
USENIX Association

Proceedings of the
14th Systems Administration Conference

(LISA 2000)

New Orleans, Louisiana, USA
December 3– 8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Deployme: Tellme’s Package
Management and Deployment System

Kyle Oppenheim & Patrick McCormick – Tellme Networks

ABSTRACT

Many administrators use a central software repository because managing distributed
packages is difficult. Deployme is our solution to manage the package update lifecycle across a
large number of independently configured hosts.

Deployme is highly flexible and has been extended to handle many different types of
packages. Deployme packages include standard UNIX tools, local applications, web site content,
and voice site content. Most packages require fast, frequent deployment.

Deployme has a web-based user interface that allows less technical users to deploy on their
own. Deployme also restarts appropriate server processes, a feature which was much more
difficult than we expected.

We discuss other lessons learned from the first implementation and planned improvements
for the future.

Introduction

Using small, independent software packages is a
common approach to managing software. Many tools
have been developed to address package management
including Depot [Manheimer1990] and LUDE [Dage-
nais1993].

The package philosophy behind these tools is
easily extended to rapidly changing content. However,
we found these systems to be incomplete because they
only cover one or two stages of the package update
lifecycle.

Similar to the software distribution cycle out-
lined in [Furlani1996], we have divided the package
update lifecycle into four steps:

1. Create the package.
2. Distribute the package to designated hosts.
3. Install and activate the package on each remote

host.
4. Delete old, unused packages from remote hosts.

Deployme automates package creation and elimi-
nates the need for a release engineer to manually pack-
age data. (As you may have guessed, ‘‘Deployme’’ is
one of many tools derived from Tellme’s corporate
moniker.) Deployme exports source data from CVS
[Cederqvist1993] and then builds executables and
other generated files.

The system also handles installation, activation,
and removal of packages, completing the package life-
cycle. Deployme automates most of the traditional
release engineer role.

The original design was intended to manage and
deploy web site and voice site content. We have since
found the system to be general enough to be used for
local applications, common tool management, and
other types of content.

With Deployme, our producers and developers
manage their own releases. A straightforward web
user interface allows the development team to update
the Tellme service without the intervention of our net-
work operations team.

Motivation

Our web-based content management system
before Deployme was difficult to maintain, but was
easier to use than we expected. This success led us to
make a simple user interface a major Deployme goal.

As applications passed quality assurance, content
developers checked their changes into a CVS reposi-
tory. Once all applications had reached a known good
state, the tree could be released.

To perform a release, a developer would go to a
web page with a single button on it. The button started
a shell script that checked out the CVS content tree
and copied the data to the production server.

Platform releases were similar. Again, we built a
web page with a single button that kicked off a shell
script. The script performed a CVS pull, ran the build,
and copied the release to the production server. As
more servers arrived, we added them to the list that
received completed builds.

The benefit of the release scripts was that they
took much of the manual work out of releases and
freed up developers to do more constructive tasks. The
scripts also significantly reduced developer stress, as
platform releases became an everyday occurrence
instead of a frightening event. Finally, they allowed
any developer to be appointed release engineer,
because the only process involved was filling out the
form on the web page.

The script proved increasingly difficult to modify
as we increased the number of build targets and

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 187



Deployme: Tellme’s Package Management and Deployment System Oppenheim & McCormick

machines. It also could not support features such as
rollback. If we wanted to push the same build to a new
machine using the script, we had to wait while the
script recompiled the platform from scratch. It became
obvious that our inefficient distribution script could
not scale.

At this point, we seriously considered having our
production servers attach to a storage area network
(SAN) instead of distributing software packages to
local storage. We decided against this for several rea-
sons.

Distributing packages to local disks still provides
high availability, but it is cheaper and more flexible. A
centralized file repository does not span across cities
and continents without significant cost in time, hard-
ware, and complexity. Also, most centralized solutions
would lock us to one vendor. Our failures are
restricted to individual machines, not an entire storage
array. Even with high-availability components, SANs
still act as a single point of failure.

So, to replace the unscalable release script, we
wrote a new script to perform releases. This script was
the first implementation of our distributed package
architecture. However, it only performed distribution
and activation of packages. It had no web interface,
requiring a network operations engineer to serve as
gatekeeper for all releases of content, platform, tools,
and configuration files.

Updates to the production system became very
infrequent. Developers plaintively asked, ‘‘Why can’t
we bring back the button?’’

Goals

Deployme’s mission is to provide a central sys-
tem for tracking the entire lifecycle of software pack-
ages. We established the following goals to judge the
success of the project:

• Support a wide audience. Users who are less
inclined to system administration tasks should
be able to create and deploy packages. A
human gatekeeper will impede updates.

• Robustness. With a wide audience using the
system, the system must never activate a pack-
age without verifying that it was distributed
successfully. Detailed audit logs and notifica-
tion must be included to inform our Network
Operations team of system changes.

• Augment the development process. Packaging
should not be a complex task, but instead it
should be seamlessly integrated into existing
processes.

• Flexible destinations. Packages should be able
to be deployed to various destinations such as
development systems, testing systems, and pro-
duction systems.

• Efficient use of network bandwidth. When large
groups of servers are located at remote data
centers, Deployme should only push bits over

the slow link once and distribute where there is
good bandwidth.

• Quick pushes. The system should allow, but not
enforce, staging of a package for testing. If a
‘‘hot fix’’ (e.g., a critical bug fix or a press
release for the web site) must be pushed imme-
diately, it should be possible to bypass staging
servers.

• Seamless activation. End users (customers)
should never be aware of a new package being
pushed (e.g., Web site links should never be
broken). If a server binary is being pushed, the
server process should be gracefully restarted.

• Rollback. It should be possible to return to a
known good state quickly and robustly.

• Scalability. Deployme needs to be able to han-
dle hundreds of modules, hundreds of servers,
and thousands of packages.

Non-Goals

We intentionally chose not to address several
issues in the first implementation.

• No local package management. Enough robust
single-server package managers have been
developed in the past that we should not invent
a new one.

• No dependencies. Our aggressive schedule
would not leave us enough time to develop
dependency tracking properly. We felt we could
achieve all of the goals above without depen-
dency tracking.

• No fine-grained operations control. While we
chose to integrate certain operations functional-
ity into Deployme, we decided against turning
Deployme into a ‘‘control panel’’ for control-
ling remote processes.

Previous Work

There is much previously published work on
package management and deployment tools. Many
tools, such as Depot [Manheimer1990], take advan-
tage of transparent remote network file system access
such as NFS [Sandberg1985] or AFS [Howard1988].
A system that contains a centralized database contain-
ing server configuration information is presented in
[Finke1997]. Microsoft has an architectural discussion
of their corporate website publishing tool in
[Moore1999].

Various methods for remote execution and server
process restarting have been presented in tools such as
Igor [Pierce1996] and Synctree [Lockard1998].

As stated in the previous section, Deployme does
not address local package management directly.
Instead, it calls routines to ‘‘activate’’ and ‘‘deacti-
vate’’ packages on a machine. In our environment, we
use GNU Stow [Glickstein1996] for this purpose.

Design and Implementation

The biggest problem with the old content release
process was that all content was released at once.

188 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA



Oppenheim & McCormick Deployme: Tellme’s Package Management and Deployment System

Every tree push was potentially catastrophic. If any
one application had some code checked in that had not
been fully tested, we would have to roll back the entire
tree. We learned that a big tree of content is more dif-
ficult to test than a big tree of code.

We decided to rearrange the entire content sys-
tem in order to make it possible to release one applica-
tion at a time using Deployme.

Deployme is written entirely in Perl5
[Wall2000]. We chose Perl because of our familiarity
with it, its straightforward database integration, and
our desire to attempt a complex, structured project in
the Perl language.

Deployme has a simple three-tier architecture:
the user interface, the rules logic, and the database.

Figure 1: The Deployme web interface.

User Interface

The Deployme interface is a set of web pages
that display a list of available products and a list of
potential target servers. There are also information
pages that show which packages are active on a given
server.

Each product is called a ‘‘module’’, after the
CVS term. A product could be a collection of web
pages, or the source required to build an executable.

Each release of a module is called a ‘‘tag’’, again
after the CVS term. A tag corresponds to a physical
package on disk. The package is assembled by
requesting that the version control system write out
the tagged version of the module.

The central assumption of Deployme is that the
contents of a tag never change. This is stricter than the
version control sense of ‘‘tag’’, since most version
control systems allow users to move a tag forward or
backward on a given file’s timeline.

Because of this assumption, Deployme’s tag
namespace is a superset of the version control tag
namespace. For example, the CVS tag ‘‘engine-1’’ can
be tagged in Deployme as ‘‘engine-1.DEBUG.
i386.solaris.5_6’’ or ‘‘engine-1.RELEASE.sparc.solaris.
5_7’’. The source code is the same, but the resulting
package is compiled with the appropriate build flags
and architecture.

By assuming that packages never change, we can
skip crosschecking between servers to establish the
version of a package. This also means that the slight-
est modification requires a new tag.

To start a Deployme job, the user first picks a set
of tags. The user is restricted to only selecting one tag
for each module, because Deployme does not allow
two versions of the same module to be active at the
same time. Then, the user picks a set of servers.
Deployme checks to ensure that the request does not
break any rules, and then executes a job fulfilling the
request.

To rollback a module, the user selects a previous
tag and follows the same procedure.

Rules Logic

The middle tier comprises the rules logic that
creates and executes a deployment job.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 189



Deployme: Tellme’s Package Management and Deployment System Oppenheim & McCormick

Deployme’s logic falls into two categories: job
creation logic and job execution logic. The former
uses a set of rules to determine what tasks should be
done. The latter uses the database state tables to carry
out those tasks.

Lifecycle Deployme
Stage Task

Detail

PULL Export package from source control.

BUILD
Create package

Build executable or content from sources or templates.

PUSH Push package directly to destination host.

PUSH1 Push package to intermediate host.

PUSH2

Distribute package

Push package from intermediate host to destination host.

LINKInstall and activate package

CLEANRemove obsolete packages

Table 1: Deployme tasks.

Job creation expands the list of packages and
destinations into a series of tasks. This step is trig-
gered when the user submits a request form in the web
UI. See Table 1.

In order to figure out which tasks are necessary,
the job creation algorithm relies on each module’s
type; see Table 2.

Module Type Detail
Source code that needs to be
compiled.

platform

www Website content.
Content for our voice-driven
service.

vui

Packages that need no compilation;
vendor binaries, tools, and
configuration files fall into this
category.

tool

Table 2: Deployme module types.

The rules are generally very simple at this stage.
For example, platform modules need a BUILD step;
the others do not.

For the PUSH step, Deployme first finds out if
the package is already on the destination server. If the
package is already present, we skip the PUSH step,
because we assume that packages never change.

This optimization makes rollback extremely fast.
No data needs to be copied to the server; instead, we
progress immediately to the LINK step that simply
reactivates the old package.

If a PUSH is necessary, the job creation algo-
rithm determines what route the package should take
to the destination. In some cases, a single PUSH step
is all that is required to copy the package from the
Deployme master package repository to the remote
location. However, if the final destination is at a

remote facility, Deployme will instead add PUSH1
and PUSH2 steps.

The PUSH1 step sends the package to a machine
at the remote facility which is designated as a gate-
keeper. This machine serves as a cache of the master
repository. The PUSH2 step asks the gatekeeper
machine to copy the package from the cache to
another machine at the same facility over the high-
speed local network.

Since most of our machines are in remote loca-
tions connected by low-bandwidth connections, this
logic saves hours of file transfer time.

The Database

Using a database on the backend makes it incred-
ibly easy to provide a rich web UI. Also, a database
allows operators to create highly refined reports using
SQL queries. Deployme requires that the backend sup-
port SQL and the Perl Database Interface (DBI). We
selected the freely available MySQL RDBMS
[MySQL2000] as its cost and speed were attractive.
Also, the current version of Deployme does not
require any advanced database support such as trans-
actions.

The database schema has tables that represent the
visible items in the UI: modules, tags, and servers.
There are additional tables, like ‘‘servergroups’’, that
aggregate rows for a prettier display. Deployme can
skip tasks that have already been done by previous
jobs. The ‘‘state’’ table tells us which packages are
active on which servers, and the ‘‘history’’ table holds
jobs in all stages of execution.

One problem with using a database to record
machine state is that the database can become unsyn-
chronized with the real world. For instance, if a given
server is replaced or if an operator performs a manual
package upgrade, the database will become stale. This
issue was not much of a problem for content pushes,
but as we extended Deployme to include platform and
tool pushes to hundreds of servers, the inconsistencies
began to pile up.

We attack this problem through sanity checks
and a reconciliation script. The sanity checks are per-
formed both during job creation and execution. For

190 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA



Oppenheim & McCormick Deployme: Tellme’s Package Management and Deployment System

example, if you attempt to push a SPARC package to
an Intel machine, we stop the job before it starts.

The reconciliation script scans the packages on
remote machines and compiles a list of active versus
inactive packages. This list is compared against the
database. The check script then updates the database
to match the actual state of the server.

Figure 2: Database schema.

The many problems we encountered with
database consistency sparked a debate about whether
the database should contain any state information at
all. Another approach would be to make all job execu-
tion decisions based on the actual state of the server
instead of a cached version. However, we decided
against local state in this version of Deployme due to
the time it takes to inventory a single server and our
desire to preserve the database’s excellent reporting
capability. We will revisit this issue in version 2.

Job Execution

Most of Deployme’s code is in the job execution
system.

After job creation is complete, all tasks are filed
in the database’s history table. The web UI then kicks
off a background process to execute the new job.

The job execution system is modular. We split
Deployme into a set of Perl packages designed to han-
dle different cases for each task.

The first tasks are generally PULL tasks. These
tasks use CVS to retrieve the appropriate tag for the
given module. Once the tag is pulled into a package,
the state table is updated.

BUILD tasks are currently only performed for
platform builds; the build task executes ‘‘make’’ and
verifies build completion. The build module finds a
build server in the server table and then uses ssh [Ylo-
nen1996] to remotely start and monitor the job. All
build servers mount the master package repository via
NFS and write the build results to the package, thus
completing package formation.

PUSH tasks are performed using either the rsync
utility [Tridgell2000] over ssh, or the rsync utility with
a listening rsync daemon. Configuration information
in the database indicates which transport to use. Other
transports can be added easily in the future.

For PUSH2 tasks, we open an ssh connection to
the intermediate server, and then initiate an rsync over
ssh to the final server.

We choose the appropriate code module for the
LINK task based on the module type that is being
pushed.

Linking ‘‘www’’ and ‘‘vui’’ modules types is rel-
atively simple. Package activation often boils down to
maintaining a few symlinks that point to the current
packages. For our voice site, we also update the list of
available keywords appropriately.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 191



Deployme: Tellme’s Package Management and Deployment System Oppenheim & McCormick

The ‘‘platform’’ and ‘‘tool’’ module types have
the most complicated LINK step. We adopt the policy
that any software that is running should be restarted
when linked. For this reason, the LINK step needs to
figure out which processes should be shut down
before the link and restarted afterward. In some cases
we also need to wait for processes to come back up.

Figure 3: Deployme status.

As producers and developers are free to do their
own releases, the extent of our release engineering
responsibilities boils down to when to run CLEAN
jobs. Cleanup has its own job creation logic that deter-
mines which packages are eligible for cleanup. For
each module we specify how many old packages to
keep on local disks and the minimum age of a package
before it is eligible for deletion. Keeping some old
packages allows us to do fast rollbacks since the pack-
age is already at the destination – just a quick re-link
is required. Using a minimum age is an attempt to
make sure we have a good package to roll back to, and
not just a series of bad packages that were released in
quick succession. The cleanup logic examines the con-
tent of each server and creates a list of packages to
delete with the additional constraint that no active
packages can be removed. A cleanup job is created
that is executed similarly to a deployment job.

The Problem With Restart

The decision to add process restarts to Deployme
proved to be much more difficult than we first real-
ized.

We first tried to create some general rules about
what kinds of processes to restart on a machine, and
only included certain critical processes in the rules.
This group of special cases was small and we wrote
them into the code base. As Deployme expanded,
however, it quickly began to encompass many more
programs than we had planned.

This solution became a small dependency tree.
This violates one of our Non-Goals discussed above.
Because the dependency tree was restricted to plat-
form LINK tasks, and because it remains rather small,
we felt this transgression was minor. It turned out to
be a continuing headache as we used Deployme for
more modules and more servers.

From a conceptual viewpoint, ‘‘restart’’ does not
fit into the package lifecycle. We rolled it into the
‘‘Link and activation of package’’ step, which
increases the possibilities for failure in the LINK task.

There are significant ordering issues involved
with restarting processes. While each task only relates
to a given server/tag pair, the LINK step must aggre-
gate all tasks for a given server together and then
determine in what order to shut down the dependent
processes. Order is determined using a small table in
the database (not shown in the schema) that contains
ranked module-process dependencies.

Here is an example that shows how this can
become complicated. Assume we have a job pushing
new telephony firmware along with new monitoring
software. The firmware requires that the telephony
driver and the telephony server be shut down, where
the telephony driver has higher priority. The monitor-
ing software requires that the monitoring process be
shut down. For maximum efficiency, the aggregator
creates a job that will shut down first the monitoring
software, then the telephony server, and then the tele-
phony firmware. All links are done, and then the soft-
ware is restarted in reverse order. We also add a spe-
cial-case delay for the telephony firmware since it
requires a half-minute to reconfigure after the load is
complete.

The ordering problem shows that it is not enough
to just implement dependencies between modules and
processes. We need to explicitly represent dependen-
cies between processes and other processes.

We were correct to not spend too much effort
tackling the dependency problem early on. Our imple-
mentation would have likely been incorrect. Having
completed the first implementation of Deployme, we
now understand what kinds of dependencies should be
tracked.

Parallel Remote Execution

Another area of complexity is the method for
triggering jobs on remote servers.

The remote part of the platform link stage is too
complicated to use individual ssh statements, so
instead we created the ‘‘linkworker ’’. The linkworker
is a small Perl script with no dependencies that can be
used to perform link, unlink, start, and stop operations
on a remote host.

Even if a link only takes a minute to perform,
doing links serially across many servers takes a very
long time. Serial processing severely inhibits

192 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA



Oppenheim & McCormick Deployme: Tellme’s Package Management and Deployment System

scalability. To help meet our scalability goal, we cre-
ated a ‘‘parallel_mommy’’ routine that parallelizes all
links.

When a linkworker is started, the mommy passes
a ‘‘flag file’’ argument. As the linkworker progresses
through the jobs, it records what it has done in a flag
file, and dumps logging output to a log file. Once the
linkworker terminates, it prints ‘‘SUCCESS’’ or
‘‘FAILURE’’ in the flag file.

The mommy routine starts all linkworkers in the
background and then polls the servers to check on the
flag file status. We poll instead of keeping our session
open in case a transient network outage drops our net-
work connection. As each server reports in, the
mommy updates the job status and merges the remote
log into the primary log.

The linkworker reports to Deployme which pro-
cesses were actually shut down. After the link,
Deployme only restarts those processes that were pre-
viously running.

Error Handling

A standard in Deployme is that user error should
not result in a failed job. Instead, Deployme attempts
to catch all user errors in the job creation step. This
means that most of our users do not need to under-
stand how Deployme works. These users just look for
green boxes on the status page.

Errors are handled using Perl’s structured excep-
tion handling. This system catches all expected and
unexpected errors and gracefully prints an error mes-
sage to the web page or log file before aborting.

All job execution actions are logged in text files
that are stored for later review. The history table in the
database tracks all jobs and stores the exception mes-
sage if a job fails. Email is used for immediate notifi-
cation of success or failure.

Automatic Rollback On Failure

Originally, part of our error handling strategy
was to make individual tasks transactional. If we
detected any problem with a task, we would set the
state of the machine back to what it was before the
task started. We found that automatic rollback on fail-
ure worked better in theory than in practice.

This policy only applied to platform and tool
LINK tasks. Content LINK tasks rarely fail, and do
not require any servers to be restarted. Failed PULL
and BUILD tasks usually result from bad tags, and do
not affect remote servers in any case. Failed PUSH
tasks also do not affect remote server state because the
PUSH logic copies the package to a temporary direc-
tory and renames it to the actual package name once
the copy is complete. This prevents half-completed
packages from appearing on remote hosts.

Initially, automatic LINK rollback seemed easy.
The task is already separated into link, unlink, start,

and stop commands. Also, the parallel_mommy rou-
tine (discussed above) knows what tasks were com-
pleted before the task failed. The obvious rollback is
to undo whatever was done and call it quits. If the roll-
back fails, exit immediately. If we are executing tasks
in parallel, wait until they all report in and then initiate
rollback for each one that failed, serially.

The reasons for automatic rollback on failure
were straightforward. We did not want to suffer down-
time if a job failed, so we needed the machine restored
to a functional state. Also, we felt that LINK rollback
was necessary to prevent database inconsistency. We
were afraid that individual failures over a period of
time could make the database progressively more
unreliable.

We implemented the automatic rollback system,
and it turned out to be such an operational failure that
we tore the code out after several weeks.

The problem was that all of the reasons cited
above were wrong.

Automatic rollback on failure became a major
inconvenience for the network operations team.
Instead of a job failing immediately so they could go
in and fix it, they would be forced to wait while pro-
cesses were restarted. The serial nature of the rollback
made this maddening when multiple servers suffered
similar failures.

Besides the delay, it turned out that operations
did not want the machine restored to its original state.
Due to our network architecture, it is not a problem to
have a single machine out of service. After a success-
ful rollback, the first thing that operations did was shut
down the server that rollback had restarted.

Automatic rollback did not make the database
more consistent. For many failed tasks, the database
was inconsistent before the job began. Rolling back
just went from one inconsistent state to the original
inconsistent state.

We learned from this experiment. In our case, a
fail-fast system results in shorter outages than a sys-
tem that tries to fix problems on its own.

The Minimal Downtime Paradox

We found that some of our goals were not
exactly what our Operations team wanted. All of the
link scripts meet our ‘‘Seamless Activation’’ goal to
get the servers back up and running as soon as possi-
ble. However, in regular maintenance scenarios that is
not the usual Operations procedure. They often will
take servers down for an extended time to perform
other maintenance along with a software push. Also,
some did not agree with the policy of ‘‘that which is
on disk must be running.’’

As with rollback, we saw the paradox that
restarting server processes automatically can result in
longer outages, since operations will just have to stop
and start the server anyway for their own maintenance.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 193



Deployme: Tellme’s Package Management and Deployment System Oppenheim & McCormick

In response, we added a feature to prevent server
restarts from occurring during a LINK job.

War Stories

Deployme does not have any UI for performing
reporting, but its database is enormous. The tables
contain sufficient information to reconstruct every
software upgrade Tellme has ever made since
Deployme was introduced.

In several cases, we have used the database to
ferret out information such as ‘‘When did this package
reach the production servers?’’ and ‘‘Which modules
were upgraded since yesterday?’’

Deployme makes it so easy and fast to move to a
previous package that our Operations team is rarely
alerted when a bad package is released. Instead, the
content producer quickly reverts to a good package
and keeps the outage brief.

In many ways, Deployme has reduced the num-
ber of war stories we have to tell. The only major con-
tent-related outages since Deployme was instituted
resulted from individuals going around the Deployme
process and editing files directly on production
servers. (Old habits are hard to break.) There really is
no reason to do such a thing in the Deployme world.

Future Work

Despite Deployme’s merits, the current imple-
mentation is creaking loudly. The code base, approxi-
mately 10,000 lines of code, has become difficult for
us to maintain.

The maintenance problem centers around the
conditionals sprinkled throughout the code to check
for a particular set of module types. For example, the
‘‘execute_link’’ subroutine performs a large condi-
tional to figure out which Perl module to call. Another
example is that the web UI is littered with module
type checks to determine what options to offer when
creating a tag.

Our solution for this is a concept called ‘‘ser-
vices’’ which was introduced in [Finke1997], but our
usage is slightly different. Instead of a module type,
each module will be associated with a list of target ser-
vices where that module can be deployed. Servers will
provide services instead of having a single server type.
The services table will contain a reference to the Perl
object that will provide the service-specific code, iso-
lated from the Deployme core. Additionally, we will
add a START and STOP task to the list of deployment
tasks so service restarts are distinct from the LINK
task.

One application of services is to allow Deployme
to push to virtual web servers. Deployme only allows
web content to go to a single location on a remote
server. With services, we can push to the ‘‘developer ’’
service on a web box separately from the ‘‘corpweb’’
service.

Our preliminary services plug-in implementation
works very well. Because of this, we are moving all
of the Deployme logic into objects descended from an
abstract base class. For instance, CVS access will be
abstracted under an SCS, or source control system,
class. In this particular case, there has been some dis-
cussion about moving to Perforce [Perforce2000] from
CVS, and we want to be able to accommodate such a
switch with little pain.

All job execution steps and web UI are also
being moved into subclasses. Once this is complete,
the Deployme logic will be completely separated from
the Tellme site logic.

Another problem with Deployme is that it has no
concept of a physical location shared between two
machines. We investigated changing the database
schema to know the difference between physical and
logical locations, but the result was extremely convo-
luted and hard to use. Instead, we plan to provide a
mapping table that designates a single server as the
master for a shared mount point. At job creation, we
will map any requests for deployment to a specific
server/service pair to the master server if specified in
the mapping. Since the job creation logic removes
duplicate steps, we can be certain that we will deploy
to a shared location only once.

We plan to change the underlying database from
MySQL to PostgreSQL [Lockhart2000]. PostgreSQL
supports true referential integrity, which is necessary
for the more complex Deployme2 schema. Also, Post-
greSQL has transaction support, which makes error
handling easier.

Security is another area where much work
remains. We want to build a granular system that lim-
its what a user can do. Deciding how fine to slice
access control is a tough question. To start, we will
probably create ‘‘roles’’ which have different capabili-
ties.

We need a way to quickly copy a package to
multiple servers on a subnet. We have some prototype
multicast file transfer programs written, but we have
not yet decided how to incorporate them into
Deployme. In addition to transferring bits via multi-
cast, we could also blast commands to many hosts at
once.

Further enhancements include integrating
Deployme into the system we use to initialize brand
new machines. Also, we would like to add a ‘‘last-
known-good’’ feature so that it is easy for operators to
know what package is safe to roll back to.

Status

As of this writing, we are working on Deployme
2. We intend to integrate many of the conceptual
changes cited in Future Work. Most of the technology
upgrades, such as multicast, are not a priority right
now. This is because we are more interested in adding

194 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA



Oppenheim & McCormick Deployme: Tellme’s Package Management and Deployment System

the ability to add technology than the technology
itself.

Conclusions

We originally wanted to find an off-the-shelf tool
for accomplishing the goals stated above. However,
none of the tools we reviewed provided an end-to-end
solution for package lifecycle management.

Deployme has greatly exceeded our expecta-
tions. While it began as a simple content manager, it
has expanded to become the upgrade center for our
entire server environment. It currently tracks a few
hundred servers, and we believe it can track thousands
as we improve the underlying technology.

The best thing Deployme has done for Tellme is
something we never considered when writing up the
goals. It has reduced our stress level.

Stress is not something normally considered
when writing tools. Usually we focus on scalability,
speed, ease of use, and other immediately evident
goals. When all of these immediate goals are met and
the tool is firmly inserted into your process, that is
when you see the secondary benefits.

As Deployme began to encompass more teams
within the company, our collective confidence grew
and usage skyrocketed. Each day, Deployme processes
40 to 60 jobs encompassing hundreds of individual
tasks.

Our development schedules are not held hostage
to a release team. Instead, Deployme has engendered
a release democracy, where even the newest employee
is empowered to take over a module and start sending
new packages through QA and up to production.

The best accomplishment of all is our most fre-
quently asked question, ‘‘That’s all I need to do?’’

Author Information

Kyle Oppenheim is a software engineer at
Tellme Networks. He graduated from Carnegie Mellon
University with B.S. and M.S. degrees in Electrical
and Computer Engineering. He is currently playing
the role of Release Engineer, but is intently trying to
automate his job away. Reach him electronically at
kyleo@tellme.com .

Patrick McCormick is a software engineer at
Tellme Networks. He graduated from the Mas-
sachusetts Institute of Technology with B.S. and
M.Eng. degrees in Electrical Engineering and Com-
puter Science. His current professional interests
include voice recognition, computer telephony, and
software deployment. His email address is
patrick@tellme.com .

References

[Cederqvist1993] P. Cederqvist, et al., ‘‘Version Man-
agement with CVS,’’ http://www.loria.fr/
˜molli/cvs/doc/cvs_toc.html , 1993.

[Dagenais1993] M. Dagenais, S. Boucher, R. Gerin-
Lajoie, P. Laplante, P. Mailhot, ‘‘LUDE: A Dis-
tributed Software Library.’’ Proceedings of the
Seventh Large Installation Systems Admin-
istrators Conference, Monterey, CA, November
1-5, 1993, pp. 25-32.

[Finke1997] Finke, Jon, ‘‘Automation of Site Config-
uration Management,’’ Proceedings of the
Eleventh Large Installation Systems Administra-
tors Conference, San Diego, October 26-31,
1997, pp. 155-168.

[Furlani1996] J. Furlani, P. Osel, ‘‘Abstract Yourself
with Modules,’’ Proceedings of the Tenth Large
Installation Systems Administrator’s Conference,
Chicago, September 29-October 4, 1996.

[Glickstein1996] B. Glickstein, ‘‘Managing the Instal-
lation of Software Packages,’’ http://www.
gnu.org/software/stow/manual.html , 1996.

[Howard1988] Howard, John H, ‘‘An Overview of the
Andrew File System,’’ Proceedings of the
USENIX Winter Technical Conference, Dallas,
pp. 23-26, February 1988.

[Lockard1998] J. Lockard, J. Larke, ‘‘Synctree for
Single Point Installation, Upgrades, and OS
Patches,’’ Proceedings of the Twelfth Large
Installation Systems Administrator’s Conference,
Boston, December 6-11, pp. 261-270, 1998.

[Lockhart2000] Lockhart, Thomas, ed., ‘‘PostgreSQL
User ’s Guide,’’ http://www.postgresql.org/docs
/user/index.html , 2000.

[Manheimer1990] K. Manheimer, B. Warsaw, S.
Clark, W. Rowe, ‘‘The Depot: A Framework for
Sharing Installation Across Organizational and
UNIX Platform Boundaries,’’ Proceedings of the
Fourth Large Installation Systems Administra-
tor ’s Conference, Colorado Springs, CO, October
18-19, pp. 37-46, 1990.

[Moore1999] Moore, Michael, ‘‘Publishing to the Web
in a Distributed Environment,’’ http://www.
microsoft.com/backstage/bkst_column_10.htm ,
July 1999.

[MySQL2000] MySQL AB, ‘‘MySQL Documenta-
tion,’’ http://www.mysql.com/documentation/index.
html , 2000.

[Perforce2000] Perforce Software, ‘‘Perforce Docu-
mentation,’’ http://www.perforce.com/perforce/
technical.html , 2000.

[Pierce1996] C. Pierce, ‘‘The Igor System Administra-
tion Tool,’’ Proceedings of the Tenth Large
Installation Systems Administrator’s Conference,
Chicago, pp. 9-18. September 29-October 4,
1996, pp. 9-18.

[Sandberg1985] R. Sandberg, D. Goldberg, S.
Kleiman, D.Walsh, B. Lyon, ‘‘Design and Imple-
mentation of the Sun Network Filesystem.’’
USENIX Conference Proceedings, USENIX
Association, Berkeley, CA, pp. 119-30, Summer
1985.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 195



Deployme: Tellme’s Package Management and Deployment System Oppenheim & McCormick

[Tridgell2000] A. Tridgell, ‘‘Efficient Algorithms for
Sorting and Synchronization,’’ http://linuxcare.
com.au/tridge/phd_thesis.pdf , 2000.

[Wall2000] L. Wall, ‘‘Programming Perl,’’ 3rd ed,
O’Reilly & Associates, Sebastopol, CA, 2000.

[Ylonen1996] T. Ylonen, ‘‘SSH – Secure Login Con-
nections over the Internet,’’ Proceedings of the
Sixth USENIX UNIX Security Symposium, San
Jose, CA, pp. 214, 37-42, July 22-25, 1996.

196 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA


