
USENIX Association

Proceedings of the
14th Systems Administration Conference

(LISA 2000)

New Orleans, Louisiana, USA
December 3– 8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

FTP Mirror Tracker: A Few
Steps towards URN

Alexei Novikov – Institute of Theoretical and Experimental Physics, Moscow, Russia
Martin Hamilton – Loughborough University, UK

ABSTRACT

FTP Mirror Tracker1 is a software package (written in Perl and C++) that enables transparent,
user-controlled redirection to the nearest anonymous FTP mirror sites that are exact replicas of the
original source. This redirection can be achieved by using a Web Cache server or by making
HTTP requests to the FTP Mirror Tracker directly. The Mirror Tracker also has internal URN
support and can be used as a URN resolver for FTP requests. Underlying the system is a MySQL
database recording FTP mirror site details. In this report we explain how this database is
constructed, and show how it may be used – directly by end users, and under the policy based
control of Web Cache and mirror service administrators.

Introduction

Although FTP traffic passing through the modern
Internet only accounts for a small fraction of request
transactions, its bandwidth utilization is significant.
For example, FTP accounted for between 7% and 11%
of the incoming traffic on the JANET2 network’s links
to the United States for every month in 1999.

There is a long standing Internet convention that
sites which are particularly large (e.g., operating sys-
tem distributions) or popular (e.g., the Starr Report)
will be widely replicated – usually by volunteer effort.
The replication process, which typically takes place on
a daily basis, is usually referred to as mirroring. Mir-
roring software exists for replicating Web (HTTP),
FTP and (by prior arrangement) arbitrary content, e.g.,
GNU wget [2], mirror [3] and rsync [4]. In recent
years some formalization of this role has taken place,
e.g., with the establishment of the UK Mirror Service
[5] for JANET users, and the AARNet2 Mirror
Archive [6] for Australian academic and research
users. Localizing what might well be international
(and chargeable) traffic to geographically and/or topo-
logically nearby mirror sites is a challenging task.

A number of approaches to brute-force indexing
of the FTP namespace have been attempted, notably
the Archie [7] system from Bunyip, CNET’s Share-
ware.com [8] and Lycos/FAST FTP Search [9]. The
user interfaces for searching these systems typically
allow the end user to supply full or partial filename
details or regular expressions to match, and return a
list of the URLs where files matching the search crite-
ria can be found. Because of the difficulty in knowing
where on the Internet is the best topological/policy
match for a client, only minimal attempts have been
made to provide tailored output on a per-user basis.

1http://squid.itep.ru/ mirrored at http://wwwcache.ja.net/
mirrors/MirrorTracker/

2JANET [1] is the UK’s Higher Education and Research
Network

The FTP Mirror Tracker Design in Brief

The core of the FTP Mirror Tracker software is a
robot which traverses through a list of anonymous
FTP servers which it has been told to visit, connects to
each of them in turn, fetches their public directory tree
content (using the FTP ls -lR command), analyses it
and creates a unique identifier (actually an MD5 [10]
digest value) for the content of each directory and the
tree of the directories (using a summarizer program).
These identifiers and the FTP URL paths they refer to
are stored in a MySQL database [11] using the Perl
[12] DBI database interface [13]. In turn, the MySQL
database is accessed by a variety of programs which
collectively form the ‘‘user interface’’ to the system.

The processed data created by the Mirror Tracker
summariser is also made available for use by other
services, e.g., for sharing with other Mirror Tracker
servers. By default each Mirror Tracker maintains
copies not only of the data for the Internet domains it
is responsible for, but also the data for the domains
which are indexed by other Mirror Trackers. A ‘‘root’’
Mirror Tracker has been established in Moscow, Rus-
sia to help bootstrap this process.

From a user standpoint, the basic operation of the
FTP Mirror Tracker is to take a URL and return a list
of the alternative URLs where this same material may
be found – subject to search criteria such as the top
level domain(s) required in the search results. This is
done by finding the unique identifier associated with
the requested URLs, and checking to see whether any
other entries in the table(s) in question have the same
unique identifier.

We will use the phrase ‘‘unique identifier’’ rather
than ‘‘MD5 digest value’’ throughout this paper, since
there is no actual requirement that MD5 digests be
used as the resource collection identifier. The unique-
ness and location independence of our identifiers also
makes them attractive as a global naming system,
though it should be noted that the way they are

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 181

FTP Mirror Tracker: A Few Steps towards URN Novikov & Hamilton

calculated means that they are not persistent over time.
This means that they are not truly suitable for use as
URNs. However, since there is very little practical
deployment experience with URNs, we have chosen to
ignore this problem for the time being.

1 ftp://ftp.xfree86.org no exact replicas
2 ftp://ftp.xfree86.org/pub/ no exact replicas
3 ftp://ftp.xfree86.org/pub/XFree86/ still no exact replicas
4 ftp://ftp.xfree86.org/pub/XFree86/4.0.1/ found some! so he shifts to

the nearest one
5 ftp://ftp.gamma.ru/.3/XFree86/4.0.1/
6 ftp://ftp.gamma.ru/.3/XFree86/4.0.1/binaries/
7 ftp://ftp.gamma.ru/.3/XFree86/4.0.1/binaries/Linux-ix86-glibc21/

Table 1: Search sequence for exactly replica.

The Gory Details

The FTP Mirror Tracker architecture consists of
the following components:

A robot which collects directory listing data
from the FTP servers it has been configured to
track.

• A summarizer which creates MD5 digests of
the directory listings.

• A digest exchanger, for sharing the digests with
other servers.

• A back end database – currently MySQL.
• Various frontend programs.

We will describe in short the design of each of
these components, and how they have been imple-
mented.

The Mirror Tracker robot
The function of this component is to gather raw

directory listings from FTP servers for processing by
the summarizer. The robot has been implemented as
two Perl programs – robot, which parses the list of the
FTP servers for each domain begin indexed and forks
a second Perl script, ftp_list, to actually fetch the direc-
tory listing for the server.

If it was able to start an anonymous FTP session
with the target server, ftp_list proceeds to check
whether there is an ls-lR.gz file in the root or /pub
directories on the server. If one that it is reasonably
fresh (and not empty) is present, this is fetched, other-
wise the ls -lR command is issued from the top level
directory of the anonymous FTP server in order to
produce a recursive directory listing.

The summarizer
This is the heart of the FTP Mirror Tracker. Its

job is to parse the directory listings of the FTP servers
which are being tracked (fetched by the robot), ana-
lyze them, and create MD5 digests based on this anal-
ysis. The summarizer is implemented by a C++ pro-
gram, createdigest, which reads in the raw directory
listings and generates a list of MD5 digest values and
URLs on a per-directory basis.

It might seem sensible to use all of the informa-
tion from the directory listing output when creating
the digest of it (i.e., permission, node, owner, group,
size, date and the filename). Unfortunately most of
these values can be changed during the mirroring pro-
cess. In practice it seems that we can get by using only
the file size and name (though as noted, some mirrors
will compress files – we exclude these), plus the file
type (e.g., plain file, directory or link).

We will note in passing that a better approach to
persistence would be to calculate unique identifiers
based on the contents of the files themselves, rather
than the directory listing metadata. A program has
been provided with the FTP Mirror Tracker distribu-
tion to let FTP server administrators calculate MD5
digest values for each file in a given directory hierar-
chy. However, this is very much a ‘‘future’’, since it
would have to be widely deployed in order to be gen-
erally useful.

total 821
-r-xr-xr-x 1 root ftp 62163 Jan 25 19:43 compress
-r-xr-xr-x 1 root ftp 168240 Jan 25 19:38 date
-r-xr-xr-x 1 root ftp 106752 Jan 25 19:38 gzip
-r-xr-xr-x 1 root ftp 186848 Jan 25 19:37 ls
-r-xr-xr-x 1 root ftp 270232 Jan 25 19:38 tar

Listing 1: Typical output of the ls -lR command.

So, in order to produce the digest of a directory,
we take the size and name of each of the files within it
and concatenate them, e.g., in the example above we
are left with:
62163compress168240date106752gzip186848ls270232tar

We then create a hexadecimal representation of
the MD5 digest value for this string and assign it to
the URL of the original directory on the FTP server. In
this way we can create a relatively small unique iden-
tifier for the directory contents rather than for the files
themselves. Finally, we add this text to the parent
directory listing string, giving an identifier for the con-
tents of the complete directory structure on the FTP
server.

To understand why we need to add the unique
identifier of the subdirectories to the string representa-
tion of the parent directory, let’s take a simple exam-
ple. Let’s assume that someone wants to fetch the lat-
est XFree86 for Linux runing on x86 with glibc 2.1
from the nearest server. This person starts to look for
an exact replica nearby; see Table 1. If we hadn’t

182 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Novikov & Hamilton FTP Mirror Tracker: A Few Steps towards URN

added information about the subdirectories to the
directory information, we couldn’t be sure that the
Linux-ix86-glibc21 directory is located somewhere on
the mirror server under the 4.0.1 directory.

Figure 1: Typical browser window with the output from the WWW frontend. ‘‘Mirror Tracker ’’ button is zoomed.

The Database Back End
We use a simple database design, with a dedi-

cated database for the FTP Mirror Tracker data, and
separate tables within this for each of the digest and
link collections for each of the top level domains
being tracked.

We are able to take advantage of the MySQL
‘‘load data’’ feature to read in the digest and link files
directly, with MySQL automatically creating a
database row in the appropriate table for each line of
these files. The actual database manipulation is done
using Perl, with DBI for database access.

The Digest Exchange
The original files are compressed and are moved

to a directory which is accessible through the WWW,
so that they can be shared with other Mirror Trackers.

Using the method described above we parse, for
example, 100 MB of compressed listings from FTP
servers (representing almost all of the anonymous FTP

servers in Germany), create a 50 MB digest file and a
25 MB links file for feeding into the database engine.
After compression, these files are 7 Mb and 2 Mb
respectively – small enough to be shared easily via the
WWW.

Frontend Programs

We provide a simple CGI program (written in
Perl and C) which lets the end user query the FTP
Mirror Tracker for specific URLs. This can be inter-
acted with directly by the user, or linked to by content
providers. There is also a third mode of operation
which we will call Mirror Tracker on Demand.

Mirror Tracker on Demand is a JavaScript com-
mand which can be saved as a bookmark or (for exam-
ple) placed on the Netscape Communicator Personal
Toolbar (shown wrapped):
javascript:location.href=’http://

tracker.foo.bar//cgi-bin/
tracker?url=’ +
escape(window.location);

Pressing this button will cause the current URL
to be sent for resolution by the FTP Mirror Tracker,
and the results of the Mirror Tracker search to be

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 183

FTP Mirror Tracker: A Few Steps towards URN Novikov & Hamilton

presented in the browser’s main window – as shown in
Figure 1.

Although these user interfaces are very simple,
they are also extremely powerful – instead of using
search engines periodically to find out who is mirror-
ing which sites, and trying to figure out which mirror
sites are fresh and which are stale, content providers
can have just one link on their site to the nearest FTP
Mirror Tracker. The Mirror Tracker software will pro-
vide users with the list of the sites which have fresh
and accurate replicas, optionally located in the same
domain as the user.

Content providers only have to register with their
nearest FTP Mirror Tracker server and put a link to it
on their Web page. The link will look something like
this (show here with lines wrapped for display pur-
poses);
<a href="http://squid.itep.ru/
cgi-bin/tracker?url=YOUR URL">
YOUR PACKAGE

For example, the following link would yield all of the
mirror sites known for the XFree86 3.3.6 release
(shown wrapped):
<a href="http://squid.itep.ru/

cgi-bin/tracker?url=ftp://
ftp.xfree86.org/pub/XFree86/
3.3.6/">3.3.6 Version Mirrors

Web Cache and Mirror Service Integration

Architecture for Cache/Mirror Cooperation
Whilst there is no standard network protocol for

building and interacting with mirror services (rsync is
probably the closest thing we have to this), there are a
variety of ways in which Web Caching systems can be
made to interoperate with each other – and in turn
with Mirror services. In addition to the core proxy
HTTP service, most Web Cache products also support
interoperability via the Internet Cache Protocol [14],
and the freeware Squid Web Cache [15] supports the
new Cache Digest protocol [16]. Other cache coopera-
tion protocols exist, such as the HyperText Caching
Protocol [17], but these have yet to be as widely
deployed and will not be further considered in this
paper.

Since we do not wish to build our own Web
Cache server, we have opted to use Squid for proxy
HTTP services and graft on our own ICP server and
Cache Digest generator – these are described in
greater detail below.

Many Web Cache packages provide a URL
rewriting facility, although some of these are limited
to taking in a list of URLs to rewrite and the URLs to
rewrite them to – or a list of URLs to block access to.
So we can redirect desired URLs to the server with the
FTP Mirror Tracker resolver.

Squid’s approach, the ‘‘redirector ’’ program, is
particularly well suited to use with the FTP Mirror
Tracker, since (when it is enabled) URLs are passed to

an external program for analysis and potential rewrit-
ing. For performance reasons (the external program
doing this may block whilst waiting for an operation
to complete) Squid forks a large number of redirector
programs which run continuously in parallel to the
main Squid server process.

Use of the Internet Cache Protocol (ICP) for Cache
Cooperation
The Internet Cache Protocol allows a Web Cache

(or any other program which is interested in talking to
Web Caches) to query another Web Cache as to its
contents. Each ICP query or response takes the form
of a UDP packet (with all fields in ‘‘network’’ or
‘‘big-endian’’ order), consisting of a twenty byte
header with fields and a variable length payload. Typi-
cally the payload consists simply of a URL.

ICP is, for all its problems, the most widely
implemented Web Cache cooperation protocol, avail-
able in most freeware and commercial caching prod-
ucts. Consequently, we decided to support it as an
access method for the FTP Mirror Tracker too. Rather
than modify Squid’s own internal ICP server, which is
very closely tied to the rest of Squid, a Perl module
WebCache::ICP [18] was written to encapsulate the
details of ICP packet processing within a simple
object-oriented interface. This gives us an easy way to
provide an ICP service which returns whatever ICP
response we like on a given ICP request.

The ICP server we use with the FTP Mirror
Tracker queries of the Mirror Tracker database to
determine whether the Mirror Tracker should be vis-
ited for a given URL in the ICP request packet. In the
case of downstream caches which are running Squid,
we can reduce the amount of ICP traffic associated
with the peering by using the ‘‘cache_peer_access’’
Access Control List, e.g., to specify that only FTP
URLs should be sent to this peer.

Use of Cache Digests for Cache Cooperation
Cache Digests (implemented in Squid since ver-

sion 1.2beta) offer a completely different approach to
sharing information about cached objects, but have yet
to be widely deployed in commercial Web Cache
products. We decided to include them in the FTP Mir-
ror Tracker project because of their widespread use
with Squid, but the reader should note that they are
still classified as experimental and subject to change.

Whereas ICP requires request and response UDP
packets to be exchanged, Cache Digests work on the
principle that the Web Cache builds a summary of its
contents. This summary takes the form of a 128 byte
header, followed by a bit array. This summary is then
made available to other Web Caches via the normal
proxy HTTP interface, and these are then in a position
to do a local (Digest) lookup when trying to determine
whether any of their peers has a requested URL.

In creating a Cache Digest populated from the
Mirror Tracker database, we have the problem that
there is no way to register whole URLs – the Mirror

184 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Novikov & Hamilton FTP Mirror Tracker: A Few Steps towards URN

Tracker database currently does not contain this infor-
mation. Fuller Cache Digests could, however, be con-
structed usint the raw directory listing information
which is processed in order to create the Mirror
Tracker database.

Uniform Resource Names (URNs)

Introduction to URNs
URNs [19] are being developed by the Internet

Engineering Task Force as an alternative naming
scheme, complementary to the existing URL. Whereas
URLs essentially encode a ‘‘recipe’’ of instructions to
be followed when fetching a given copy of a resource,
URNs are required to be:

• Location independent, so that the instructions
for reaching the resource are de-coupled from
the name by which the resource is cited, e.g., in
Web documents.

• Persistent, so that the assignment of a URN to a
resource effectively acts as a guarantee that the
resource will continue to be accessible by this
name indefinitely and will never be replaced by
another resource which has the same URN.

• Compatible with existing name spaces such as
ISSN and ISBN numbers.

In practice this is intended to be done by defining
a number of ‘‘namespaces’’, each of which will have
its own procedures for things like registration and
management. URNs themselves [20] are simply the
concatenation of the string ‘‘urn’’, a centrally assigned
(by the Internet Corporation for Assigned Names and
Numbers [21]) identifier for the namespace in ques-
tion, and then a ‘‘Namespace Specific String’’ – sepa-
rated by colons. That is:
urn:Namespace Identifier:Namespace Specific String

The authority responsible for each namespace
[22] is free to subdivide the Namespace Specific
String component of their URNs as they see fit – sub-
ject to character set encoding requirements which are
designed to ensure that URNs may be used on the
widest possible range of devices. The Namespace
Identifier itself is chosen out of the set of upper and
lower case letters, numbers and the hyphen character -,
though the first character may not be a hyphen. The
Namespace Specific String has a slightly larger vocab-
ulary, which includes some punctuation characters.

URNs and the FTP Mirror Tracker
As noted above, the Mirror Tracker unique iden-

tifiers are subject to change over time. This means that
they cannot be true URNs as these are defined by the
IETF. However, since there is still a dearth of true
URNs for people to experiment with, we shall ignore
this limitation for the moment.

We supply a Squid compatible ‘‘N2L’’ [23] pro-
gram with the FTP Mirror Tracker, using the Mirror
Tracker ‘‘unique identifiers’’ as URNs and the experi-
mental x-tracker Namespace Identifier. An example of
a Mirror Tracker URN would be:

urn:x-tracker:57ce083433061aab97c9c2b63759ef2f

This is the unique identifier for all of the copies
of the directory listing which can also be referred to
by the URLs (as in the summarizer examples above):
ftp://ftp.xfree86.org/pub/XFree86/4.0/
ftp://netserv2.chg.ru/pub/XFree86/4.0/
ftp://ftp.gamma.ru/.3/XFree86/4.0/
ftp://caramba.cs.tu-berlin.de/pub/X/XFree86/4.0/
ftp://wizard.freesoftware.com/.0/XFree86/4.0/
ftp://ftp.linux.tucows.com/pub/XFree86/4.0/

Unfortunately, since even Netscape must be
explicitly configured to talk to a proxy for URN reso-
lution, we cannot simply deploy support for URNs as
part of (for example) the JANET Web Cache Service
and have them immediately be available to the end
user. Each of the sites which connects to the service
would need to enable URN support in their own users’
browsers too.

Summary

The FTP Mirror Tracker enables transparent,
user-controlled redirection to the nearest FTP mirror
sites which are exact replicas of the original source.
The redirection can be achieved by using a Web Cache
server or by making an HTTP request to the FTP Mir-
ror Tracker directly. The Mirror Tracker has internal
URN support and can be used as a URN resolver for
FTP requests.

During the course of this work we have produced
a variety of tools and documents which may useful for
other purposes above and beyond the FTP Mirror
Tracker itself, e.g., the ICP and Cache Digest Perl
modules, the Cache Digests specification, and the FTP
robot. The software, databases, and documentation
associated with the project are available for download
via its homepage http://squid.itep.ru/ . The changes
which we made to Squid have been folded into the
mainstream Squid 2.3 distribution, released in January
2000.

Acknowledgments

Discussions with Dave Beckett, Rodrigo Castro,
Iain Fothergill, Claire Moore, George Neisser, Mark
Russell and Michael Sparks are gratefully acknowl-
edged.

The authors are grateful to the Trans-European
Research and Education Networking Association for
financial support under the Pilot Project initiative, and
the Institute of Theoretical and Experimental Physics
for hosting the FTP Mirror Tracker primary server and
providing bandwidth for its operations.

Author Information

Martin Hamilton is a member of the Department
of Computer Science, Loughborough University, UK
& JANET Web Cache Service. Reach him electroni-
cally at martin@wwwcache.ja.net .

Since August 1997 Martin has been working on
the JANET Web Cache Service, in the Computing

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 185

FTP Mirror Tracker: A Few Steps towards URN Novikov & Hamilton

Services department of Loughborough University. The
JANET Web Cache Service is funded centrally (with a
contract awarded by open tender) for the use of the
UK Education and Research community (users of the
JANET network). With the instigation of usage-based
charging for traffic from the US to JANET, this ser-
vice has become extremely popular and has accounted
for as much as half (46% on January 30th 2000) of the
Web traffic transferred to JANET from the US. The
JANET Web Cache Service is built upon open source
software – the Linux and FreeBSD operating systems
and the Squid Web Cache server.

In his spare time, Martin works as a volunteer on
the GNU free software project at Massachusetts Insti-
tute of Technology and has contributed code to several
popular open source products – including the NCSA
and Apache World-Wide Web servers, the NCSA
Mosaic WWW browser, and the Squid Web Cache.

Alexei Novikov has been a researcher at the
Institute of Theoretical and Experimental Physics,
Moscow, Russia. His email address is anovikov@
heron.itep.ru since 1998. He defended his Ph.D. thesis
(Theoretical Restrictions on the Possible Extensions of
the Standard Model Based on LEP Data) in 1998. He
works in the field of theoretical High Energy Physics
(six papers in refereed journals, seven talks at the
international conferences). He is interested in com-
puter science and is developing several open source
projects.

Bibliography

[1] JANET website, http://wwwcache.ja.net/ .
[2] GNU wget homepage, http://www.gnu.org/software/

wget/ .
[3] Mirror homepage, http://sunsite.org.uk/packages/

mirror/ .
[4] rsync homepage, http://rsync.samba.org/ .
[5] UK Mirror Service, http://www.mirror.ac.uk/ .
[6] AARNet2 Mirror Archive, http://www.aarnet.

ebibitemrefu.au/projects/ .
[7] Archie website, http://archie.emnet.co.uk/ .
[8] CNET shareware.com website, http://shareware.

cnet.com/ .
[9] Fast FTP Search website, FAST ASA, http://

ftpsearch.lycos.com/ .
[10] R. Rivest, RFC 1321, the MD5 Message-Digest

Algorithm, URN:ietf:rfc:1321, April 1992.
[11] MySQL website, http://www.mysql.com/ .
[12] Perl website, http://www.perl.org/ .
[13] Perl DBI modules at the Comprehensive Perl

Archive Network, http://www.cpan.org/modules/
by-module/DBI/ .

[14] Wessels, D. & K. Claffy RFC 2186, Internet
Cache Protocol (ICP), version 2, URN:ietf:
rfc:2186, September 1997.

[15] Squid Web Proxy Cache Website, http://www.
squid-cache.org/ .

[16] Hamilton, M., A. Rousskov & D. Wessels,
Cache Digest Specification – Version 5, http://
www.squid-cache.org/CacheDigest/cache-digest-
v5.txt , December 1998.

[17] Vixie, P., & D. Wessels, HyperText Caching Pro-
tocol, URN:ietf:rfc:2756, January 2000.

[18] M. Hamilton, WebCache::ICP Perl Module at
CPAN, http://www.cpan.org/modules/by-module/
WebCache/ .

[19] K. Sollins, RFC 2276, Architectural Principles
of Uniform Resource Name Resolution, URN:
ietf:rfc:2276, January 1998.

[20] Moats, R., RFC 2141, URN Syntax,
URN:ietf:rfc:2141 May 1997

[21] Internet Corporation for Assigned Names &
Numbers website, http://www.icann.org/ .

[22] Daigle, L., D. van Gulik, R. Iannella, P. Fal-
strom, RFC 2611, URN Namespace Definition
Mechanisms, URN:ietf:rfc:2611, June 1999.

[23] Daniel, R., RFC 2169, A Trivial Convention for
using HTTP in URN Resolution, URN:ietf:rfc:
2169, June 1997.

186 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

