
USENIX Association

Proceedings of the
14th Systems Administration Conference

(LISA 2000)

New Orleans, Louisiana, USA
December 3– 8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Use of Cfengine for Automated, Multi-
Platform Software and Patch Distribution

David Ressman & John Valdés – University of Chicago

ABSTRACT

Good UNIX system administration practice includes among its many tasks the proper
configuration of system files, installation and maintenance of third party software, and
maintenance of system security, including regular updates of operating system (OS) patches. For a
small number of systems running only one or two OSes, keeping up with these tasks isn’t too
difficult. However, as the number of systems and OSes increase (and the number of staff remains
constant), these chores can quickly become overwhelming.

This paper describes our planning, development, and deployment of a system that provides
automated software distribution, patch installation, and OS configuration through the integration
of GNU cfengine [Bur95], MySQL [MySQL00], and a few custom written Perl scripts. It is meant
to be less of a tool description and more of a discussion about the various aspects of designing a
multi-platform software and patch distribution system, and the benefits of integrating those
systems into a configuration management system such as cfengine. Designing and developing our
system has been a time-consuming endeavor, but it has proven to be well worth the effort.

Background

Our network was out of control. In our depart-
ment, we have over 100 UNIX systems running more
than half a dozen UNIX based OSes (more than a
dozen when counting different OS versions). The vast
majority of the systems share a similar role, but they
are all configured slightly differently to suit their par-
ticular users’ needs. With only two systems adminis-
trators, it was extremely difficult to handle the day to
day maintenance for each of these systems. We fell so
far behind that the majority of our days were spent
merely fighting fires. Because of this, we had very lit-
tle time to respond to requests for software updates or
new software installations and even less time to make
sure that all of our systems were running at the current
OS patch level. This left us with two large problems:

• Most of our systems had very old copies of
software. Since there was so little time to spend
upgrading software, we would only upgrade or
put new software on a machine when a user
would specifically ask for it. It’s not hard to
imagine what this led to; we ended up with a
number of different versions of the same soft-
ware all installed slightly differently across our
systems. This made upgrading software a much
more difficult task than it had to be, so unless
there was a specific need for it, software
wouldn’t get upgraded at all.

• Most of our systems were unpatched against
known security problems. The chore of manu-
ally applying patches to over 100 systems one
by one every time a new patch report comes out
is enough to give most systems administrators
nightmares. Because of the great effort
involved, most of our computers only had

whatever patches were current at the time of
OS install and whatever patches were applied
to the systems after mass break-in attempts.

It was clear to us that we needed some way to
manage the distribution and installation of software
and patches for our systems. We felt that eliminating
these two problems more than justified however much
time would be spent developing a new management
system.

Requirements for a New System

Over the period of several days, we brainstormed
about what our ideal system should include and came
up with the following rough list:

• Software distribution and management
• Patch distribution
• Centrally controlled configuration
• Ease of use
• Low cost
• Security
• Flexible host configuration
• Centrally controlled ‘‘pull’’ of software and

patch distribution
• Portability
• Autonomous operation

Software Distribution and Management

Our system needed to be able to handle the dis-
tribution, installation, upgrade, and removal of most or
all of the software not supplied by the OS vendor that
was needed on our computers. Additionally, it would
be useful if our system could track information about
installed software packages, such as a list of all files
included in a software package, the original source of
the software, and how it was compiled.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 207



Use of Cfengine for Automated, Multi-Platform Software and Patch Distribution Ressman & Valdés

Patch Distribution
Our system needed to be able to handle the dis-

tribution and installation of all vendor supplied OS
patches. It should also be able to handle any post-
installation steps required by the patch, such as restart-
ing a patched daemon. For maximum security, it
would need to make sure that all of our computers
were as up to date with their specific OS’s patch list as
possible.

Centrally Controlled Configuration
As much of each machine’s configuration as pos-

sible (e.g. automounter configuration, printer setup,
firewall configuration, syslog configuration, etc.)
should be initiated and tracked by a central system.
Likewise, the list of all software and patches which
should be installed on each machine should be man-
aged by a central system. The exact configuration state
of each machine in the system should be reproducible
in the event of a hardware failure or any other event
that would require a fresh OS install.

Ease of Use
Our system had be easy to use once placed into

production. A system that was complex and difficult
to use wouldn’t be much of an improvement over
manually maintaining our systems and would likely go
unused. The system should also be easy to maintain
and require a minimal amount of work to keep opera-
tional. The less work it required, the more time we
could devote to other projects. The more time we
could devote to other projects, the more productive we
could make our users.

Low Cost
Our system must be inexpensive. We have a min-

imal operating budget and can’t afford multi-host
licensing fees and yearly software maintenance costs.
This unfortunately ruled out most commercial soft-
ware options.

Security
Security was a primary motivation for our under-

taking this project. Our new system must allow us to
achieve a higher level of security across our network
than we previously had. This necessitated that our sys-
tem be able to maintain a current OS patch level on all
of our users’ computers. It should be able to quickly
upgrade software across all systems whenever security
bugs were found in third-party software. Any central
servers and processes used by our system should also
be as secure as possible.

Flexible Host Configuration
We can classify our machines as belonging to

one or more specific groups (i.e., NFS servers, labora-
tory workstations, members of specific research
groups, etc.). Depending on what group(s) a machine
belongs to, our management system should be able to
install specific software packages and make specific
operating system configuration changes. For example,
machines grouped as laboratory workstations may

need additional data analysis packages installed on
them, while only machines belonging to a specific
research group will need a print queue defined for a
printer which belongs to that research group.

We also needed to be able to manage software
and OS configuration on a host by host basis. Our sys-
tem should also be able to customize a machine’s soft-
ware and OS configuration beyond the configuration it
receives by virtue of its group classification.

Finally, it should also be possible to customize a
machine’s configuration files based on any particular
third-party software packages or vendor supplied
patches that are installed. For instance, for machines
with the Apache web server installed, we need a way
to manage the server daemon’s configuration and log
files.

Centrally Controlled ‘‘Pull’’ of Software and Patch
Distribution
The software and patch distribution, while con-

figured centrally, should work on a system where the
patches and software are ‘‘pulled’’ from a central
server, rather than ‘‘pushed’’ by the server. By having
‘‘smart clients’’ and a ‘‘dumb server,’’ we hoped to
minimize the amount of damage that could be done to
our system by the temporary loss or compromise of
any one host. In our ideal situation, any or all of the
functions of the server could be moved to different
computers with a minimal impact to the system.

Portability
Our system must be portable. Our needs require

it to run across multiple OSes, including SunOS 4.x,
SunOS 5.x, IRIX, AIX, Digital/Tru64 UNIX,
OpenBSD and Linux (including multiple architec-
tures, such as Intel and Alpha). Fortunately, we do not
need to support any non-UNIX OSes at this time.

Autonomous Operation
Most importantly, our system needed to do all of

the above with as little intervention from us as possi-
ble.

Home-grown or Public Domain Software?

At this point, the only thing we knew for sure
about our new system was that it would have to have
three major parts to it: software distribution, patch dis-
tribution, and configuration management. The ques-
tion we next asked ourselves was how much existing
software could we use, and how much would we have
to write ourselves? Our problems certainly weren’t
unique, and we didn’t want to reinvent the wheel.
Likewise, we aren’t software developers and didn’t
have the time to write a complete system from scratch,
so we wanted to make use of as much pre-existing,
maintained software as possible.

Software Distribution
We spent a few days looking around on the web

for software distribution systems but were only able to
find a handful of references. When we took a more

208 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA



Ressman & Valdés Use of Cfengine for Automated, Multi-Platform Software and Patch Distribution

careful look at the few systems we were able to find,
we noticed that most of them relied on package direc-
tory trees being pushed out from a server (rdist style),
copied over from an NFS server, mounted from an
NFS server with symlinks set up in the client’s local
directory structure, or some combination of the three
(Xhier [Sel91], Depot [Col92], Depot-Lite [Rou94],
GNU Stow [Gli96], opt_depot [Abb97], SEPP
[Oet98]).

We had already ruled out a server pushed distri-
bution system, so the only other choices for existing
systems were distribution through AFS or NFS from a
master server. AFS was not an option we could con-
sider because it was not available for all of our target
platforms nor was it freely available for most of our
platforms. While NFS may have been an easy choice
for the authors of these other distribution systems
because of a pre-existing NFS architecture, it was not
an easy choice for us. We had made very little use of
NFS in our department for software sharing or distri-
bution.

Historically, we had always avoided running
software mounted from an NFS server in favor of each
machine having local copies of all of its software. In
doing so, we minimized the amount of damage the
loss of any one computer or the loss of our network
could do to any other computer. We’re employed to
keep our users as productive as possible by allowing
them to think about astronomy and astrophysics and
not about whether the NFS server that is holding the
software they need to use is available. Inevitably,
computers and routers will crash or have to be brought
down for maintenance; we didn’t want to use a distri-
bution system that would cripple all of our users’ com-
puters through the unavailability of a single server.
Having our software distributed from or mounted on
an NFS server would increase our dependence to a
specific server more than we felt comfortable with.

Additionally, given our requirement to support
multiple operating systems and architectures, using an
NFS-based distribution system would have required
that we either maintain a separate NFS server for each
OS/architecture combination or maintain a compli-
cated, multiple-architecture directory structure on a
single NFS server. Lastly, we have software which
must be installed locally on each system, such as soft-
ware containing kernel modules and security related
software (e.g. tcp-wrappers, ssh, etc.); if we used an
NFS-based system, we would still need something
else to manage the locally installed software.

After ruling out server push and AFS/NFS, we
were unable to find any free software distribution sys-
tems which we could put to use in our department. It
was clear that our best option was to write our own
software distribution system.

Software Packaging
We needed our system to handle the installation,

removal, and upgrade of 100 or more different third-

party software packages. Since we had ruled out a net-
work filesystem based distribution method, we imme-
diately realized that we would have to use some sort
of packaging system to get our software from our dis-
tribution server(s) to our client computers.

We came up with the following three options:
• Use the native package format for each OS.
• Create a home-built package format using shell

scripts and tar.
• Use an existing, multi-platform package for-

mat.

Of these three, we immediately ruled out using
each OS’s native package format for software distribu-
tion. While it (arguably) might have allowed for the
most trouble-free integration of the software distribu-
tion system with the client computers and their OSes,
it also would have been the most work to set up and
maintain. Since each OS has its own unique packaging
format, every piece of software we wanted to dis-
tribute would have to be packaged up in as many as
eight completely different ways. The last thing we
needed was to make packaging more complicated than
it had to be. Besides, we had had enough experience
with some of the package formats to know that a few
of them were complicated at best and downright
obtuse at worst.

A home-built package format using tar and shell
scripts would certainly be the easiest to put together,
since every OS we were using had tar and a Bourne-
compatible shell. Given that, no additional software
would have to be added on the computer in order to
install, upgrade, or delete packages. All we would
need to do is:

• Write shell scripts to install, remove, and query
our available packages,

• Compile each software package once for every
OS for which we wished to have the package
available,

• Tar up the software into our package format,
• Finally, put the tarball up on our distribution

server(s) to be pulled in by our clients.

It did have one drawback; we’d still need to get
the package from the server to the client. Since we’d
ruled out NFS, the only reasonable ways we could
think of to get the package to the client over the net-
work were HTTP or FTP. That alone wouldn’t be
enough to stop us from using a home-grown package
manager. We could install a program like GNU wget
or NcFTPget when we loaded the shell scripts on the
client. It would be bare-bones and wouldn’t have a lot
of fancy bells and whistles, but it wouldn’t be a bad
solution.

When looking around for a Few Good multi-plat-
form package formats, we came across a couple lesser
known ones that looked like they might be able to
work, but the clear leader in that field is the Red Hat
Package Manager (RPM) [RPM00]. Aside from
already having been ported to every operating system

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 209



Use of Cfengine for Automated, Multi-Platform Software and Patch Distribution Ressman & Valdés

on which we would need to run it, RPM has a very
active development group, a very broad user base, and
has been thoroughly tested.

RPM also extends beyond just a packaging for-
mat into a development environment that can control
the entire packaging process from the compilation of
software from source code on up to the installation of
the packages. It also has the added benefit (or hin-
drance, depending on how you look at it) of extensive
package dependency awareness, and has a built in FTP
client so that it can retrieve packages from a remote
FTP server and install them in one step.

Building RPM packages would require more ini-
tial work in that we would have to write a package
specification (spec) file for each package. The spec
file contains all the information that is needed to com-
pile, install, uninstall, and upgrade the package for
every OS for which the package would be available.
However, we didn’t think this was necessarily a bad
thing. It would enable us to document from where we
got the package’s source code (not always an easy
thing to remember or find). It would also very clearly
show us every step we would need to take in order to
compile and install the software (again, not always an
easy thing to remember). Additionally, once we had
written the spec file, updating packages to newer ver-
sions of the software would usually be very easy.
Often, all that’s required to build a new RPM package
when updated versions of software are released is a
one-line change to the package’s spec file followed by
an ‘‘rpm -b -a package.spec.’’ The RPM manual
[Bai99] contains an excellent description of the entire
process of building an RPM.

The only problem we saw with using RPM
would be the initial installation of RPM itself. We
decided that if we were going to use RPM, we would
build an RPM package in each OS’s native package
format, install that package on each system, and let
RPM install all the additional software packages.

While the tar and shell script option would cer-
tainly have sufficed, we felt that the added functional-
ity of RPM (especially the FTP client) was worth the
effort of learning how to write the RPM spec files and
building RPM packages for each OS. The tar and shell
script option also would have required that we rein-
vent much of the functionality already in RPM. There-
fore, we felt our best option was to write our software
distribution system around the Red Hat Package Man-
ager with packages distributed from an FTP server.

Patch Distribution
However disappointing the lack of information

on available software distribution systems was, the
lack of information on patch distribution systems was
doubly so. We were unable to find any information on
multiplatform patch distribution and installation sys-
tems. In fact, the only useful information we were able
to find about any kind of automatic patch download
and installation software was a reference to a program

named PatchReport in an article in the October 1997
issue of ;login: [Sin97]. PatchReport was a Solaris-
only Perl script that would compare the current patch
state of the machine it was being run on against Sun’s
patch cross-reference file. PatchReport would down-
load any patches that were missing and install them.
Since a large fraction of our computers were running
Solaris, this was a pretty good start, but since it was a
Solaris-only utility, it was clearly not going to be our
multi-platform patch distribution and installation util-
ity.

We were unable to find any such utilities for
IRIX, Red Hat Linux, AIX, or any other OSes we
would have to support. If we wanted a true multi-plat-
form patch distribution and installation system, it
appeared we would have to write one ourselves.

Since patches are supplied by the OS vendor or
development team, there was no way to use a common
patch format. Our only choice would be to write a sys-
tem that was intelligent enough to recognize what OS
it was running on and download and apply the right
patches. Since we were already going to use an FTP
server to distribute our software, we decided to use an
FTP server to distribute the OS patches as well.

Configuration Management
When we started the search for configuration

management software, we immediately found hun-
dreds of references to a program named cfengine.
After a cursory glance at the online documentation we
found on the cfengine web page, we decided that this
software package was definitely worth a closer look.
We downloaded the cfengine reference manual
[Bur99] and went home for the weekend to read it.
The more we read, the more we realized that cfengine
was a perfect choice for our configuration manage-
ment system.

Cfengine would allow us to control every aspect
of a machine’s configuration that we thought would be
necessary and then some! A complete description of
cfengine is beyond of the scope of this paper, but
briefly, cfengine will let you manage:

• Copying of files, both locally and remotely
• Editing of files
• Creation, removal, and maintenance of sym-

bolic links
• Filesystem access control lists (ACL)
• File and directory permissions and deletions
• Filesystem tidying
• External command execution
• System and user processes

among many other things.

All of cfengine’s actions can be conditionally
applied based on whether or not certain ‘‘classes’’
(cfengine’s name for ‘‘groups’’) are defined. Cfengine
provides predefined classes based on the OS a given
system is running, the hostname of the system, the day
of the week, etc., and also allows you to define your
own classes. Cfengine can also define classes

210 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA



Ressman & Valdés Use of Cfengine for Automated, Multi-Platform Software and Patch Distribution

dynamically at runtime, so that classes can be defined,
for example, only if a certain action was carried out.
Given cfengine’s actions and ability to group actions
based on class, it was clear that we could use cfengine
to manage system configuration which applies glob-
ally to all of our computers, to any individual com-
puter, or to any predefined or dynamically defined
group of computers, as we required.

As an added benefit, cfengine has a framework
for allowing users to write their own modules in any
programming or scripting language and merge them
into a stock cfengine run. Through this, you can add
nearly any functionality to cfengine without having to
actually modify cfengine itself. Modules can use and
define classes as well, giving them the same control
and flexibility as cfengine’s builtin actions. Because of
this capability, we decided that we would implement
our software and patch distribution system as cfengine
modules so that we could use cfengine’s class mecha-
nism to manage configuration based on installed soft-
ware and patches.

Summing It Up

We now knew that our solution would include a
home-written software distribution system built upon
RPM software packages, a home-written patch distri-
bution system, and cfengine for configuration manage-
ment.

Drawing Up a Rough Design

Having decided on the features we would want
and the software we would use and create, it was time
to figure out what we would need to write into our
software so that it would meet our requirements.

Class Definitions

As we’ve mentioned, all of our computers can be
classified as being part of one or more larger groups
that share a common functionality. There are personal
workstations, laboratory workstations, data servers,
computational servers, etc. The systems can be further
divided into smaller groups; there are groups of
machines that are used for a specific research project,
share a common user base, need the same software,
etc. Depending on which group a machine belongs to,
it will have different software installed and its config-
uration files will be different.

To handle this varied configuration, we would
simply make use of cfengine’s class mechanism. For
this, we needed to define classes which reflected the
grouping of our systems, and then create cfengine
input files which would associate our systems with our
classes and run whatever actions are necessary in
order to configure the systems as needed.

Central Configuration and Control

We needed our system to centrally manage all
system configuration. Having all configuration infor-
mation resident on a central server makes it easy to
change configurations for multiple systems with a

single edit, minimizing mistakes and eliminating
inconsistencies between systems. Cfengine naturally
lends itself to central configuration. In the most com-
mon method of cfengine use, master copies of
cfengine’s input files (the files that tell cfengine what
commands to perform on the computer) reside on the
cfengine server where they are pulled in by the client
systems through cfengine’s internal network file copy
protocol.

We also needed our system to centrally manage
all of the available software and patch information for
all of the OSes we use with easy expandability for any
future OSes we might need to support. Every single
system needs to be able to talk to the central system
and be told exactly what software packages should be
installed and what patches should be applied.

We came up with two different possible ways of
distributing this information:

• Have each client pull in a group of text files
that describe the available software, each
machine’s software configuration, and each
OS’s patch configuration.

• Have each client query a relational database to
obtain its software profile and patch informa-
tion.

A text file option would be the easiest to set up.
However, when we did the math to figure out how
much data would be passed around in those files, it
became clear to us that keeping track of over 100 soft-
ware programs on over 100 machines would require
more than 10,000 different entries in our text file – for
the software subscription information alone.

Having two people maintain this text file was a
recipe for disaster. No matter how careful we were,
we were bound to make syntax mistakes and typo-
graphical errors. The more entries we had in this file,
the harder it would be to track down any mistakes.
While we could probably keep it under control with
some difficulty, it was very clear that this option
would not scale as the number of hosts and software
packages increased. Maintaining a separate file for
each computer with its own software information
would have been just as bad.

Having this information stored in a database was
clearly the better choice. With properly written front-
end scripts to maintain the database information, it
would be very easy to keep the database relatively
error-free, and make the inevitable errors very easy to
find and correct. In addition, most databases are
designed with scalability in mind and could hold far
more detailed information for far more hosts than we
would ever need to support.

Hence, we decided to store all the software and
patch information in a central database. Of the free
database packages available, we chose MySQL
because we had had some familiarity with it in the
past and because we felt that the development commu-
nity was a little larger than the other two databases we

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 211



Use of Cfengine for Automated, Multi-Platform Software and Patch Distribution Ressman & Valdés

considered, mSQL and PostgreSQL. Any of the three
would have been a suitable choice for our project.

Portability
RPM and cfengine had already been reported to

run on every OS on which we would need to run them.
To assure portability, all we needed to do was to make
sure that our cfengine modules were written in a lan-
guage that was portable across all of our systems and
had the ability to communicate with a MySQL server.

We made a list of all the scripting and program-
ming languages we could think of with MySQL sup-
port and came up with the following: Perl, Python,
Tcl, C, C++ and Java.

Of those, we immediately ruled out three
choices. We decided not to write our modules in
Python out of personal preference. We ruled out Tcl
because the MySQL support was not as strong as we
would have liked. We also ruled out Java because a
Java virtual machine was not available for every oper-
ating system we would need to run it on.

With Python, Tcl, and Java gone, we were left to
chose either Perl, C, or C++ which prompted an inter-
esting question: were there any specific benefits or
hindrances that made scripting languages a better
choice than compiled languages (or vice versa)?

While personal preference was bound to affect
our decision, we tried to be as objective as possible.
These modules would not be doing large amounts of
heavy computation, so any speed increase given by
choosing a compiled language was likely to be negli-
gible. These modules would be distributed from our
central server through cfengine, which would mean
very little difference between distributing one Perl
script to all OSes or distributing a binary for each OS
built from the same source code.

If we wrote our modules in Perl, we would need
to make sure that every computer had a copy of Perl
and a copy of the MySQL module for Perl. Whereas
if we used C or C++, no additional software would
need to be installed on the client machines; all we
would need is a copy of the MySQL libraries and
header files on one system running each OS in order
to compile the C or C++ modules.

However, if we used Perl, it would be highly
unlikely that we would ever use any of its more com-
plicated features that might cause our scripts to react
differently depending on what operating system they
were being run on. As a result, if our scripts compiled
and ran on one OS, they would likely compile and run
on all the others. We wouldn’t need to recompile our
modules on eight different OSes every time we made a
small change to either of our modules. Releasing new
versions of the modules would also be easier because
we wouldn’t have to compile and test the program on
all of our OSes with every minor change.

We eventually chose Perl because of the ease of
development and maintenance it would give us over C

or C++. Every computer we would be responsible for
maintaining would have a copy of Perl on it anyway,
and it wasn’t much trouble to add the MySQL module
to it. It’s not clear that this was the best choice, and in
the future, we may rewrite our modules in C or C++ as
an experiment.

Autonomous Operation

Building our system through the use of cfengine
modules was the perfect solution for us. Because of
the way cfengine handles class definitions through its
modules, any of cfengine’s internal functions could be
performed on our systems based on what patches or
software packages we installed – all automatically! All
that is required is that our modules define classes for
the patches and packages that they install; we can then
have cfengine run commands based on these class def-
initions.

The possibilities are almost endless. We can have
cfengine restart daemons after installing OS patches
that update them. Cfengine can change inetd.conf and
send inetd a hangup signal if we install or uninstall a
software package that is launched from inetd. Nearly
any change that you would want to make to a com-
puter due to the installation or uninstallation of a soft-
ware package or OS patch can be performed on all of
the applicable hosts by merely adding a couple of lines
to cfengine’s input file.

Below, we show an example of a cfengine input
file which illustrates how classes can be used by
cfengine to reconfigure inetd based on whether or not
the IMAP server package is installed.

editfiles:

imapd::
{ /etc/inet/inetd.conf
AppendIfNoSuchLine "imap stream tcp
nowait root /usr/sbin/tcp imapd"

DefineClasses "inetd"
}

!imapd::
{ /etc/inet/inetd.conf
DeleteLinesStarting "imap"
DefineClasses "inetd"
}

[later in the input file]

processes:

inetd::
"inetd -s"
action=signal
signal=hup

In this example, we show the use of two builtin
cfengine commands, editfiles: and processes:, together
with a dynamically defined class called imapd::. The
editfiles: command provides a number of actions for
manipulating text files, while the processes: command
provides actions for manipulating UNIX processes.
Through a process detailed in the next section, our
software module will dynamically define the imapd::

212 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA



Ressman & Valdés Use of Cfengine for Automated, Multi-Platform Software and Patch Distribution

class based on whether or not the IMAP server pack-
age is installed; if the package is installed, the class
will be defined, and if the package is not installed, the
class will not be defined.

Looking at the example above, you can see that
if the imapd package is installed (i.e., the imapd:: class
is defined), cfengine will check to make sure that the
imap service is enabled in the inetd.conf file. If a line
for imap doesn’t appear in inetd.conf , that means that
the package has just been installed, at which point
cfengine will append the line given in double quotes to
inetd.conf and then define the inetd:: class (this class
will be defined if and only if cfengine edits the
inetd.conf file as a result of this check). Later on in the
cfengine run when the processes: command runs,
cfengine will see that the inetd:: class is defined and
send the inetd daemon a HUP signal as instructed by
the input file.

If the imapd package is not installed, then the
imapd:: class will not be defined by our module, and so
cfengine will run the actions in the !imapd:: stanza.
These actions tell cfengine to remove the imap entry
from inetd.conf if present and set the inetd:: class if the
entry was removed. If the imap line is present, that
means that the package has just been uninstalled. In
this case, cfengine will remove the imap line from
inetd.conf and define the inetd:: class, which will later,
when the processes: command is run, cause cfengine
to send a HUP signal to inetd.

Similar actions can be taken with the installation
or removal of any software package or OS patch.

Summing It Up
We now had a good idea of exactly how we

wanted to implement our system. It would be driven
by cfengine so that every machine could be configured
centrally from the cfengine server. We would have a
MySQL database holding up-to-date patch informa-
tion for each of our OSes and software configuration
profiles for each of our hosts. We would need to write
two cfengine modules in Perl: one to make sure that
the computer was up-to-date on patches, and one to
make sure the computer had the proper third party
software installed.

Putting It Together (The Hard Part)

Cfengine and RPM
The first step in making this system materialize

was to build a cfengine server and familiarize our-
selves with cfengine in operation. For our cfengine
server, security and economy were our top priorities,
so we bought a Pentium-based system and installed
OpenBSD on it. We disabled every service except for
ssh and ftp, and loaded a highly restrictive ipfilter
ruleset. We downloaded and installed cfengine and set
up cfengine’s daemon to share input files with all of
the systems on our subnets. We picked a handful of
computers on which to install cfengine. These com-
puters would contact our cfengine server every hour to

check for updated input files, download them if neces-
sary, and run the commands in the input files. After
two or three weeks of leisurely experimenting, we felt
we were familiar enough with cfengine to begin
designing a software and patch module system around
it.

Since a large fraction of the computers we’re
responsible for are Sun SPARCs running Solaris, we
started developing on our Solaris machines first. After
making and installing a Solaris pkg package for RPM,
we thought of all the third party software that we
would want to install, downloaded the source code,
and compiled them into RPM packages. This took
about two months and was by far the most time con-
suming step of the entire process.

Software and Patch Database
Once we made all of the RPMs, the next step

was to design and create a database to store all of our
software information and patch information. Towards
this end, we had to get into the specifics of exactly
what kind of information we would want our database
to hold. For software, we came up with the following
list:

• The name of every package available.
• A listing of what OS each package was avail-

able for. Some of our software would only need
to be compiled for one or two of our operating
systems. For example, our Red Hat Linux sys-
tems would already have installed out of the
box several packages which we would be build-
ing for our other systems. We needed to be able
to differentiate, for example, between the
‘‘screen’’ package that shipped with Red Hat
and the one that we built from our own spec file
for OSes that didn’t ship with a copy of screen.
It would be very nice for our systems to be
aware of which packages are installable and
which ones not to bother with.

• The current, default version of each software
package, applicable to every operating system.

• The ability to specify different current versions
of the software packages for different operating
systems. Some versions of a few of the soft-
ware packages we’d be using simply wouldn’t
be runnable on some of our operating systems.
It’d be great to say, ‘‘Everybody run version
1.24 of the ‘foo’ package, except for you AIX
machines; I want you running version 1.22.’’

• A list of every software package that should be
installed on every machine.

• A field in each machine’s profile that would
allow you to specify a specific version of a
software package if you wanted a version other
than the current. Some of our users are running
software on their computers that require spe-
cific versions of packages like Perl or Tcl. It
would be necessary to keep these packages
from being replaced when we released new ver-
sions and marked them as being current.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 213



Use of Cfengine for Automated, Multi-Platform Software and Patch Distribution Ressman & Valdés

Package
Name

Default
Version

Solaris
Version

Linux
Version

Solaris
Build

Linux
Build

tcl NULL

NULL 1 14.05-1

8.1.1-1 1NULL

NULL

pam_opie 1.0-2 0.21-3 1 1

acroread

NULL

1.1-1

Figure 1: Database table holding software information.

After we had come up with that list, we decided
to use two database tables to hold this information.

One table holds information for each software
package we want to distribute (see Figure 1). Each
package has an entry in this table. One column in the
table specifies the default version number of each
package; this is the version of the package that is
applicable to all OSes. Additional columns specify the
version number of each package for each OS (Solaris
Version, Linux Version, etc.). This version overrides
the default version of a package for the given OS. If
the value in the OS version column is NULL, then that
means that the current version of the package for that
OS is given by the value in the default version col-
umn. Finally, there are columns which are used to flag
the availability of each package for each OS (Solaris
Build, Linux Build, etc.). For each package, if the
value in these columns is non-NULL for a given OS,
then that means that we have built an RPM of that
package for that OS. This can be used to distinguish
between RPMs which we have built and those that are
included with the OS.

For example, looking at the entries given in Fig-
ure 1, we can see that an acroread RPM is available
for both Solaris and Linux, and that the default version
of the acroread package is 4.05-1 for all OSes. On the
other hand, a tcl RPM is isn’t available for Linux (it
wasn’t necessary to make one, since Linux already
includes tcl) but is for Solaris. Finally, we see that the
default version of the pam_opie package is 1.1-1, but
that Solaris systems should use version 1.0-2 while
Linux systems should use version 0.21-3.

The second table holds information specifying
which software packages should be installed on which
machines (see Figure 2). For each entry in this table,
one column specifies the hostname of the machine for
which the entry applies, a second column specifies the
name of the package that should be installed on that
machine, and a third column specifies which version
of the package should be installed on that machine. If
the version is listed as ‘‘current,’’ then that means that
the current version of that package as given in the
software table should be used. The collection of all
entries for a machine in this table makes up that
machine’s software profile.

To illustrate, refer to the sample entries in Figure
2. From here we can see that the machine called

‘‘mypc’’ (which is running Linux) should have the
current version of acroread installed. As we saw
before in Figure 1, the current available version of
acroread for Linux is 4.05-1, so that means mypc will
have acroread version 4.05-1 installed. Similarly, we
can see that this machine will have pam_opie version
0.21-3 installed. Finally, we can see that machine
‘‘mysun’’ (which is running Solaris) will have tcl ver-
sion 7.6-1 installed, even though the current version of
tcl in the software table is 8.1.1-1.

mypc

acroread

pam_opie

Package
Name

Package
Version

Hostname

mypc

tcl 7.6-1

current

current

mysun

Figure 2: Database table holding host software pro-
files.

solaris

solaris

OS
Version

Patch No. OS

6.2

5.8

5.7

linuxlpr-0.50-5

108528-02

107451-04

Figure 3: Database table holding patch information.

The list we came up with for the patch database
table was much simpler – the only thing we needed
was a simple list of every patch for every version of
every operating system we’d be maintaining. The
table we used for the patch database is illustrated in
Figure 3.

Once the database was designed and created, we
needed to populated it with our software and patch

214 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA



Ressman & Valdés Use of Cfengine for Automated, Multi-Platform Software and Patch Distribution

information. Since we would be the ones making all of
the new software packages and deciding what soft-
ware gets installed on what hosts, it would be easy for
us to keep the software database up to date. Every
time we released a new package, or wanted to install a
piece of software on a host, we would just update the
software database tables, either directly through the
MySQL command line client, or through a front end
(web-based or otherwise).

Keeping the patch database up to date would be a
trickier affair. We would have no control over when
new OS patches were released, and very few vendors
or development teams would send us email whenever
new patches were released. We would have to take the
initiative of regularly going to each OS’s patch infor-
mation center, downloading any new patches, putting
them up on our ftp server, and updating the database
so our clients could pull them in.

To be clear, we didn’t think going out to every
OS’s patch information site to check for new patches
every morning would be a bad habit to get into, we
just thought that we could find better things to do with
the time that it would take to do that.

We decided to automate that process and run
scripts from our cfengine server to go out and do it for
us. Since these scripts would only be run from our
central server, we could take existing software (such
as PatchReport) and modify it to download new
patches to our FTP server and optionally update our
database. For OSes that we could not find any such
software for, it was easy enough to write quick Perl
scripts to check that vendor’s WWW or FTP site,
download new patches, and update the entries in our
database. This way, we could check much more often
than we could if we were doing it ourselves. Currently,
we check every OS’s patch information site every four
hours, around the clock. Whenever the script down-
loads a patch, it emails us a notice containing a one-
line description of each downloaded patch.

We should probably mention one precaution,
however. In general, it is probably not a good idea to
install a patch on a system without first examining any
documentation that comes with it and trying it out on a
test system first. The documentation will mention any
special steps which need to be taken before or after the
patch is applied, and prudent testing will uncover any
potential problems that may be caused by a malformed
patch.

In our current system, our patch download script
automatically updates our database each time it down-
loads a new patch from the vendor. This means that
our client systems will pull in and install the down-
loaded patches without our intervention. Given that
we are only checking for ‘‘recommended’’ and ‘‘secu-
rity’’ patches (the two patch types that seem to be well
tested by the vendor before release), we aren’t overly
concerned about any potential damage resulting from
automatic updates. We may revisit the wisdom of that

decision. If we do, all that will be necessary will be a
quick change to disable the portion of the download
script which updates the database. We could then just
manually update the database after we have inspected
and tested a patch.

Software and Patch Modules
Once we had the cfengine server and the soft-

ware and patch database infrastructure built, all we
needed was the client software.

From this point, it was relatively easy to write a
cfengine module in Perl to grab a host’s software pro-
file, download the RPMs and install them. Since RPM
was chosen to be the common package format across
all of our OSes, no changes had to be made to this
script in order for it to run on the different OSes.
When run through cfengine on a system, this module
will:

• query the MySQL database to generate a list of
all software packages and their versions which
should be installed on the system,

• generate a list of all software packages and
their versions which are currently installed on
the system (by locally running ‘‘rpm -q -a’’),

• compare the two lists and install, delete and/or
upgrade any packages on the system as needed
(by locally running rpm),

• define a cfengine class for each software pack-
age that remains installed on the system.

After the module completes, cfengine continues
its run and can act on any class definitions activated
by the module. In this way, cfengine can make any
configuration file edits, file copies, process signaling,
etc. which are necessary as a result of any software
changes, as illustrated with the imapd example in the
previous section.

The patch module was more tricky to write.
Since all of our OSes handled patches in completely
different ways, it was a challenge to make one script
that would seamlessly patch as many as eight different
OSes. It would be unavoidable to have certain parts of
the script dedicated to only one OS, but we wanted to
maximize the amount of code that would be common
to all the OSes.

As with the software module, the patch module
operates by first querying the MySQL database to
generate a list of patches that should be applied to the
current OS. It then compares this list to a list of
patches currently installed on the system. Finally, it
downloads and installs or updates patches as needed,
using the native patch installation command for the
OS. The module defines a class for each patch that it
installs for further use during the cfengine run. For
example, 107451-xx is a patch for the cron daemon in
Solaris 7 for SPARC. Whenever a version of this
patch is installed by the patch module, it will define
the class 107451 which we can then use in our
cfengine input files to tell cfengine to restart the cron
daemon.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 215



Use of Cfengine for Automated, Multi-Platform Software and Patch Distribution Ressman & Valdés

Some patches may fail to install on some sys-
tems. For example, a patch may be for an operating
system component which isn’t installed on the system
(e.g., UUCP), or it may be intended for a specific type
of system and not others (e.g., 64-bit systems and not
32-bit systems). While we could use the MySQL
database to specify the applicability of a patch to a
given system, we decided to only track the OS and the
OS version for which a patch is applicable. As a
result, our patch module may try to install inappropri-
ate patches on a given system.

Fortunately, at least on the OSes for which we
have so far implemented our patch system, the native
patch installation tools which our module uses are
intelligent enough to determine on their own that a
given patch isn’t applicable to the system and fail
gracefully without damaging the installed OS. As a
result, we are comfortable with our module trying to
install inappropriate patches. Should the native patch
installation tools not have the requisite intelligence,
we will have to expand our patch database structure
and module to accommodate. Fortunately, our design
is flexible enough that this shouldn’t be too difficult.

Given that some patches may legitimately fail to
install, the patch module tracks failed patch installa-
tions using a text file on each system. When building
its list of patches to install during a cfengine run, it
will remove from the list any patches listed in this file;
that way, it won’t needlessly try to reinstall previously
failed patches each time cfengine runs.

As a final step, both cfengine modules email us a
report of their actions so that we can be kept aware of
what software and patches are being installed on our
computers. The report details which software pack-
ages and patches have been installed and/or removed,
and includes any failures, errors or unusual output
generated by the modules.

Summing It Up
We had now set up our cfengine server and our

MySQL database, made RPMs of all our software,
written the software and patch modules, and written
the scripts to keep our patch information current. It
was at last time to roll it all out!

Making It Work (The Fun Part)

Before we had started any work on this system,
we agreed that every computer that was to be inte-
grated into our management system would have to
have its OS completely wiped clean and the current
version of its OS installed. We wanted to minimize the
number of versions of any given OS that were being
used in our department, and since security was one of
our primary motivations for undertaking this project,
we also wanted to be assured that the OSes were clean
and untrojaned.

We would start by integrating all of our Solaris
systems, then our Red Hat Linux systems, and then
our IRIX systems. That would cover about 95% of all

of our computers, after which we would declare vic-
tory and integrate the other OSes as time permitted.

We picked two Solaris machines with particu-
larly understanding users to use as guinea pigs, com-
pleted their software profiles, backed up their home
and data directories, and marched off to install Solaris
7.

Once we had a clean installation of Solaris, we
loaded on the RPM package (in Solaris pkg format),
installed the Perl RPM with MySQL support, and the
cfengine RPM. Sun’s JumpStart program made this
process extremely easy to do, all completely auto-
mated. We ran cfengine for the very first time, expect-
ing the worst, and waited for the email report.

Much to our surprise, it worked flawlessly. All of
the configuration files were modified just the way we
had laid out in cfengine’s input files, all of the patches
we wanted applied were applied, and all of the soft-
ware we put in the database configuration profiles was
properly installed. After inspecting the systems for
anything that was out of place, we declared the debut
of our system a smashing success and made plans to
upgrade the rest of our Solaris systems. At the time
this paper is being written, all of our Solaris systems
have been upgraded, and we’re about halfway through
our Linux systems. Upgrading and integrating the
Linux systems has proven to be equally painless.

So far, our system has not caused any serious
problems, and we’ve repelled numerous attacks on
vulnerable services because our systems are never
more than a few hours behind on vendor-supplied
patches.

Successes

In this section, we figured it would be appropri-
ate to include a few examples of where our system has
clearly shown itself to be more useful to use than our
previous hodge-podge method of systems administra-
tion.

Breakin Detection and Termination

Cfengine gives you an excellent interface to
interact with your system’s processes. You can search
for specific processes, start them if they’re not run-
ning, send them signals if they are, and email you with
a report of what cfengine has found or done.

Since the people who break into our systems
almost exclusively use the compromised systems to
run sniffers, IRC bots, or DoS tools, we decided to
make up a list of suspicious process names to have
cfengine look for and warn us about every time it ran.
Besides the usual suspects (more than one running
copy of inetd, anything with ‘‘sniff’’, ‘‘r00t’’,
‘‘eggdrop’’, etc. in the process name, password crack-
ers, etc.), we had cfengine watch for any process with
‘‘./’’ in the process name.

One afternoon, we got an email from cfengine on
one of our computers that had noticed that the regular

216 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA



Ressman & Valdés Use of Cfengine for Automated, Multi-Platform Software and Patch Distribution

user of that machine was running a program as
‘‘./irc’’. It wasn’t uncommon to see our users using
‘‘./’’ to run programs, nor do we have objections to our
users running IRC, but in this case, it was a bit
unusual for this particular user to be running an irc
process (good UNIX system administration practice
also dictates that you know your users).

Poking around the system, we discovered that
the person running this program was not the regular
user of the machine, but was someone who had evi-
dently sniffed our user’s password from somewhere
else and remotely logged into his system just minutes
before cfengine had alerted us. This person was in the
process of setting up an IRC bot and had not yet tried
to get a root shell.

At this point, we had to figure out exactly what
to do to minimize the amount of damage that this per-
son could cause with our user’s password. We were
about 40 minutes from the next cfengine run, so we
had 35 minutes to make changes to cfengine’s input
files so that they would be pulled in by all our clients.
The machine that this person had broken into is part of
a group of computers in a specific professor’s research
group. Every user who works with this professor has
accounts on every one of his machines, and almost all
of the users use the same password on all of the
machines. That meant that the person who broke into
the one machine we had noticed had a password that
would likely let him break into about 10 other
machines. It was very important to us that we block
them from being able to get into all these other
machines. It would only be a matter of time before
they figured it out and began installing programs all
over this professor’s research workstations.

Through cfengine, we had set up syslog on all of
our clients to log all messages sent to the AUTH facil-
ity to a central log server. Based on the logs on the
server, we could say with relative certainty that this
person had only managed to break into the one sys-
tem. We also had the IP address that he had come
from. We decided that we would boot the cracker out
of the compromised account, lock out our user from
all of the machines on which he had accounts, and
block all IP access to every machine in this
researcher ’s group from the entire class C from which
the attacker had come.

In our Solaris cfengine input file, we added a
rule for every computer in that professor’s group to
look in /etc/shadow for the regular expression
‘‘ˆuser:.*:’’ and replace it with ‘‘user:*LK*:’’ (we
don’t use NIS or an equivalent, so each system as its
own local passwd and shadow file). We also made a
change in the global ipfilter ruleset to drop and log
every packet coming from the class C from which the
breakin had come.

Just before the next cfengine run took place, we
killed off the intruder’s shell. Two minutes later, the
user had been locked out of all of the research group’s

machines until we could get in touch with him and get
a new password. The sniffed password the cracker had
obtained was now completely useless, and he had lost
all access to our machines from the host that he was
using as a breakin staging point. We watched the logs
and systems intently for the next few days and saw
absolutely no sign that this person was trying to get in
again.

All within the time frame of one hour, we had
detected the breakin, determined the cause, terminated
it, and prevented it from happening again. With the
old way of doing things, it’s doubtful we would have
ever caught this person unless he had launched a DoS
and caught the attention of our campus-wide network
security team. Score one for the good guys!

Breakins Prevented Through Proper Patching
Far less dramatic, but just as satisfying, was a

recent experience with a new Linux bug.

In the old way of doing things, we would be rela-
tively free of breakins (as far as we knew) for periods
of time, and then some script kiddie would find an
exploit and decide to go to town on the university.
We’ve had days that began with the campus network
security team giving us a list of 20 machines on our
local subnets that they’d seen compromised and had
pulled off the network. We would have to drop every-
thing that we were working on for two days to clean
up these systems. These breakins would occasionally
be for newly found vulnerabilities, but more often
would be for vulnerabilities that had been around long
enough to have had patches released. We’d get hit
because we hadn’t had enough time to patch any of
our computers against the vulnerability.

Recently, we’ve seen several attacks against a
bug in rpc.statd on campus. When they first started to
show up, we braced ourselves for the worst, but after
comparing the CERT advisory that addressed this vul-
nerability (CERT Advisory CA-2000-17) against Red
Hat’s errata page and the patches we had installed, we
found that our system had already downloaded and
installed an updated version of rpc.statd that was
invulnerable to this specific attack. We had been
safely patched for weeks.

Conclusions

So far, our system has proven to be well worth
the effort it took to bring it to fruition. We rarely have
to worry about system vulnerabilities because all of
our systems automatically patch themselves as soon as
new patches are released. We update software regu-
larly now because we can easily compile it once, and
install it on dozens of systems simply by editing one
entry in one database table. We have regained control
of our network.

Availability

All of the scripts that we’re using to run our sys-
tem, including the patch module, software module,

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 217



Use of Cfengine for Automated, Multi-Platform Software and Patch Distribution Ressman & Valdés

and the CGI script we use to configure the software
profiles for all of our hosts are freely available at:
http://astro.uchicago.edu/˜davidr/cfengine-tools/ .

Acknowledgments

Our system has proven itself useful in more ways
than we ever could have expected. A great deal of
credit goes to the author of cfengine, Mark Burgess.
Through the use of his wonderful software, we’ve
been able to bring order to our systems that we would
have never had been able to otherwise. We would also
like to extend a special thanks to our LISA shepherd,
David Blank-Edelman. Without his seemingly endless
patience when it came down to the last few days, our
paper would not have been nearly as good as we feel it
is now.

About the Authors

John Valdés has been playing with UNIX since
1986 and has been working as a System Administrator
since 1990. He currently manages systems for the
Department of Astronomy and Astrophysics at the
University of Chicago. John can be reached via email
at valdes@uchicago.edu.

David Ressman has been a UNIX System
Administrator since 1996. He currently works for John
in the Department of Astronomy and Astrophysics at
the University of Chicago. He enjoys referring to him-
self in the third person, and he hopes to begin college
in the Fall of 2001. David can be reached via email at
davidr@oddjob.uchicago.edu.

References

[Abb97] Abbey, Jonathan, The opt_depot Web Site,
http://www.arlut.utexas.edu/csd/opt_depot/opt_depot.
html.

[Bai97] Bailey, Ed, Maximum RPM, Taking the Red
Hat Package Manager to the Limit, August
1997, Macmillan Computer Publishing.

[Bur95] Burgess, Mark, ‘‘Cfengine: a site configura-
tion engine’’, USENIX Computing Systems, Vol
8, No. 3 1995.

[Bur99] Burgess, Mark, Cfengine Reference Manual,
http://www.iu.hioslo.no/cfengine/docs/
cfengine-Reference.html .

[Col92] Colyer, Wallace and Walter Wong, ‘‘Depot: a
Tool for Managing Software Environments’’,
Proceedings of the 6th Systems Administration
Conference (LISA VI), 1992.

[Gli96] Glickstein, Bob, The GNU Stow Web Site,
http://www.gnu.org/software/stow/stow.html .

[MySQL] MySQL, http://www.mysql.com/ .
[Oet98] ‘‘SEPP – Software Installation and Sharing

System’’, Tobias Oetiker LISA 1998.
[Rou94] Rouillard, John P. and Richard B. Martin,

‘‘Depot-Lite: A Mechanism for Managing Soft-
ware’’, Proceedings of the 8th Systems Adminis-
tration Conference (LISA VIII), 1994.

[RPM00] The Red Hat Package Manager Website,
http://www.rpm.org/ .

[Sel91] Sellens, John, ‘‘Software Maintenance in a
Campus Environment: The Xhier Approach’’,
Proceedings of the 5th Large Installation Sys-
tems Administration Conference (LISA V), 1991.

[Sin97] Singer, Daniel E., ‘‘ToolMan Meets PatchRe-
port’’, ;login: The magazine of Usenix and
SAGE, October 1997.

[Yar99] Yarger, Randy Jay, George Reese & Tim
King, MySQL and mSQL, July 1999, O’Reilly
and Associates.

218 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA


