
tecture and provides a background for the ensuing

"Real servers is the term used in the LVS documentation to
denote the web server systems responsible for fulfilling the
actual request.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

discussion. Please refer to Zhang [1] for a more com-
plete and thorough discussion of LVS’s internals.

An LVS cluster is made up of a director and one
or more real servers. The LVS director is a modified
Linux system whose responsibility is to distribute
client requests among the real servers in a cluster. The
real servers do the actual work of satisfying the
request and generating a response back to the client.
The director maintains a record of the number of
requests being handled by each server and uses this
information when deciding which server should
receive the next request. An LVS cluster may also
have a backup director which will take over in the
event the primary director fails, however for the pur-
poses of this report, we did not consider LVS’s
failover capabilities.

The real server can run any operating system and
application which supports TCP/IP and ethernet.2
Additional restrictions may be placed on the real
servers depending upon the LVS configuration chosen.

LVS Configuration Methods

LVS employs several techniques for distributing
IP packets among nodes in the cluster. One method
uses network address translation (LVS-NAT) in which
the headers of the packets are overwritten by the direc-
tor. The director masquerades as the real server(s) and
this creates the illusion that the real servers are being

2]t may be theoretically possible to use an alternative to
ethernet (e.g., an ATM network), however there may be is-
sues in getting such an LVS configuration working.

79



Performance Evaluation of Linux Virtual Server

contacted directly by the clients. The director must be
the real servers’ default gateway for an LVS-NAT con-
figuration to work properly. As a result, every response
from a server is returned to the client via the director.
Although this scheme is sub-optimal from a perfor-
mance perspective, it does have the benefit that the
real server can run any operating system that supports
TCP/IP.

A second LVS configuration uses direct routing
(LVS-DR). As the name implies, each real server has
an independent route back to the clients (i.e., internet)
which is separate from the director. LVS-DR offers a
significant performance advantage over LVS-NAT, but
with some added complexity in configuring the clus-
ter. Each node in the cluster is assigned the IP address
of the virtual server (aka the VIP), but only the direc-
tor is permitted to respond to address resolution proto-
col (ARP) requests (as a result all packets originating
from the clients will be initially processed by the
director). LVS-DR requires that the operating system
on all real servers support this non-ARPing network
interface in addition to TCP/IP.

The third and final method uses IP encapsula-
tion, or IP tunneling (LVS-TUN), in which a packet
intended for the virtual server is enclosed in another
packet and retargeted to one of the real servers. As
with LVS-DR, the responses from the servers do not
need to return via the director and so LVS-TUN offers
performance and scaling similar to that of LVS-DR.
Some operating systems may not support [P tunneling,
therefore an LVS-TUN configuration restricts the
realservers to running one that does.

O’Rourke and Keefe

Tunneling allows the LVS administrator to put
servers on separate network segments, whereas this is
not possible with a direct routing configuration. We
used a Gb Ethernet as our server network to avoid net-
work congestion issues and consequently our experi-
ments only concentrated on LVS-NAT and LVS-DR
based configurations. Figure 1 provides a comparison
of the differences between the various LVS configura-
tions.

Scheduling Client Requests

Client requests are distributed among the real
servers based on IP address, protocol (i.e., TCP, UDP)
and port number; commonly referred to as Layer 4
switching. LVS supports several different scheduling
algorithms that are settable during the configuration of
the LVS cluster. The scheduler is responsible for deter-
mining which real server will receive the next client
request. The simplest scheduler is round robin which
simply circulates requests among each real server in a
round robin fashion. All the LVS configurations in our
testing used the round robin scheduler since every real
server had similar attributes (e.g., CPU speed, mem-
ory, network connectivity). Refer to LVS documenta-
tion [4] for a complete and thorough discussion of all
the LVS scheduling algorithms available.

Test Environment

One of the most challenging aspects of this pro-
ject was devising a hardware and software configura-
tion capable of stressing the director. The hardware
vendors and trade magazines that have reported results
to date appear to use either closed tools or hardware

Implementation | Advantages

LVS-NAT

Any OS with TCP/IP support
Servers can use private IP addresses
Only director needs public IP address

Direct Routing

Better scalability than LVS-NAT

Director only handles client-to-server half of connection
Response packets follow separate routes to clients
Doesn’t have IP tunneling overhead

IP Tunneling

Scales similar to LVS-DR

Director schedules requests to the different servers
Servers return directly to clients

Servers can be on different network than director

Implementation | Disadvantages
LVS-NAT Does not scale as well as LVS-DR or LVS-TUN
Director becomes a bottleneck;
because packets must pass through it in both directions
Direct Routing director and servers must be on same network segment
Servers need public IP addresses
Server OS requires non-ARPing network interface
IP Tunneling Server OS must support IP tunneling

Servers need public IP addresses
Overhead of IP encapsulation

Figure 1: Comparison of LVS features (see [3]).

80

2001 LISA XV — December 2-7, 2001 — San Diego, CA



O’Rourke and Keefe

based solutions (e.g., such as SmartBits) for generat-
ing a client workload [5] [6]. The only multi-client
Linux based tool we came across was a tool called
Tarantula developed by Arrowpoint Communications
[7], but unfortunately this tool is not in public domain.
We wanted a rather simple client workload so we
could focus our attention on the LVS director, as
opposed to tuning the web server software, therefore
we avoided a complex workload generator such as
SpecWeb.

Hardware Configuration
LVS Director

The hardware selected as the LVS director was
chosen because we felt it was representative of a “typ-
ical” server based system on the market today. The
system was configured with 512 MB SDRAM, 1-4
500 MHz Intel Pentium III Xeon Processors (512 KB
L2 cache) and the ServerWorks* ServerSet II HE
chipset. The director was equipped with two Intel
PRO/1000 F Gb ethernet cards, each connected to a
single Cisco Catalyst 4006 switch, which also acted as
a gateway between the server and client subnets (see
Figure. 2).

Real Servers

There were between one and four real servers,
three of them contained four 500 MHz Pentium III
CPUs and one had four 550 MHz Pentium IIT CPUs
using the SC450NX motherboard/chipset. Each sys-
tem was booted with one gigabyte of RAM and an
Intel PRO/1000 F Gb Ethernet card connected to the
Cisco Catalyst 4006 switch.

Client

There were two sets of clients. The first set con-
sisted of four systems and was connected to the Catalyst

Performance Evaluation of Linux Virtual Server

4006 using Gb Ethernet (two via Intel PRO/1000 F
and two). Two of these contained eight 550 MHz Intel
Pentium III Xeon Processors with Intel’s Profusion
chip set and one gigabyte of memory. The other two
were dual 500 MHz Intel Pentium III Xeons, one giga-
byte memory with the L440GX motherboard/chip set.

The second set of clients was ten 233 MHz Pen-
tium IT CPUs, 128 MB of RAM connected to the Cata-
lyst 4006 via 100 Mb eepro100 cards.

Network Infrastructure

The test environment consisted of two network
segments with the Cisco Catalyst switch acting as the
gateway between them. The server network was a Gb
Ethernet and each server was directly connected to a
Gb port on the Cisco switch. The clients with Gb cards
were also connected to Gb ports on the 4006 switch,
while the remaining ten Pentium II clients were con-
nected into 100 Mb ports on the Catalyst.

Software Configuration

We installed Redhat’s 6.2 distribution of Linux
(which is based on version 2.2.14 of the Linux kernel)
on each of the systems. Some initial network [8] test-
ing (Figure 3) indicated we could achieve better
throughput using a 2.4 based kernel.

Figure 3 shows the results of a connectivity test
between one of the eight way clients and the LVS
director node. These tests were run with each machine
connected via the Cisco switch with an MTU of 1500
bytes, as opposed to a back to back test (in which the
two hosts are connected directly two each other). The
plots show the network throughput as packet size is
increased from one byte to a maximum of twelve
megabytes. The “2.2” curve reports the results with
each system running Linux 2.2.14, while the plot

—— 100mbit ethernet

=

= 1000mbit ethernet

x 2x500
Ey% 3 -
I T T Y
233 22 N
L 10.1.20.0--°
clients

(Linux 2.4.0)

4x500 Egj director
P3 s

(koa) ]

(Linux 2.2.17/IPVS-1.0.2)
(Linux 2.4.0/IPVS-0.2.1)

o R o R — |

realservers
(Linux 2.4.0)

=

(m—Tar)
A

(e

Cisco Catalyst
4006
N\ o
LN
[P
4x500 '
P3 10.1.19.0

Figure 2: LVS test hardware.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

81



Performance Evaluation of Linux Virtual Server

labeled “2.4” is with each machine running Linux
2.4.0. The PRO/1000 cards were in 64 bit/66 MHz
PCI slots on each system for these tests. The “100 Mb
netpc” shows the Pentium II based clients are capable
of saturating their 100 Mb link to the Cisco switch.

As a result of these connectivity tests we
installed version 2.4.0 of the Linux kernel on each
client and real server. This also required us to upgrade
to revision 2.4.0 of the modutils package. A minor
patch was also required in order to get the the ¢1000
device driver to load on 2.4.0.

Figure 4 summarizes the versions of the major
software components installed on the test hardware.

Director Software

Although Redhat bundles a version of LVS with
its distributions, we preferred to use a later version of
the LVS software as well as a newer kernel. We used
the latest 2.2 kernel available at the time we began our
testing which was Linux 2.2.17 with version 1.0.2 of
LVS. For testing a 2.4 based director we used a 2.4.0
kernel with LVS version 0.2.1. The LVS software was
linked directly into the kernel for both 2.2 and 2.4
based directors.

Client Workload Generator

A key element to testing web based systems is
the software used to generate client requests. We
wanted the software to be lightweight so that a high
number of requests could be initiated using a mini-
mum number of clients. We also preferred to use an
existing tool, rather than create our own so we could
report the results of a “known entity,”” and last but not
least an open source tool was desirable.

Julian Anastasov created a very efficient tool for
stressing an LVS director called festlvs [9]. Testlvs is

O’Rourke and Keefe

capable of simulating a large number of clients mak-
ing connection requests by sending raw IP packets
with spoofed source addresses. The connections are
never fully established and as a result valid web
requests are never actually made of the real server(s).
We found it difficult to report a metric using testlvs,

therefore we opted not to take advantage of it.

Component Version
Linux distribution Redhat 6.2
2.2 based kernel Linux 2.2.17
2.2 based LVS ipvs-1.0.2
2.4 based kernel Linux 2.4.0
2.4 based LVS ipvs-0.2.1
C compiler eges 2.91.66
Linker 1d2.9.5
C library libc-2.1.3
Modutils modutils-2.4.0
PRO/1000 driver ¢1000-2.5.14
Web software apache-1.3.12
Client load generator | httperf-0.8

Figure 4: Software components.

David Mosberger and Tai Jin created a tool
called Attperf [10] which is designed to measure web
server performance. Httperf issues connection requests
to a web server at a specified rate and measures the
actual reply rate along with various other metrics (e.g.,
average response time, percent of connections in error,
network throughout, ...). On a server capable of sus-
taining the offered connection rate, the number of
replies will equal the number of requests and these
replies will be received within the specified time-out

Netpipe throughput (1500 byte MTU)

450

100mbit netpc —— '
2.2

400 | 2.4 %~ :

350

300

250 | ; SRR

200 % X

Throughput (mbit/sec)
X

150 |

100

Lok sE oy

FHHH RN A e

S Xeste e X

0.001

0.01 0.1 1 10

Time (seconds)

Figure 3: Netpipe signature graph.

82

2001 LISA XV — December 2-7, 2001 — San Diego, CA



O’Rourke and Keefe

period. Httperf provides many options to control its
behavior, but it has no facility for being executed on
multiple clients which made running it on fourteen
clients simultaneously cumbersome. Therefore we cre-
ated a small utility which would execute httperf on
each client, wait for it to finish and collect the output
into one central log.

Testing Methodology

The objective of this section is to offer an accurate
and clear understanding of how these experiments were
conducted. Our primary goal was to stress the LVS
software (i.e., the director node) and so we attempted to
keep our workload as simple as possible. As a result we
explicitly avoided some parameters which are other-
wise very important to the overall performance of a
web farm. The clients were restricted to requests based
on the HTTP 1.0 protocol. Each request was for the
same web page which ensured that the web data would
remain in the server’s file cache, thereby eliminating
any idiosyncrasies of file I/O on the web servers. The
requested page was small enough (628 bytes) to be
transmitted in a single packet without the need for frag-
mentation (given an MTU of 1500 bytes).

We recognize that a more comprehensive test
suite must address issues like HTTP 1.1, requests for
variable sized data and complexities such as dynamic
content. Introducing all of these features would have
made it much more difficult to evaluate LVS’s ability
to load balance web requests due to the additional
variables in the mix. This is also the reason why a
comprehensive web benchmark like SpecWeb was not
used to generate the work load.

Apache Tuning

The Apache configuration file on each real
server was altered to disable logging and to keep a
sufficient number of httpd daemons available so as to
minimize overhead in responding to client requests.
Below are the Apache tunables altered:

ffCustomlLog /var/log/httpd/access_log \
common # turn off logging

LogLevel crit

MinSpareServers 200

MaxSpareServers 200

MaxClients 1500

MaxRequestsPerChild O
[ servers never go away

Linux Tuning

The amount of socket memory on each system
(client, director and real server) was increased to five
megabytes to allow for a large TCP window size:

echo 5242880 > /proc/sys/net/core/rmem_max
echo 5242880 > /proc/sys/net/core/rmem_default
echo 5242880 > /proc/sys/net/core/wmem_default
echo 5242880 > /proc/sys/net/core/wmem_max
In order to maximize the number of concurrent con-
nections a given client could create it was necessary to
increase the number of per-process file descriptors as
well as system wide limit on files and local port numbers:

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Performance Evaluation of Linux Virtual Server

ulimit -n 100000

sysctl -w *fs.file-max=150000"

sysctl -w ’'fs.inode-max=32768"

sysctl -w ’net.ipv4.ip_local port_range=1024 \
40000

LVS Configuration

All web servers were essentially the same type of
hardware and so we always configured them as being
equal in weight. The clients all requested the same
web content and we did not experiment with the vari-
ous LVS scheduling algorithms; we simply stayed
with round robin. We avoided extensive testing on a
2.2 based director in an SMP configuration because
earlier network testing done at Mission Critical Linux
found additional processors did not improve network
scalability on Linux 2.2. We also did not test a 2.4
LVS-NAT configuration because we had difficulty
getting the director to successfully masquerade for the
real servers, which turned out to be a known limitation
of LVS in 2.4. A workaround for LVS-NAT has since
been provided in ipvs-0.2.2, but unfortunately time did
not permit us to re-run our tests.

httperf

Httperf was run on each client machine such that
the desired connection rate was distributed evenly
among all fourteen clients. Each run lasted three min-
utes as suggested by [10] so the server farm could
reach steady state. The client time out specified was
one second, thus if a connection was not established
within that period it would be flagged as an error. The
offered connection rate was increased on each client
until we reached the maximum amount of connections
any given system was capable of sustaining. This
resulted in the largest aggregate connection rate our
test bed could sustain as 14140 connections per sec-
ond, or approximately 1010 connections per second,
per client. This seemingly artificial barrier is the result
of a limitation of the = FD SETSIZE macro in
/usr/include/bits/types.h which restricts the number of
files (i.e., connections) to 1024.3 Fortunately a connec-
tion rate of 14140 connections per second was suffi-
cient to saturate all tested LVS configurations with the
exception of the four processor, four real server 2.4
LVS-DR configuration.

The aggregate reply rate was calculated by sum-
ming the individual reply rates reported by each client.
Each data point was repeated three times to account
for any aberrations and the results reported below rep-
resent the mean of these three runs. It was also neces-
sary to delay 120 seconds between each iteration to
allow for any lingering connections to leave the
TIME_ WAIT state.

Results

The results in this section are based on a series of
test runs as shown in Figure 5. Some additional workloads

3We were eventually able to overcome this limitation by
modifying the httperf source code, but this was not used in
our testing.

83



Performance Evaluation of Linux Virtual Server

were done on specific configurations in order to gain
further understanding of a particular result.

As a control we also ran the workload directly
against a single web server without LVS. This served
to provide baseline data so we could easily evaluate
the impact of LVS. It should be noted a second control
case would be with the director node forwarding pack-
ets without LVS, however we did not investigate this
due to time constraints.

Linux 2.2

Figure 6 shows the behavior of a single processor
director running 2.2.17 with one, two and four real
servers respectively. The plot labeled “Direct” repre-
sents the reply rate sustained by a stand alone web server
running the configuration. The direct and LVS-NAT
curves both peak at around 4000 connections per second,
but we see that with LVS-NAT the sustained workload is
less. This is a result of the extra overhead associated with
LVS-NAT, i.e., the fact that return packets from the real
server must pass through the director. The reason addi-
tional real servers offer no benefit is because one alone is
sufficient to saturate the director, therefore we cannot
take advantage of the extra servers.

O’Rourke and Keefe

Figure 7 reports on the LVS-DR configuration
running on a single CPU, 2.2.17 based director. LVS-
DR with a single real server (““DR, 1 RS”’) appears to
be on par with the direct case. The addition of a sec-
ond real server (“DR, 2 RS”) provides a jump from
about 4000 connections per second to approximately
6700 connections per second. This increase can be
explained by our observation that a single web server
saturates at 4000 connections with the small request
size chosen, but the additional server allows us to dis-
tribute the load among two servers. Hardly any
improvement at all is seen when we increase the num-
ber of real servers from two to four (“DR, 4 RS”).

Based on subsequent results seen with a 2.4 SMP
based director, we suspect we are hitting a limit on the
packet processing ability of the single CPU in the
director.

When describing our test methodology we noted
that we did not expect linear scaling as more proces-
sors were added to a 2.2 based director. To verify this
we performed a test on the largest 2.2 configuration
we had available (four CPUs, four real servers) and
compared that to a single processor director with the

C
Director - onfig Real servers
uniprocessor | dual processor | quad processor

2.2.17 uni NAT X X X

2.2.17 uni DR X X X

2.4.0 uni DR X X X

2.4.0 dual DR X X X

2.4.0 quad DR X X X

Figure 5: LVS test matrix.
2.2 LVS-NAT (Throughput)
e A S A A B
14000 | NAT, 1 RS --X-mn i
NAT, 2 RS ---x---
NAT, 4 RS -8

L e O L B B i C B U i C B L
)
D BODO. ]
©
o
>
& 8000 |

4000 [ =

o o 7:7 e ”“”'\‘ﬁﬁ-f;ﬁ?ﬂ: ::,;:m,;, o 7:7 ]
2000 : : : B
o = ; ; ; ; ; ;
0 2000 4000 6000 8000 10000 12000 14000

84

Connections / sec

Figure 6: Single CPU Linux 2.2.17, LVS-NAT throughput.

2001 LISA XV — December 2-7, 2001 — San Diego, CA



O’Rourke and Keefe

same number of servers. Figure 8 shows the results of
this test and we do see only a marginal improvement.
The reason for such a small improvement is that much
of the networking code in Linux 2.2 still executes
under the auspices of the global kernel lock. For all
intents and purposes the 2.2 TCP/IP code is really run-
ning on one CPU, however there still are moments
when other useful work can be accomplished with the
additional CPUs, therefore we do see a small improve-
ment.

Finally Figure 9 combines all the 2.2 based runs
so we can easily view a comparison of LVS-NAT

Performance Evaluation of Linux Virtual Server

versus LVS-DR capabilities. As expected we can sus-
tain a significantly higher connection load with an
LVS-DR based configuration than is possible with
LVS-NAT.

Linux 2.4

Figure 10 shows the connection rate sustainable
by a 2.4 based director using LVS-DR. As a baseline
we again include the case of running directly against
the web server without LVS (“Direct””) and show the
impact of adding one, two and four real servers;
curves “DR, 1 RS,” “DR, 2 RS,” “DR, 3 RS”
respectively. This graph is similar to that of the 2.2

2.2 LVS-DR (Throughput)

Direct J——
14000 - DR, 1 RS
DR,2RS ---*---
DR, 4 RS &
12000
10000
Q
E 8000
& -
> »_Q % B .
g ) T e
€ 6000 i R e
* g .
)::if TR Tm
C xR
4000 L ey o
Sl ' TR T *ﬁ—rﬂt
YT =X
2000
0
0 2000 4000 6000 8000 10000 12000 14000
Connections / sec
Figure 7: Single CPU Linux 2.2.17, LVS-DR throughput.
2.2 LVS-DR (Uniprocessor versus SMP Throughput)
1 cpu, 4'RS —_—
14000 - 4cpu, 4 RS
12000
10000
v
2 8000 e w5
g /V /‘\*\ o
[*% AN
g 0000 k\\\
-
4000
2000
0
0 2000 4000 6000 8000 10000 12000 14000
Connections / sec

Figure 8: SMP Scaling on Linux 2.2.17.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

85



Performance Evaluation of Linux Virtual Server

LVS-DR seen in Figure 7 and we see just how close
they are in Figure 11.

Figure 11 indicates that a single processor 2.4
based LVS-DR configuration is very close in perfor-
mance to that of a 2.2 based director, in fact it shows
2.2 is slightly better than 2.4. Joseph Mack pointed out
this slow down is because LVS in 2.4 is implemented
via the hooks provided by the Netfilter subsystem,
whereas in 2.2 LVS ran independently, i.e., the LVS
patch was applied directly to the Linux IP networking
code. According to the data we collected, one of our
single web servers can sustain a connection rate of

O’Rourke and Keefe

approximately 4000 connections per second. There-
fore if one were to have perfect scaling, an LVS-DR
configuration with four webservers should theoreti-
cally be able to support 16000 requests per second.
While we do see a nearly linear jump from one to two
servers (on both 2.2 and 2.4), it seems the additional
two servers when going from two to four provides
almost no gain at all. We believe this to be a limitation
of the single processor in the director to handle the
network traffic.

Figure 12 shows our ability to scale with two
CPUs as we add real servers. Increasing from one real

2.2 LVS (Throughput)

NAT, 1RS ——
14000 | NAT,2RS
NAT, 4 RS -
DR.1RS &
DR, 2 RS —-m-
12000 - DR.4RS --o -
10000
v
© 8000
©
o
>
Q.
¢ 6000
4000
2000
0
0 2000 4000 6000 8000 10000 12000 14000

Connections / sec

Figure 9: Single CPU Linux 2.2 LVS-NAT vs. LVS-DR scaling.

2.4, 1 cpu LVS-DR (Throughput)

Direct I—O—
14000 DR, 1 RS
DR, 2RS - x
DR,4RS —&
12000
10000
v
E 8000
g
> ] B g
K. &
& 6000 W e 3
% B
4000 = o REZR o
JM—%—%‘—)&MG\ O
s e
2000
0
0 2000 4000 6000 8000 10000 12000 14000

Connections / sec

Figure 10: Single CPU, Linux 2.4.0, LVS-DR throughput.

86

2001 LISA XV — December 2-7, 2001 — San Diego, CA



O’Rourke and Keefe

server to two provides a nearly linear increase in over-
all connection rate, a jump from 4000 to around 7700
connections per second. According to our results, a
two processor LVS-DR director with two servers out-
performs a uni-processor with four servers. We sus-
pect the reason is because the TCP/IP layer in 2.4 is
fully multi-threaded, so the additional server’s load
can be handled in parallel by the second CPU. We are
no longer contending for the global kernel lock as is
the case in 2.2. The addition of two more servers
brings us closer to theoretical limit of 16000 requests
per second, but in this case we top out at around

Performance Evaluation of Linux Virtual Server

10000 connections per second.* We suspect the reason
being that the request rate has exceeded the ability of
two processors to sustain.

We see in Figure 13 that more CPU power brings
us even closer to our theoretical limit of 16000 con-
nections per second. This is evidence for how well
parallelized the TCP/IP stack is in Linux 2.4. In fact
our set of clients in their current configuration is

4httperf was specified to make only one request per con-
nection, so we use the terms connection and request inter-
changeably.

2.2vs 2.4, 1 cpu LVS-DR (Throughput)

221RS I—‘*
14000 | 2.22RS
224RS % -
2.41RS -
242RS --®-
12000  2.44RS --o -
10000
Q)
E 8000
: e
> Loy
o P T o k)
o A TN Sk
o 6000 w Sl TR
- SR L K
w l—~§f\\>@\ X
BRI
4000 e e
2000
0
0 2000 4000 6000 8000 10000 12000 14000
Connections / sec
Figure 11: Single CPU, Linux 2.4 vs. Linux 2.2.
2.4, 2 cpu LVS-DR (Throughput)
Direct R
14000 DR, 1RS
DR,2RS ---*---
DR/4RS &
12000
-
10000 - B
@ =
pu a
° .
2 8000 -
T & R SN
= Kook
58 ) Koo
E 6000 o
/
4000 g
P A S e %
2000
0
0 2000 4000 6000 8000 10000 12000 14000

Connections / sec

Figure 12: Linux 2.4, two CPU LVS-DR throughput.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

87



Performance Evaluation of Linux Virtual Server

capable of driving the LVS cluster to saturation. You
can see from the shape of the curve “DR, 4 RS” in
Figure 13 that it looks as if we will peak at around
13000 connections per second.

Figure 14 illustrates the ability of a 2.4 based
LVS-DR to scale as we add processors with real
servers held constant at four.

Director Load
Earlier results indicated the peak load that a sin-
gle real server could sustain was approximately 4000

connections per second. The question remains how-
ever if we are limited due to network saturation or by

O’Rourke and Keefe

the capabilities of the real servers. Httperf allows us to
estimate how much network bandwidth our tests con-
sumed because it reports the amount of network 1/O
each client received. Recall that the requested web
content was 628 bytes in length, and according to
httperf each request contained 288 bytes of packet
header, so each reply received corresponds to 916
bytes of network data transmitted. We can therefore
estimate the amount of network traffic by taking the
sum of data received for each client during a particular
test run.

Figure 15 shows the aggregate network I/O
reported by httperf at the highest sustainable reply rate

2.4, 4 cpu LVS-DR (Throughput)

Direct I—»—
14000 |- DR, 1 RS
DR, 2RS %
DR, 4RS & B
)
P}
12000 =
P
- =) ’
10000
T v
g ',,N‘*w e TV ¥
[y e
£ 6000 o
,'$"v"
4000 E
w M%%W*H—L—*_%*
2000
0
0 2000 4000 6000 8000 10000 12000 14000
Connections / sec
Figure 13: Linux 2.4, four CPU LVS-DR throughput.
2.4 uni vs 2.4 smp, LVS-DR (Throughput)
Direct ——
14000 - uni, 4 RS
2cpu, 4 RS ---*---
4cpu,4 RS & o a
=
12000 i)
P
10000 o * i
= L
2 8000 e
cl>:* ili/ e N
5 ) oS
@ 6000 W
w >
4000 = T
o T
2000
0
0 2000 4000 6000 8000 10000 12000 14000

Connections / sec

Figure 14: LVS Scaling on Linux 2.4.

88 2001 LISA XV — December 2-7, 2001 — San Diego, CA



O’Rourke and Keefe

for several selected test runs. We are not close to satu-
rating the 100 Mb connections on the smallest clients,
let alone the Gb interfaces on the director and real
servers, even at our peak connection rate of 13019.3
replies per second.

We would also like a sense of the load on the
cluster nodes themselves during peak activity. There-
fore we sampled vmstat(8) output during runs of the
highest sustainable connection rates for various config-
urations. Figure 16 reports the CPU utilization figures
for a single CPU director when front ending one, two
and four real servers respectively. At an offered connec-
tion rate of 4200 connections per second the single pro-
cessor director is lightly loaded with an idle time of 85
percent. The single real server on the other hand is
fairly loaded with less than 20 percent idle time. The
load on the director increases with the number of real
servers and we achieve an average system time of 55
percent with four real servers (peaks of 80 percent sys-
tem time were seen for the four real server case).

Performance Evaluation of Linux Virtual Server

Figure 17 shows the CPU utilization figures for a
two CPU director. We did not include the numbers for
the one real server scenario because they were very
similar to the uniprocessor director shown previously.
As with the single CPU director case, we are capable
of saturating both the two and four real server configu-
rations. The load on the two CPU director is higher
than a single, but that coincides with an increase in the
sustainable connection rate as well, a peak of 7115
replies per second. We did observe periods of greater
than 90 percent system time on the two CPU director
when running with four real servers.

In Figure 18 we show the utilization figures for
the four CPU director with two and four real servers
respectively. The added CPU cycles allow us to reach
a reply rate over 12000 connections per second, but
we still have a nearly 40 percent idle time on the
director. At this connection rate we encounter the limi-
tation in httperf which prevents us from reaching a
higher load on the director.

Configuration Con Rate | Reply Rate | Network I/O (Mb/sec)
Direct 4340 3962.93 3.8
2.2 NAT (1 CPU, 4 RS) 4340 4270.00 4.1
2.2 DR (4 CPU, 4 RS) 9240 8072.30 7.7
2.4 DR (4 CPU, 4RS) 14140 13019.30 12.5

Figure 15: Aggregate network I/O.

Mean CPU utilization times
Real Con Reply Node (standard deviation)
Servers Rate Rate
User System Idle

director 0.00 (0.00) 11.04 (5.81) 85.04 (17.43)

! 4200 | 3897.9 1 2534 (13.24) | 53.77(27.62) | 18.66 (38.71)
director 0.00 (0.00) 50.92 (18.41) | 49.08 (18.41)

2 7000 6466.2 | rsl 29.91 (4.97) 68.26 (7.07) 1.82 (8.59)
rs2 30.06 (4.19) 67.90 (9.18) 2.10 (11.67)
director 0.00 (0.00) 54.14 (20.30) | 45.83 (20.33)
rsl 15.40 (5.18) 82.86 (7.25) 1.74 (7.27)

4 7000 6466.2 | rs2 17.29 (5.60) 81.21 (6.34) 1.47 (6.05)
rs3 15.61 (8.14) 83.36 (10.69) 0.97 (4.78)
rs4 12.00 (5.48) 84.42 (14.82) 3.58 (16.09)

Figure 16: CPU utilization, single CPU, 2.4 LVS-DR.
Mean CPU utilization times
Real | Con | Reply | 4 (standard deviation)
Servers Rate Rate
User System Idle

director 0.00 (0.00) | 47.84(16.38) | 52.11 (16.40)

2 7700 7102.0 | rsl 30.94 (3.41) | 66.71 (6.88) 2.31(9.63)
rs2 33.35(2.81) | 65.35(4.70) 1.32 (7.18)
director 0.00 (0.00) | 63.08 (23.72) | 36.92 (23.72)
rsl 22.47(4.24) | 73.29 (12.62) 4.21 (16.35)

4 7700 7115.1 | rs2 25.30(3.49) | 71.97 (7.71) 2.77 (10.11)
rs3 23.43 (3.85) | 72.89(10.74) 3.74 (12.73)
rs4 20.70 (2.28) | 77.52 (6.21) 1.73 (6.59)

Figure 17: CPU utilization, two CPU, 2.4 LVS-DR.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

89



Performance Evaluation of Linux Virtual Server

Sharing IRQs

Profiling the director via readprofile(1) showed
we were spending a great deal of time in the AIC
SCSI controller’s interrupt service routine on both 2.2
and 2.4 based configurations. Further investigation
revealed that the e1000 card and the SCSI controller
were sharing the same IRQ which resulted in
do_aic7xxx _isr() being called for every packet
received. Linux 2.4 provides a config option to use the
APIC controller available on IA32 based systems in a
uni-processor environment (CONFIG X86 UP_IOAPIC).
This resulted in allowing us to use different IRQs for
the 1000 and AIC controller.

Figure 19 shows the dramatic benefit of eliminat-
ing the IRQ contention. With two real servers our sus-
tainable peak increased from 6600 to 7400 requests per
second. In the case of four servers the peak sustainable
rate went from 7200 to 8300 connections per second.

We re-ordered the manner in which interrupt
handlers register themselves, while leaving the IRQ

5The APIC is used by default in SMP kernels.

O’Rourke and Keefe

shared between the e1000 and AIC. As a result the
€1000 interrupt routine would be called prior to the
AIC driver’s. The hope was that the e1000 would han-
dle the interrupt and the kernel would skip the un-
needed call to the AIC driver. The device driver re-
ordering had no effect on performance because the
interface between handle IRQ event() and driver
functions does not have a mechanism to signal that an
interrupt has been processed. Thus the kernel contin-
ued to call each driver as before the re-ordering exper-
iment. The APIC controller permitted us to place the
AIC and 1000 drivers on separate IRQs, thereby
eliminating the overhead of the AIC interrupt routine,
and resulting in better performance.

LVS vs. A Hardware Load Balancer

Both hardware and software solutions are
presently available for solving the load balancing,
packet redirector problem inherent in the development
of a scalable web farm. Linear scalability (or as close
to it as possible) of a web farm is desirable since we
want to easily predict the number of servers to add as
the request load increases. Any bottlenecks will

Real C Repl Mean CPU utilization times
ca on cply Node (standard deviation)
Servers Rate Rate
User System Idle
director 0.00 (0.00) 27.11 (9.08) 72.89 (9.08)
2 7000 6478.0 rsl 26.35 (5.89) 71.44 (8.92) 2.21(9.94)
rs2 32.28 (10.77) | 65.97 (9.82) 1.69 (4.90)
director 0.00 (0.00) 61.08 (19.57) | 38.86(19.55)
rsl 29.48 (1.92) 69.76 (3.17) 0.76 (3.50)
4 14000 | 12296.5 | rs2 31.81(6.23) 65.13 (11.33) 3.03 (16.34)
rs3 28.73 (5.34) 64.36 (13.19) 6.94 (17.68)
rs4 2591 (4.91) 70.24 (11.52) 3.76 (15.82)
Figure 18: CPU Utilization, four CPU, 2.4 LVS-DR.
2.4 APIC, 1 cpu LVS-DR (Throughput)
242RS ——
14000 | 2.4 (apic) 2 RS
2.44RS -
2.4 (apic) 4 RS &
12000
10000
E 8000 A = E =N N
< &r‘"i%f"‘*‘ e e
£ 6000 L \K:;:i‘;“**ngr—x\
\'\»\ *\\ T
4000 \
2000
0 0 2000 4000 6000 8000 10000 12000 14000

Connections / sec

Figure 19: APIC support for uniprocessor Linux 2.4.0.

90

2001 LISA XV — December 2-7, 2001 — San Diego, CA




O’Rourke and Keefe

prevent the web farm from scaling predictably and in
fact, may provide less processing power than was pre-
viously available under a lighter request load.

For a web server without bottlenecks and whose
request load scales linearly, the following is true:®
connection rate =

average request rate =
average reply rate

Given this identity, we can try to compare our
software-based results for LVS against those reported
on hardware products such as ArrowPoint’s CS-150
Content Smart Web switch [11]. The test methodology
employed by ZD Labs on the CS-150 enables NAT
and round-robin load balancing so we will use the
LVS-NAT configuration with the highest throughput
for our comparison; namely Linux 2.2 on a uni-pro-
cessor director with four real servers and round-robin
scheduling. For a .01 percent error reply rate (all of
which are client time out errors), such a configuration
produces the reply rate shown in Figure 20.

connection rate 3640 conn/sec
average request rate 3640 requests/sec
average reply rate 3639.77 replies/sec
average reply (response) time | 2.11 ms

Figure 20: Reply rate for uniprocessor 2.2 LVS-NAT
with 0.01 error rate.

Two hardware products we can compare the
above LVS based solution against are ArrowPoint
Communications’ Content Smart Web switches; mod-
els CS-150 and CS-800. Each client in ZD Labs’s tests
repeatedly requested a 114 byte HTML web page, this
should be comparable to the 628 byte web page
requests used during our LVS testing. Joseph Mack
[12] shows that network transmission times are
approximately the same for sizes less than the MTU
(1500 bytes). ZD Labs did not provide any informa-
tion about errors that occurred during their testing,
even though they gathered this information. This study
reports the following results:

e CS-150: 12 servers, 15 clients: average load of

4400 GET requests/sec

e CS-800: 47 servers, 30 clients: average load of

16600 GET requests/sec

The CS-150 and CS-800 results are similar to
those obtained for our NAT-based LVS test. Although
LVS-NAT has raw performance that is on average 20
percent lower than the ArrowPoint CS-150, the
ArrowPoint switch costs approximately $18,0007
compared to an estimated value of $7,500 for the four
processor director. The LVS solution is approximately
twice the cost effectiveness of the CS-150 if one

6At least for a web server performance measuring tool such
as httperf and presumably this holds for Tarantula — the tool
used by ZD Labs in its tests

7As of April 17, 2000.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Performance Evaluation of Linux Virtual Server

computes the cost per requests/second. The Arrow-
point comes out to $4.09 per request/second
($18,000/4400) whereas the LVS based configuration
is $2.06 per request/second ($7500/3640). Also note
that only four real servers were used by the LVS test
whereas the CS-150 configuration used twelve. These
results should be revisited once the 2.4 LVS-NAT
functionality is stable and fully operational since it is
likely that it will outperform ArrowPoint’s CS-150
web switch.

Future Work

A significant number of LVS features would
benefit from more performance and scalability analy-
sis in addition to the analysis we have done. It would
be interesting to see how LVS behaves under a more
varied workload instead of the static data we used in
this report. This would enable one to study the effects
and benefits of the various scheduling algorithms
offered. Commercial web sites currently employ a
variety of different protocols (e.g., HTTP 1.1, SSL,
...) and it may be interesting to see how well LVS can
handle such workloads.

We had to skip testing a 2.4 based NAT configu-
ration because the software is still evolving. Since that
time LVS-NAT has become functional in 2.4 so it
would be beneficial to compare it to the 2.2 version.
LVS-NAT is an important configuration because it
allows your real server to be any platform, such flexi-
bility would be important to anyone wishing to prod-
uct-ize an LVS based solution so as to avoid making
restrictions on the types of platforms which can func-
tion as servers.

It would also be of great value if one could com-
pare a server farm load balanced with LVS to one
front ended by a commercial alternative such as
Alteon or Foundry. Such a test would provide an users
with an accurate price/performance comparison so
they could make an informed decision on which tech-
nology is best for them. We found it difficult to ascer-
tain the true capabilities of a commercial product from
the vendor’s literature, not to mention the obvious lack
of objectivity. It seems as if each vendor reports per-
formance results in a slightly different manner, or are
somewhat vague in how they conducted the tests (e.g.,
number of clients, what type of operating system was
used and so on).

There also is a lack of standardization on testing
and evaluating load balancers in general. This is evi-
denced by the widely varying statistics reported from
commercial load balancers. An industry-wide, stan-
dards based test suite would permit a direct compari-
son to be made between a software based approach
such as LVS and a hardware solution.

Conclusion

Our experience with Linux Virtual Server has
been a positive one overall. Although not an exact

91



Performance Evaluation of Linux Virtual Server

comparison, we give an example in of how LVS can
be a reasonable alternative to a more expensive hard-
ware offering. The 2.2 LVS-NAT was unable to sus-
tain as high a steady state as a stand alone web server,
this warrants further investigation to determine if the
performance of LVS-NAT can be improved. The
Linux 2.4 based platform shows promise in its ability
to scale as we add processors. We illustrated how
important it is for the director to be properly config-
ured, the overhead of sharing IRQ vectors is to be
avoided. It is also clear that additional real servers will
not help if your director does not have the processing
power to handle the extra load. One may want to con-
sider adding a CPU to the director after the number of
real servers has also been increased (this ratio was
close to 1 to 1 in our testing).

One of the most valuable lessons to take away
from this project is the ability to generate a high work
load with a limited number of client machines. Our
initial attempts were throttled by system resource limi-
tations so that we could not open more than 1024 con-
current connections. After a substantial debugging
effort, later tests we were able to increase this to
approximately 5500 concurrent connections,® even on
our smallest client (see Figure 2).

A key asset of LVS is the willingness of the open
source community to enhance it and respond to the
questions of users via the LVS mailing list. We have
found it to be an invaluable resource that has assisted
our efforts many times.

Acknowledgments

Mission Critical Linux would like to thank Intel
Corporation for their assistance in getting access to
various hardware and software resources, especially
John Baudrexl, Vikram Saletore, Mike McCardle and
Greg Regnier. They provided invaluable assistance to
MCLX in scoping our experiments as well as supply-
ing feedback throughout the project. Kris Corwin of
MCLX assisted the authors in diagnosing several
issues related to httperf and the e1000 device driver.
Joseph Mack, Wensong Zhang and Julian Anastasov
graciously reviewed an initial draft and offered excel-
lent comments. David Mosberger assisted in our
efforts to increase the ceiling on the number of con-
nections a single client could achieve with httperf.
Finally we would also like to acknowledge the mem-
bers of the LVS mailing list for providing timely
responses to our inquiries and for being an invaluable
source of information concerning LVS.

Author Information

Pat O’Rourke worked as a kernel engineer at
Mission Critical Linux, Inc. where he was responsible
for adding LVS support in MCLX’s Convolo Netguard
cluster product. He is currently employed at Egenera,
Inc. working on their BladeFrame server. He can be
reached at porourke@world.std.com .

8As the numbers are reported by httperf.

92

O’Rourke and Keefe

References

[1] Zhang, Wensong, “Linux Virtual Servers for
Scalable Network Services,” http:/www.linux
virtualserver.org/ols/lvs.ps.gz .

[2] Zhang, Wensong, “LVS Deployment page,”
http://www.linuxvirtualserver.org/deployment.
html .

[3] Mack, Joseph, “The Linux Virtual Server
HOWTO,” http://www.linuxvirtualserver.org/Joseph.
Mack/LVS-HOWTO-991205.gz .

[4] “LVS Documentation,” http://www.linuxvirtual
server.org/Documents.html .

[5] Foundry Networks, “ServerlronXL vs. Alteon
180e: Layer 4 Maximum TCP/IP Session Rate
and Concurrent Session Capacity,” http://www.
foundrynetworks.com/testreports.html#Serverlron .

[6] Freed, Les, “How We Tested: Load Balancers,”
PC Magazine, http://www.zdnet.com/pcmagy/stories/
reviews/0,6755,2455845,00.html .

[7] ArrowPoint Communications, “Testing Stateful
Networking Devices for Web Applications,”
http://www.arrowpoint.com/solutions/white
papers/product_testing.html#howto .

[8] Snell, Quinn O., Armin R. Mikler, and John L.
Gustafson, “NetPIPE: A Network Protocol Inde-
pendent Performance Evaluator.”

[9] Anastasov, Julian, “testlvs,” http:/www.linux
virtualserver.org/software/index.html .

[10] Mosberger, David, and Tai Jin,” “httperf — A
Tool for Measuring Web Server Performance.”

[11] eTesting Labs, ArrowPoint Communications,
http://www.zdnet.com/etestinglabs/stories/main/
0,8829,2462091,00.html .

[12] Mack, Joseph, “LVS Performance, Initial Tests
with a single Real server, LVS,” http://www.
Linux VirtualServer.org/Joseph.Mack/performance/
single realserver performance.html .

2001 LISA XV — December 2-7, 2001 — San Diego, CA



