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Theoretical System Administration
Mark Burgess – Oslo University College

ABSTRACT

In order to develop system administration strategies which can best achieve organizations’
goals, impartial methods of analysis need to be applied, based on the best information available
about needs and user practices. This paper draws together several threads of earlier research to
propose an analytical method for evaluating system administration policies, using statistical
dynamics and the theory of games.

Introduction

System administration includes the planning,
configuration and maintenance of computer systems.
The discipline of system administration is traditionally
founded on the anecdotal experiences of system man-
agers [1, 2], but this can only be carried so far; formal
(mathematical) analyses of system administration have
only recently begun to enable more scientific studies
to be carried out [3, 4]. A lack of formal methods
makes it difficult to express objective truths about the
field, avoiding marketing assertions and the vested
interests of companies and individuals. The aim of this
paper is to summarize a mathematical formulation of
system administration, which can account for a basis
of empirical evidence, and which provides an objec-
tive approach to study. This is central to the present
discussion on developing system administration as a
formal discipline.

In previous work by the author and collaborators,
it has been shown how aspects of the average empiri-
cal behaviour of systems of computers and users can
be modelled using fairly straightforward statistical
ideas [5, 6, 7, 8]. This has allowed a coarse statistical
model of computer systems to be built, which can be
used as a backdrop for studies of system administra-
tion. Previous work by other authors has also
attempted to look at computer ecosystems in terms of
differential equations [9]. In the future additional
mathematical models will, no doubt, be devised in
order to study other issues.

One of the obstacles to formulating a complete
theory of system administration is the complexity of
interaction between humans and computers. There are
many variables in a computer system, which are con-
trolled at distributed locations. Computer systems are
complex in the sense of having many embedded causal
relationships and controlling parameters. Computer
behaviour is strongly affected by human social
behaviour, and this is often unpredictable. However,
the central question in any scientific investigation is
one of balance: can one formulate a quantitative the-
ory of system administration, which is general enough
to be widely applicable, but which is specific enough
to admit analysis?

The outline of this paper is as follows. To begin
the discussion some simplified assumptions about the
aims of system administration are stated. Next, two
types of quantitative model, describing a computer
system interacting with users (possibly via a network),
are described and the primitive operations which can
be carried out within the scope of the models are iden-
tified. The two types of model are referred to as type I
(passive) and type II (strategic). A method of quantify-
ing the benefits and flaws of different strategies
emerges from this discussion. Strategies for system
administration and for user behaviour may then be for-
mulated and arranged in a matrix allowing the task of
administrating a computer system can be described in
precise game theoretical terms. The primary goal of
this work is to provide the recipe for performing this
kind of analysis.

Basic Assumptions

Capturing such a complex pursuit as system
administration in a few simple rules is presumptuous,
but approximately possible if one focuses on core
activities. In order to make progress one must agree on
some specific aims for users and administrators. The
purpose of defining the aims of the interested parties
in a computer system, is to come up with a good
enough abstraction for system management that spe-
cific issues may be addressed in quantifiable terms. In
this paper, the word ‘system’ will be taken to mean
any organized collection of computers interacting with
a group of users. The assumptions used are these:

• The aim of the system administrator is to keep
the system alive and running well so that users
can perform a maximum amount of useful
work.

• The aim of benign users is to produce useful
work using the system. This consumes
resources.

• The aim of malicious users is to maximize their
control over system resources.

A possible quantitative definition of ‘useful
work’ is the amount of user-data modified on the com-
puter system. plus the information transmitted to or
from remote locations. This can be refined for specific
purposes. Time spent fighting for control of a
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damaged machine, or other users, for example, is not
useful work for normal users.

This short list of aims does not encompass every
eventuality, but it establishes a starting point. In addi-
tion to these points, it is necessary to provide a scheme
of values about what is subjectively good or bad about
the system. When are things going well and when are
things going badly? This is done by specifying a sys-
tem policy [10, 11].

A system policy is a specification of a sys-
tem’s configuration and its acceptable pat-
terns of usage. A complete policy therefore
affects the basic installation of the system
and also the way it changes in time due to
interaction with users.

A system policy is the pillar of truth and measuring
stick against which one determines whether system
activity is acceptable or unacceptable. A sufficiently
complete system policy can also include a complete
configuration blueprint and thus determine whether
the state of configuration is acceptable. The central
theorem, which was found in [3] is:

A sufficiently complete specification of a sys-
tem policy leads to the notion of an ideal aver-
age state for the system. Over time, the ideal
average state of the system degrades. The aim
of system administration is to keep the system
as close to its ideal state as possible.

The meaning of the theorem is that it identifies
system administration as a regulatory procedure. This
idea of regulatory action was originally introduced,
using the term convergence, in connection with the
system administration tool cfengine [5, 12, 13].
Cfengine is a program used to automate the regulation
of host state, by making it converge towards its ‘ideal
state’ with every execution of cfengine. For cfengine,
the ideal state is achieved when every detail of a com-
puter configuration appears to be correctly imple-
mented and no changes to the system made by users
contravene system policy. Thus ‘state’ refers to adher-
ence to a policy. The cfengine model turns out to be a
useful starting point for discussing system administra-
tion, since it offers a detailed and concrete idealization
of system administration tasks in terms of sequences
of primitive actions. Currently, cfengine does not
have a complete picture of system state, at all levels,
though part of the aim of this kind of work is to
improve on that situation. However, by basing a study
on this idea one also obtains, as a side effect, a theo-
retical evaluation of the model which can be used to
improve cfengine’s design in the future.

Policy, State, and Convergence

Without proving the central theorem in this
paper, it is helpful to provide a brief explanation of
how the ideal state is constructed, and why it is only
possible to insist on an average description of ideal-
ness.

State is a snapshot of the condition of a system,
which results from its current configuration and the
history of all tasks which have consumed and released
its resources over time. To picture state, it is helpful to
think of a human analogy. In [6], the analogy with
human health was drawn. Using another analogy, that
of evolutionary fitness or adaptation for a purpose,
host state can be envisioned on an arbitrary scale,
which makes the ideal state that condition in which the
system is best able to perform its tasks. As with
humans, general fitness of a computer system is a
combination of two parts: a part which is determined
by inherited properties and a part which is the result of
its interaction with the environment.

For humans, the state of fitness would be the
sum of genetically determined attributes (roughly
speaking, a policy for the operation of the organism)
and current physical fitness (the attunement or degra-
dation resulting from interaction with environment).
For a computer system, there is a similar duality: state
refers to a part which is the sum of all configuration
and policy decisions (basic design quality) and a part
which results from an interaction with users and net-
work impulses (input/output).

Thus state separates into policy and environment.
The state of a computer system S(t) changes continu-
ously with time, due mainly to the interaction with the
environment, but also internally, as a general conse-
quence of the second law of thermodynamics (a statis-
tical inference which notes that the number of ways in
which a system can be disordered is far greater than
the number of ways it can be ordered (adhering to pol-
icy), thus any random change is statistically more
likely to lead to disorder than to order). This is the
principle of increase of entropy [14, 15].

The environment of a computer system can be
thought of as an external batch of transactions (see
Figure 1), i.e., input and output which appears and dis-
appears as users interact with the system. Each trans-
action makes use of resources and has the possibility
of affecting the state S(t) of the system by an amount
δS(t). The number of transactions is generally large for
periods of time over which one expects the host state
to change significantly: transactions last usually mil-
liseconds, whereas host behaviour is self-similar often
over days and weeks [7].

From empirical studies [7, 8], one has a picture
of a computer system as having an stable average con-
dition over periods of time, but fluctuating consider-
ably in response to specific transactions. In other
words, over days and weeks, computer resources
change, but over many weeks the pattern of usage has
a mean value which shows a stable pattern. At any
given time, the actual values of resource variables are
different from the mean, but these differences average
out to an average condition, or state. If this average
state of the host is to be maintained near its ideal state
then one hopes that the fluctuations from the mean
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δS(t) are small, i.e., the disturbance to the system
resulting from user interactions results in only a small
change to the actual state.

System administration

Work

Resources Users

kernel

The system Environment

Figure 1: System administration is a regulative func-
tion over time.

There are thus four ideas of state which need to
be considered: the ideal average state S

*
(t), whose

existence is implied by policy, the actual average state
of the system S(t) which is the mean value of
behaviour over weeks, the actual state of the system
S(t) and fluctuations from the average state δS(t). All
of these are functions of time. The latter three are
related by a time-dependent relation:

S(t) = S(t) + δS(t).

In order to speak of an average state, one has to
say what average means. This has been defined pre-
cisely, using the theory of dynamical systems in [4]
and turns out to be a regular arithmetical mean, calcu-
lated from a sliding window data sample, which
advances over time. Because computer behaviour
shows approximate periodic repetition, the average is
defined in terms of co-cycles, over days and weeks:
the two sociological influences which have profound
implications for computer behaviour. Our empirical
studies, at Oslo, have shown that fluctuations in the
state must be averaged over a window of at least two
or three weeks [7, 8] in order to see reliable stable
behaviour under normal usage. This is the time scale
over which users repeat their behaviour several times,
within the framework of daily/weekly cycles.

Note that the ideal average state is only approxi-
mately constant (it changes slowly, at the same rate as
the average changes), whereas the other states change
with more rapidly time (on the time scale of individual
interactions with the system). The average ideal state
changes much more slowly than the actual state, pre-
cisely because it is averaged over coarser grains of
time.

A notion of idealness can thus only be character-
ized for an average state because the system is con-
stantly changing as users interact with it. Even the
mean value is changing slowly with time. In physics
of statistical systems, this is referred to as non-equilib-
rium behaviour. However, the fact that this decompo-
sition is possible is important. It separates the effects
of independent scales from one another. What happens
in the short term is different to what happens on aver-
age, since one deviation might correct another, leaving
no net problem. For example, if a user consumes a
large amount of resources for a brief time (a tempo-
rary file, for instance) while performing useful work,
this will only affect the actual state of the system for
the duration of that task, provided the file is removed
afterwards. A policy of file temporary file garbage
collection can always remove such a file even if a user
doesn’t. The average state will therefore be relatively
unaffected by short term changes. The meaning of the
environmental ideal average state is therefore to define
an interval of stability for interaction with environ-
ment. The system will always deviate from the so-
called ideal state, but that need not be a problem as
long as it does not deviate far from it for long periods
of time.

There are two types of disturbance δS: those
which (on average) preserve the state of the system,
i.e., those which release as many resources as they
consume, and those which consume resources without
releasing them. The latter kind of disturbance is the
most dangerous to the integrity of the system, since it
can lead to runaway behaviour which sees the end of
the system. This is the case in which it is necessary to
introduce countermeasures to protect the state of the
system. This is the purpose of computer immunology
[6]. When large fluctuations are at hand, the system is
in an intrinsically unstable state.

How can changes of state be characterized pre-
cisely? An obvious choice is to use the mathematical
idea of a lattice, or discrete vector space. Although
computer behaviour often has the appearance of a con-
tinuously varying load, the actual changes are all dis-
crete in nature. Any interactive change in the system
may be broken down into a sequence of discrete prim-
itive operations. See Table 1 for the primitives used by
cfengine [5, 12].

Any change to the configurable system, can be
expressed in terms of these primitives. In addition to
these, there are kernel variables which contain data
that can be used to determine environmental state.
Each independent primitive can be thought of as an
axis in an n-dimensional lattice. Each change in the
state of the system, of a given type, is a movement
through the lattice in that direction. Moreover, since
the averaging procedure for environment effectively
divides up time into co-cyclic discrete units, (days and
weeks) and scaled coarse-grained intervals, it is possi-
ble to draw the the state of the system on a lattice (see
Figure 2). Mathematicians note: the lattice is only
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conformally distorted by changes in the averaging pro-
cedure; the structure is preserved.

Primitive type Ti Comments/Examples
Create file object Touch
Delete file object Tidy garbage
Rename file object Disable
Edit file Configuration
Edit access control Permissions
Request resource Read/Mount
Copy file Read/write
Process control Start/stop
Process priority Nice
Configure device ifconfig/ioctl

Table 1: cfengine primitives.

d

0

->

->

Figure 2: Deviations from the ideal state may be visualized as a random walk through a lattice of n-dimensions
(here only two are shown). The number of paths of equal length by which one can return to the origin increases
rapidly with the distance. For simplicity one may think of the axes as deviation due to policy and deviation due
to usage.

In principle, there is a single point in the lattice
which represents (at any given time) the most ideal
state possible. In practice, one is only interested in
keeping the system in a region, not too far from this
practically unobtainable ideal point.

Changes to system policy must also be discrete
strings of these primitives, since they have to be

implemented using the primitives, and thus a change
in policy is simply a translation of the ideal state
through the lattice.

Suppose one places the ideal state arbitrarily at
the origin of this lattice. The further the system devi-
ates from this origin, the more precarious the state of
the system. Eventually when the state strays a suffi-
cient distance from the origin, the system will exhaust
its resources and fail completely. In the intervening
distance, the system is working in accordance with
policy when it is close to the ideal state. Using the
Euclidean distance as a Hamming distance, for change
in the system, it is possible to see that the number of
corrective actions for required to return the system to
its ideal state grows only linearly, however the number
of possible corrective procedures increases exponen-
tially.

The number of equivalent paths H(
→

d) back to the
ideal state is:

H(
→

d) =

(
n

j=1
Σ dj)!

n

k=1
Π(dk!)
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This grows rapidly with the Euclidean distance |
→

d|:

|
→

d| ≡ d = √ 
n

i=1
Σ d2

i

The conclusion is that it is in the system’s best
interests to remain close to the ideal state at all times.
If the remedy to a particular large deviation were
unknown, the search for a remedy, in state space,
would become extremely time-consuming as the mag-
nitude of the problem increased. The expense or
‘hopelessness’ H(

→

d) measures this more than exponen-
tially divergent problem. This hopeless search is the
fate of any immune system without specific expert
knowledge.

To summarize, every computer system, with a
system policy, has an ideal state which is based on
policy and environmental considerations. This ideal
state fluctuates and degrades with time. The aim of
system administration is to regulate the system to be
close to this ideal state.

Modelling Computer Behaviour

An analysis of behaviour in a computer system,
interacting with its environment of users and network
impulses, requires two types of model, which may be
referred to as passive (type I) and strategic (type II).
The distinction refers to the level perceived intent
behind the changes which take place.

In a type I description, the computer is viewed as
being a mechanism coupled to a pseudo-periodic, ran-
dom bath of impulses from an environment. One con-
siders the effect of the this signal of impulses on the
state S(t). This is the view taken in [7, 8, 16, 4]. A type
I model relates the behaviour of computers to that of
other interacting, dynamical systems in mathematics
and physics. This type of description is easily formu-
lated and can be used to predict some of the average
behaviour when the system is approximately stable. It
works particularly well when large numbers of users,
or transactions are involved, but not very well in situa-
tions of low usage. It is not good at predicting signifi-
cant change, however, since the assumption of the
method is that only gradual changes takes place over
relatively long periods of time.

In a type II description, the computer system is
viewed as the chequerboard for a game of competition
between motivated individuals. This is the view taken
in [3]. This type of analysis is designed to analyze the
competitive processes which instigate significant
change, at a more detailed level. It is good at deter-
mining the probability of success when using a set of
strategies, and or finding the optimal strategies to
solve a particular problem, but it is more difficult to
apply than a type I description and relies on a knowl-
edge or intuition of every relevant strategy which
might be used by administrators and users alike.

Influences on the system can thus be classified as
either random, stochastic or passive (type I), or as

intentional, adversarial or strategic (type II), depend-
ing on the significance of the change. This distinction
is partly artificial: all changes can clearly be traced
back to the actions of humans at some level, but it is
not always useful to do this. Not all users act in
response to an important provocation, or with a spe-
cific aim in mind. It just happens that their actions
lead to a general average degradation of the ideal
state, no malice intended. Thus there is a part of the
spectrum of changes which averages out to a kind of
faceless background noise: the details of who did what
are of no concern [7, 8].

From type I models, based on the empirical stud-
ies made at Oslo, we have found that computer sys-
tems behave remarkably like photonic gases in the
limit of long times [16]. That is, the occurrence of
events on computer systems mimics the behaviour of
black body radiation in physics. The interpretation of
any dynamical variable as a fluctuating, statistical
quantity is made possible by considering the effect of
infinitesimal perturbation to dynamical variables q(t).
One begins by defining averages and correlated prod-
ucts of the fields q(t), with action S[q]. The action is a
generating functional which determines the constraints
on the behaviour of the dynamical variable q(t) by a
variational principle. For the simplest dynamical sys-
tems, one may write

S = ∫ dVt
1

2
q(t)Ôq(t).

The sum over all fluctuations of given latency may be
written [4]:

Γ[< q(t) >] = − ln
TB

∫ dµ e−S[<q>+δq].

The subscript TB refers stands for ‘transaction
bubbles’ and refers to correlation graphs which are
closed loops, i.e., complete transactions. This form is
useful, since it is a self consistent form, which is
derived on the assumption of linear statistical fluctua-
tions an periodic time. It allows one to express self-
consistent behaviour in terms of the measured vari-
ables alone. This quantity is essentially the free
energy; it is a sum over all complete transactions in a
fluctuating system and relies only on the assumed
microscopic model which specifies available freedom
and applied constraints. It can be calculated and com-
pared to the fluctuation distributions measured for sys-
tem variables.

Although the model is simple, the agreement
with measured values is reasonable. The reason for
this is a subtle but fascinating interaction between ran-
domness and the order brought about by fixed daily
and weekly rhythms. In fact, ensembles of events col-
lected over weeks or months are insufficient in num-
ber to be perfectly described by these statistical meth-
ods, but the statistical model provides an idealized
limit for computer behaviour, i.e., it provides a well
defined envelope which approximates the system at
scale of weeks. Moreover, it is so much simpler to
understand than the actual behaviour of the system,
that it has a valuable role to play in the discussion.
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These studies have shown that computers behave
like co-cyclic oscillators with periods of one day and
one week (the rhythms imposed by the environment of
users). Over periods of time which are long enough to
gather enough data, these cyclic constraints reveal
themselves as the shapes of distributions of events
over time. They offer predictions about the statistical
nature of the signal.

A type I model describes the average level of
activity or state of the system which is related to the
background noise. The second type of analysis which
is required for a computer system is the analysis of
non-cooperative user behaviour, i.e., analyzing which
aspects of user behaviour affect the distribution of
resources in the system. This analysis must be based
on the system policy, since cooperation implies that
the system is operating either within or outside the
bounds of behaviour implied by the policy. Analysis
must attempt to evaluate objectively the efficacy of
different work patterns (strategies) employed by users
in their interaction with the system.

A suitable framework for analyzing conflicts of
interest, in a closed system, is the theory of games [17,
18]. Game theory is about introducing players, with
goals and aims, into a scheme of rules and then ana-
lyzing how much a player can win, according to those
restrictions. Each move in a game affords the player a
characteristic value, often referred to as the ‘payoff.’
Game theory has been applied to warfare, to eco-
nomics (commercial warfare) and many other situa-
tions. In this case, the game takes place on the n-
dimensional board, spanned by the

→

d vectors.

Resource management is a problem of eco-
nomics, just as energy flows in physical systems are to
do with the economics of energy. The difference in
system administration is only that there is no a priori
currency for describing the economics of system
administration. It is necessary to invent one. In social
and economical systems one has money as the book-
keeping parameter for transactions. In physical sys-
tems, one has energy as the book-keeping parameter.
These quantities count resources, in some well-defined
sense.

There are several types or classifications of
game. Some games are trivial: one-person games of
chance, for example, are not analyzable in terms of
strategies, since the actions of the player are irrelevant
to the outcome. In a sense, these are related to the first
kind of model referred to above. Some situations in
system administration fit this scenario. More interest-
ing, is the case in which the outcome of the game can
be determined by a specific choice of strategy on the
part of the players. The most basic model for such a
game is that of a two-person zero-sum game, or a
game in which there are two players, and where the
losses of one player are the gains of the other.

One feature which distinguishes the analysis pro-
posed here from pure game theory is that the value

associated with different courses of action is not con-
stant, but a function of time. The periodicities, dis-
cussed in the previous section must be taken into
account as well as longer term changes, finite limits of
system resources, non-linearities and so on. The impli-
cation of this is that the usefulness of a particular strat-
egy varies according to when it is implemented.

The first kind of analysis assumes that the sys-
tem has an average state and can therefore be used (at
least in principle) to detect anomalous behaviour, e.g.,
behaviour which contravenes system policy. The sec-
ond type of analysis looks at specific behavioural
traits and attempts to evaluate their implications for
the system state in more detail. Whether user
behaviour lies within or outside the bounds of system
policy is a matter of choice. Presumably one is inter-
ested in looking at all common behaviours, weighted
by their likelihood in order to determine whether the
system policy is effective enough. To make a type II
theory realistic and tractable, one can imagine approx-
imating the average background of the system activity
using a type I model, and then studying specific strate-
gies against this background. This leads to the notion
of payoff, system currency in hybrid models.

Payoff in Type I and Type II Hybrids

Type I and type II models should not be should
be thought of as completely separate issues: the best
possible understanding of a computer system must
involve both. Nonetheless it is primarily type II mod-
els which offer the chance to evaluate procedures and
strategies of system administration. Type I models
provide the background understanding of the resource
behaviour, required to give substance to a type II
model.

Equipped with a type I model for understanding
the average interaction between user and system
(which can be verified experimentally), one can con-
struct a type II model in order to study a particular
issue, against the average backdrop of type I activity.
What is the outcome of introducing a new policy for
governing a particular system resource, given what is
known about how users generally interact with the
system?

The determination of payoff, or the currency of
the game is the central problem now. In order to find
strategies which can keep the system close to its ideal
state, one must assign a realistic value to strategies
employed by users and system administrators. This is
done by formulating a matrix (table) whose rows and
columns specify the value or payoff associated with
particular courses of action, for one of the players (see
Figure 3). In the zero-sum approximation, it does not
matter which player is chosen, since the losses of the
one are the gains of the other. This is the only case to
be considered here.

Courses of action available to each party, label
the rows and columns. Rows are strategies and
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columns are counter-strategies, or vice versa. The val-
ues within the matrix are the values gained by one of
the players, in units of the arbitrary currency of the
game when a given row-strategy and column-strategy
are chosen. These values are determined by policy and
by information about how resources behave, acquired
from type I models: they are a set of value judgements
about what it important or unimportant in the system
and to what degree.

Counter-strategies

St
ra

te
gi

es

??

Figure 3: The payoff matrix is a table of strategies
and counter strategies.

Once this ‘payoff’ matrix has been formulated, it
contains information about the potential outcome of a
game or scenario, using the strategies. This forms the
basis for the theory of games [17, 18], whose methods
and theorems make it possible to determine the opti-
mal course or courses of action in order to maximize
one’s winnings. Obviously, any and all information
which contributes to a judgement is useful, however
one does not necessarily need a particularly detailed or
accurate description to begin making simple value
judgements about system behaviour. Even a simple
quantification is useful, if it can distinguish between
two possible courses of action.

How much can a user or an attacker hope to win?
From our basic assumptions, the aim of a user is to
maximize work produced or, in the worst case, maxi-
mize resources consumed. The system administrator,
or embodiment of system policy, is not interested in
winning the game for resources in the same way as
users, but rather in confounding the game for users
who gain too much control. The system administrator
plays a similar role to that of a police force. In a vague
sense, the administrator’s jobs is to make sure that
resources are distributed fairly, according to the poli-
cies laid down for the computer society (a Robin Hood
role of altruistic government).

What is the currency of this evaluation? A defi-
nition is required in order to quantify the production of
useful work by the system and its users. Clearly the
term ‘useful work’ spans a wide variety of activities.
Clearly work can increase and decrease (work can be
lost through accidents), but this is not really germane

to the problem at hand. The work generated by a user
(physical and mental work and then computationally
assisted results) is a function of the information input
into the system by the user. Since the amount of com-
putation resulting from a single input might be infi-
nite, in practice, the function is an unknown.

In addition to the actual work produced by a
user ’s strategy, other things might be deemed to be of
value, such as privilege and status. In a community,
wealth does not guarantee privilege or status unless
that coincides with the politics of the community. Pay-
off can therefore be a complex issue to model. If one
includes these ranking issues into calculations, one
might allow for the possibility that a user plays the
system rules in order to gain privileges for some later
purpose. A user who accrues the goodwill of the sys-
tem administrator, might eventually gain trust or even
special privileges, such as extra disk space, access to
restricted data etc. Such problems are of special inter-
est in connection with security [19, 20].

For simplicity, the discussion of type II models
in this paper refers only to games with two players. In
a community, games are not necessarily two player
zero sum engagements however. What is lost by one
player is not necessarily gained by an obvious oppo-
nent. Moreover, the information available to different
sides in a conflict can affect their modes of play. The
so-called prisoner’s dilemma, leads to the famous
Nash equilibrium [21] which is a trade-off:

A user of the system who pursues solely
private interests, does not necessarily pro-
mote the best interest of the community as
a whole.

Should users cooperate or fight to maximize their win-
nings? Users can sabotage their own self-interest by
using up all the available resources on a finite system,
gaining enemies or losing the goodwill of system
police. Strategies which succeed in encouraging users
to comply with guidelines can therefore be an effec-
tive way of ensuring a fair use of resources. The main
reason for considering two person games here is the
overriding simplicity of the two person game, com-
pared to including more players. This should not be
taken to imply that more complex models will not be
important.

In a realistic situation one expects both parties in
the two-person game to use a mixture of strategies.
The number of possible strategies is huge and the
scope for strategic contrivance is almost infinite.
Strategies can be broken down into linear combina-
tions of primitives just as any operation on the system
can. What then is a strategy?

• An array of operations
• A schedule for the operations
• Rules for counter-moves or responses

In addition to simple strategies, there can be
meta-strategies, or long-term goals. For instance, a
nominal community strategy might be to:
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• Maximize productivity or generation of work.
• Gain the largest feasible share of resources.

An attack strategy might be to
• Consume as many resources as possible.
• Destroy key resources.

Other strategies for attaining intermediate goals
might include covert strategies such as bluffing
(falsely naming files). Users can obey or ignore policy
restrictions, use decoys, escalate or mitigate hostilities,
attack/kill/delete a resource, retaliate. Defensive
strategies might involve taking out an attacker, counter
attacking, or evasion (concealment), exploitation,
trickery, antagonization, incessant complaint (spam),
revenge etc. Security and privilege, levels of access,
integrity and trust must be woven into algebraic mea-
sures for the pay-off. One of the advantages of this
formulation on system administration is that it places
regular administration on the same footing as security
issues. These were never separate issues and should
not be considered as such, even in today’s more secu-
rity aware climate.

Tidy above
Threshold

Users/System Ask to tidy Tidy by date Quotas

Tidy when asked π(1,1) π(1,2) π(1,3) π(1,4)

Never tidy π(2,1) π(2,2) π(2,3) π(2,4)

Conceal files π(3,1) π(3,2) π(3,3) π(3,4)

Change timestamps π(4,1) π(4,2) π(4,3) π(4,4)

Table 2: Games of timing.

A means of expressing these devices must be for-
mulated within a language which can be understood
by system administrators, but which is primitive
enough to enable the problem to be analyzed alge-
braically.

Example Games

The difficult part of a type II analysis is turning
the high level concepts and aims listed above, into
precise numerical values. To illustrate the procedure,
consider an example of some importance, namely the
filling of user disks. The need for forced garbage col-
lection has been argued on several occasions [22, 5,
12], but the effectiveness of different strategies for
avoiding disk may now be analyzed theoretically. This
analysis is inspired by the user environment at Oslo
University College, and the expressions derived here
are designed to model this situation, not an arbitrary
system.

The currency of this game must first be agreed
upon. What value will be transferred from one player
to the other in play? There are three relevant measure-
ments to take into account: (i) the amount of resources
consumed by the attacker (or freed by the defender);
sociological rewards: (ii) ‘goodwill’ or (iii) ‘privilege’
which are conferred as a result of sticking to the

policy rules. These latter rewards can most easily be
combined into an effective variable ‘satisfaction.’ A
‘satisfaction’ measure is needed in order to set limits
on individuals’ rewards for cheating, or balance the
situation in which the system administrator prevents
users from using any resources at all. This is clearly
not a defensible use of the system, thus the system
defenses should be penalized for restricting users too
much. The characteristic matrix now has two contribu-
tions,

π = πr(resources) + πs(satisfaction) .
It is convenient to define

πr ≡ π(resources) =
1

2



Resources won

Total resources

 .

Satisfaction πs is assigned arbitrarily on a scale from
plus to minus one half, such that, Satisfaction πs is
assigned arbitrarily on a scale from plus to minus one
half,

−
1

2
≤ πr ≤ +

1

2

−
1

2
≤ πs ≤ +

1

2
−1 ≤ π ≤ +1 .

The pay-off is related to the movements made through
the lattice

→

d. The different strategies can now be
regarded as duels, or games of timing; see Table 2.
These elements of the characteristic matrix must now
be filled, using a model and a policy. A general
expression for the rate at which users produce files is
approximated by:

ru =
nbrb + ngrg

nb + ng
,

where rb is the rate at which bad users (i.e., problem
users) produce files, and rg is the rate for good users.
The total number of users nu = nb + ng. From experi-

ence, the ratio
nb

ng
is about one percent. The rate can be

expressed as a scaled number between zero and one,
for convenience, so that rb = 1 − rg.

The payoff in terms of the consumption of
resources by users, to the users themselves, can then
be modelled as a gradually accumulation of files, in
daily waves, which are a maximum around midday:

πu =
1

2

T

0

∫ dt
ru(sin(2πt/24) + 1)

Rtot
,

where the factor of 24 is the human daily rhythm,
measured in hours, and Rtot is the total amount of
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resources to be consumed. Note that, by considering
only good user or bad users, one has a corresponding
expression for πg and πb, with ru replaced by rg or rb
respectively. An automatic garbage collection system
(cfengine) results in a negative pay-off to users, i.e., a
pay-off to the system administrator. This may be writ-
ten

πa =
1

2

T

0

∫ dt
ra(sin(2πt/Tp) + 1)

Rtot
,

where Tp is the period of execution for the automatic
system (in our case, cfengine). This is typically hourly
or more often, so the frequency of the automatic cycle
is some twenty times greater than that of the human
cycle. The rate of resource-freeing ra is also greater
than ru, since file deletion takes little time compared
to file creation, and also an automated system will be
faster than a human. The quota payoff yields a fixed
allocation of resources, which are assumed to be dis-
tributed equally amongst users and thus each quota
slice assumed to be unavailable to other users. The
users are nonchalant, so πs = 0  here, but the quota
yields

π(u, s) =







−1/2 + πg(t)

1/2 + πu(t)

1/2 + πu(t)

1/2 + πu(t)

−1/2 + πg(t)

1/2 + πu(t) + πa(t)

1/2 + πu(t)

1/2 + πu(t)

−1/2 + πg(t)

1/2 + πu(t) + πa(t)Θ(t0 − t)

1/2 + πu(t)

1/2 + πu(t) + πa(t)Θ(t0 − t)

πq

πq

πq

πq







Formula 1: Characteristic matrix.

πq = +
1

2





1

nb + ng





.

The matrix elements are expressed in terms of these.
π(1,1): Here πs = − 1/2 since the system adminis-

trator is as satisfied as possible by the users’
behaviour. πr is the rate of file creation by good
users πg, i.e., only legal files are produced.
Comparing the strategies, it is clear that π(1,1)
= π(1,2) = π(1,3).

π(1,4): Here πs = 0  reflecting the users’ dissatisfac-
tion with the quotas, but the system administra-
tor is penalized for restricting the freedom of
the users. With fixed quotas, users cannot gen-
erate large temporary files. πq is the fixed quota
payoff, a fair slice of the resources. Clearly
π(4,1) = π(4,2) = π(4,3)= π(4,4). The game
has a fixed value if this strategy is adopted by
system administrators. However, it does not
mean that this is the best strategy, according to
the rules of the game, since the system adminis-
trator loses points for restrictive practices,
which are not in the best interest of the organi-
zation. This is yet to be determined.

π(2,1): Here πs = 1/2 since the system administrator
is maximally dissatisfied with users’ refusal to
tidy their files. The pay-off for users is also
maximal in taking control of resources, since
the system administrator does nothing to

prevent this, thus πr = πu. Examining the
strategies, one finds that π(2,1) = π(3,1) =
π(3,2) = π(3,3) = π(4,1) = π(4,2).

π(2,2): Here πs = 1/2 since the system administrator
is maximally dissatisfied with users’ refusal to
tidy their files. The pay-off for users is now
mitigated by the action of the automatic system
which works in competition, thus
πr = πu − πa. The automatic system is invali-
dated by user bluffing (file concealment).

π(2,3): Here πs = 1/2 since the system administrator
is maximally dissatisfied with users’ refusal to
tidy their files. The pay-off for users is miti-
gated by the automatic system, but this does not
activate until some threshold time is reached,
i.e., until t > t0. Since changing the date cannot
conceal files from the automatic system, when
they are tidied above threshold, we have π(2,3)
= π(4,3).

Thus, in summary, the characteristic matrix is given
by Formula 1 where the step function is defined by,

Θ(t0 − t) =




1 (t ≥ t0)

0 (t < t0)
,

and represents the time-delay in starting the automatic
tidying system in the case of tidy-above-threshold.
This was explained in more detail in [3].

It is possible to say several things about the rela-
tive sizes of these contributions. The automatic system
works at least as fast as any human so, by design, in
this simple model we have

1

2
≥ |πa| ≥ |πu| ≥ |pig| ≥ 0 ,

for all times. For short times πq > πu, but users can
quickly fill their quota and overtake this. In a zero-
sum game, the automatic system can never tidy
garbage faster than users can create it, so the first
inequality is always saturated. From the nature of the
cumulative pay-offs, we can also say that

(
1

2
+ πu) ≥ (

1

2
+ πu + πaΘ(t0 − t)) ≥

(
1

2
+ πu + πa) ,

and

|
1

2
+ πu| ≥ |πg −

1

2
| .

Applying these results to a modest strategy of auto-
matic tidying, of garbage, referring to Figure 4, one
sees that the automatic system can always match
users’ moves. As drawn, the daily ripples of the auto-
matic system are in phase with the users’ activity. This
is not realistic, since tidying would normally be done
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at night when user activity is low, however such
details need not concern us in this illustrative example.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Figure 4: The absolute values of pay-off contributions as a function of time (in hours), For daily tidying Tp = 24.
User numbers are set in the ratio (ng, nb) = (99, 1), based on rough ratios from the author’s College environment,
i.e., one percent of users are considered mischievous. The filling rates are in the same ratio: rb/Rtot = 0. 99,
rg/Rtot = 0. 01, ra/Rtot = 0. 1. The flat dot-slashed line is |πq|, the quota pay-off. The lower wavy line is the cumu-
lative pay-off resulting from good users, while the upper line represents the pay-off from bad users. The upper
line doubles as the magnitude of the pay-off |πa| ≥ |πu|, if we apply the restriction that an automatic system can
never win back more than users have already taken. Without this restriction, |πa| would be steeper.

The policy created in setting up the rules of play
for the game, penalizes the system administrator for
employing strict quotas which restrict their activities.
Even so, users do not gain much from this, because
quotas are constant for all time. A quota is a severe
handicap to users in the game, except for very short
times before users reach their quota limits. Quotas
could be considered cheating by the system adminis-
trator, since they determine the final outcome even
before play commences. There is no longer an adap-
tive allocation of resources. Users cannot create tem-
porary files which exceed these hard and fast quotas.
An immunity-type model which allows fluctuations is
a more resource efficient strategy in this respect, since
it allows users to span all the available resources for
short periods of time, without consuming them for
ever.

According to the minimax theorem, proven by
John Von Neumann, any two-person zero-sum game
has a solution, either in terms of a pair of optimal pure
strategies or as a pair of optimal mixed strategies [17,
18]. The solution is found as the balance between one
player ’s attempt to maximize his pay-off and the other
player ’s attempt to minimize the opponent’s result. In

general one can say of the pay-off matrix that

↓
max

→
min πrc ≤

←
min

↑
max πrc ,

where the arrows refer to the directions of increasing
rows (↓) and columns (→). The left hand side is the
least users can hope to win (or conversely the most
that the system administrator can hope to keep) and
the right is the most users can hope to win (or con-
versely the least the system admin can hope to keep).
If we have Equation 2,

↓
max

→
min πrc =

←
min

↑
max πrc

Equation 2: Equality in the payoff matrix.

it implies the existence of a pair of single, pure strate-
gies (r*, c*) which are optimal for both players,
regardless of what the other does. If the equality is not
satisfied, then the minimax theorem tells us that there
exist optimal mixtures of strategies, where each player
selects at random from a number of pure strategies
with a certain probability weight.

The situation for our time-dependent example
matrix is different for small t and for large t. The dis-
tinction depends on whether users have had time to
exceed fixed quotas or not; thus ‘small t’ refers to
times when users are not impeded by the imposition of
quotas. For small t, one has:
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↓
max

→
min πrc =

↓
max











πg −
1

2
1

2
+ πu + πa

1

2
+ πu

1

2
+ πu + πaΘ(t0 − t)











=
1

2
+ πu .

The ordering of sizes in the above minimum vector is:
1

2
+ πu ≥

1

2
+ πu + πaΘ(t0 − t) ≥

πu + πaΘ(t0 − t) ≥ πg −
1

2
For the opponent’s endeavours one has

→
min

↓
max πrc =

→
min(

1

2
+ πu,

1

2
+ πu,

1

2
+ πu, πq)

=
1

2
πu .

This indicates that the equality in Equation 2 is satis-
fied and there exists at least one pair of pure strategies
which is optimal for both players. In this case, the pair
is for users to conceal files, regardless of how the sys-
tem administrator tidies files (the sysadm’s strategies
all contribute the same weight in Equation 2. Thus for
small times, the users are always winning the game if
one assumes that they are allowed to bluff by conceal-
ment. If the possibility of concealment or bluffing is
removed (perhaps through an improved technology),
then the next best strategy is for users to bluff by
changing the date, assuming that the tidying looks at
the date. In that case, the best system administrator
strategy is to tidy indiscriminately at threshold.

For large times (when system resources are
becoming or have become scarce), then the situation
looks different. In this case one finds that

↓
max

→
min π(rc) =

→
min

↓
max πrc = πq .

In other words, the quota solution determines the out-
come of the game for any user strategy. As already
commented, this might be considered cheating or poor
use of resources, at the very least. If one eliminates
quotas from the game, then the results for small times
hold also at large times.

This simple example of system administration as
a strategic game between users and administrators is
only an illustration of the principles involved in build-
ing a type I/II hybrid model. In spite of its simplicity,
it is already clear that user bluffing and system quotas
are strategies which are to be avoided in an efficient
system. The value of ‘goodwill’ in curbing anti-social
behaviour should not be underestimated. By following
this basic plan, it should be possible to analyze more
complex situations in future work.

Future Work

From the type I models studied at Oslo [4, 7], it
appears that the most important characteristic of the
average user behaviour is its periodicity: the average

state of computers has a daily period and a weekly
period; these trace the social cycles of users all around
the world. It is possible, as more is learned, that more
detailed characteristics will emerge which are general
enough to be used in a type I/type II hybrid. The main
promise of type I theories lies in the possibility of
anomaly detection and self-analysis, leading to fault
detection, intrusion detection and improvements in
immune system technology at the user level (e.g.,
cfengine). However, it is also important to know, for
strategic analysis, when the system is most loaded,
must vulnerable and most available.

Only one example of a type II theory has been
examined here. What other issues might be studied by
a type II model? The possibilities include strategies
such as: consolidation versus distribution in system
planning (where should resources be located?); dele-
gation vs centralization; choosing many simple tools
or a few powerful ones [23] (cost of learning and sup-
port, functionality, likelihood of bugs, results, rate of
evolution of task and tools); the effect of system work
ethics on productivity in a business (does the business
spend most of its time working against itself or its
competitors?); is the best strategy one which leads to
stability or perfection? Mission critical systems and
high security systems are obvious candidates for anal-
ysis. Other resources uses: network share, processes,
setting of permissions, placement of security etc. The
possibilities are limited only by the imagination. The
benefit of the type II model is in setting up a system-
atic method for making impartial judgements about
strategies for system management and system regula-
tion.

A common theme in all strategic studies, involv-
ing complex competitive behaviour, is the so-called
Red Queen scenario. This is about working hard to
maintain the status quo; it is a reference to a scene
from Alice Through The Looking Glass:

‘‘Well in our country,’’ said Alice, still pant-
ing a little, ‘‘you’d generally get to some-
where else – if you ran very fast for a long
time as we’ve been doing.’’
‘‘A slow sort of country!’’ said the Queen.
‘‘Now here, you see, it takes all the running
you can do, to keep in the same place. If
you want to get somewhere else, you must
run twice as fast as that!’’

This is also referred to as an arms race. In a true
dynamical system, nothing stands still. Adapting one’s
strategies to be optimal over time means a continual
reappraisal of their efficacy. One has to be running all
the time to keep up with the environment, continually
adapting to change. The need for garbage collection is
an example of this.

In choosing strategies which walk the line
between compliance and conflict, within a framework
of rules (the prisoner’s dilemma), some studies have
indicated that the best solutions are often cooperation
at first, and then tit for tat after that, if cooperation
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does not work: i.e., try cooperation first to mitigate
hostilities, and then send a message that one means
business thereafter.

Sketching out this recipe for analyzing system
administration policies reveals some potent ideas,
which have a merit quite independently of their ana-
lytical value. The idea of using mixtures of strategies
to most efficiently regulate a system, is so close to the
ideas used in cfengine [5, 12] as to suggest that they
could be adopted more even explicitly, and more
dynamically. Rather than relying on batch operation, a
policy engine like cfengine could be more dynamical
in its responses to deviations from ideal state, and be
able to set in motion a variety of parallel responses,
which might extend its reach in dealing with more
dynamical problems like network intrusions. It could
also respond to more long-term trends in system usage
and adapt its behaviour accordingly. Part of the moti-
vation of this work was precisely to see what could be
done to improve on cfengine [24]. Once refined, the
approach in this paper will lead to improvements in
cfengine, and improve the automation of host security.

Summary

The aim of this paper has been to propose a
framework for analyzing models of system adminis-
tration. Its main contention is that it is possible to see
system administration as the effort to keep the system
close to an ideal state, by introducing countermeasures
in the face of competitive resource consumption. This
is the formal basis which opens the way for objective
analyses in the field.

With a mathematical approach, it becomes easier
to see through personal opinions and vested interests
when assumptions and methods are clearly and rigor-
ously appraised. However, one can only distinguish
between those possibilities which are taken into
account. That means that every relevant strategy, or
alternative, has to be considered. This is the limitation
of game theory. It is not possible to determine strate-
gies without the creative input of experts, and a clearly
described policy.

Appealing only to a simple-minded analysis of
disk filling, some straightforward conclusions are pos-
sible: the use of quotas is an inefficient way of coun-
teracting the effects of selfish users, when the whole
community’s interests are taken into account. A quota
strategy can never approach the same level of produc-
tivity as one which is based on competitive counter-
force. The optimal strategies for garbage collection are
rather found to lie in the realm of the immunity model
[6, 15]. However, it is a sobering thought that a persis-
tent user, who is able to bluff the immune system into
disregarding it, (like a cancer) will always win against
the resource battle. The need for new technologies
which can see through bluffs will be an ever present
reality in the future. With the ability of encryption and
compression systems to obscure file contents, this is a

contest which will not be easily won by system admin-
istrators.

Author Information

Mark Burgess is an associate professor of
physics and computer science at Oslo University Col-
lege, creator of cfengine and author of the book Prin-
ciples of Network and System Administration. He may
be reached at mark@iu.hio.no or http://www.iu.hio.no/
˜mark. Cfengine can be obtained from http://www.iu.
hio.no/cfengine. Oslo University College’s research
pages for system administration are at http://www.iu.
hio.no/SystemAdmin .

References

[1] R. Evard, ‘‘An Analysis of Unix System Config-
uration,’’ Proceedings of the 11th Systems
Administration Conference (LISA), page 179,
1997.

[2] S. Traugott and J. Huddleston, ‘‘Bootstrapping
an Infrastructure,’’ Proceedings of the 12th Sys-
tems Administration Conference (LISA), page
181, 1998.

[3] M. Burgess, ‘‘On the theory of system adminis-
tration,’’ Submitted to the Journal of the ACM,
2000.

[4] M. Burgess, ‘‘Information theory and the kine-
matics of distributed computing, submitted to
Physical Review E, 2000.

[5] M. Burgess, ‘‘A site configuration engine,’’
Computing systems, 8:309, 1995.

[6] M. Burgess, ‘‘Computer immunology,’’ Proceed-
ings of the 12th Systems Administration Confer-
ence (LISA), page 283, Usenix Association,
1998.

[7] M. Burgess, H. Haugerud, and S. Straumsnes,
‘‘Measuring Host Normality, I,’’ submitted to
Software Practice and Experience, 1999.

[8] M. Burgess and Trond Reitan, ‘‘Measuring Host
Normality, II,’’ submitted to Software Practice
and Experience, 1999.

[9] N. Glance, T. Hogg, and B. A. Huberman,
‘‘Computational Ecosystems in a Changing
Environment,’’ International Journal of Modern
Physics, C2:735, 1991.

[10] E. D. Zwicky, S. Simmons, and R. Dalton, ‘‘Pol-
icy as a system administration tool,’’ Proceed-
ings of the Fourth Systems Administration Con-
ference (LISA), SAGE/USENIX, page 115, 1990.

[11] B. Howell and B. Satdeva, ‘‘We have met the
enemy: An Informal Survey of Policy Practices
in the Internetworked Community,’’ Proceedings
of the fifth systems administration conference
(LISA), SAGE/USENIX, page 159, 1991.

[12] M. Burgess and R. Ralston, ‘‘Distributed
resource administration using cfengine,’’ Soft-
ware practice and experience, 27:1083, 1997.

12 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA



Burgess Theoretical System Administration

[13] M. Burgess, ‘‘Automated system administration
with feedback regulation,’’ Software Practice
and Experience, 28:1519, 1998.

[14] F. Reif, Fundamentals of Statistical Mechanics,
McGraw-Hill, Singapore, 1965.

[15] M. Burgess, Principles of Network and System
Administration, J. Wiley & Sons, Chichester,
2000.

[16] M. Burgess, ‘‘Thermal, non-equilibrium phase
space for networked computers,’’ Physical
Review, E62:(in press), 2000.

[17] J. V. Neumann and O. Morgenstern, Theory of
games and economic behaviour. Princeton Uni-
versity Press, Princeton, 1944.

[18], M. Dresher, The mathematics of games of strat-
egy, Dover, New York, 1961.

[19] V. Jones and D. Schrodel, ‘‘Balancing security
and convenience,’’ Proceedings of the First Sys-
tems Administration Conference (LISA),
(SAGE/USENIX), page 5, 1987.

[20] I. S. Winkler and B. Dealy, ‘‘Information Secu-
rity Technology? Don’t Rely On It. A Case
Study in Social Engineering,’’ Proceedings of the
5th USENIX Security Symposium, page 1, 1995.

[21] J. F. Nash. Essays on Game Theory, Edward
Elgar, Cheltenham, 1996.

[22] E. D. Zwicky, ‘‘Disk space management without
quotas,’’ Proceedings of the third systems admin-
istration conference (LISA), (SAGE/USENIX),
page 41, 1989.

[23] H. E. Harrison, ‘‘Maintaining a consistent soft-
ware environment,’’ Proceedings of the First
Systems Administration Conference (LISA),
(SAGE/USENIX), page 16, 1987.

[24] M. Burgess, ‘‘Evaluating cfengine’s Immunity
Model of System Maintenance, Proceedings of
USENIX/SANE 2000, Netherlands, 2000.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 13


