
USENIX Association

Proceedings of the
14th Systems Administration Conference

(LISA 2000)

New Orleans, Louisiana, USA
December 3– 8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Unleashing the Power of JumpStart: A New
Technique for Disaster Recovery, Cloning, or

Snapshotting a Solaris System
Lee ‘‘Leonardo’’ Amatangelo – Collective Technologies

ABSTRACT

Due to the demand of 24x7 coverage by present day data centers, the need for a proven
disaster recovery plan is a must. To assist in providing disaster recovery for systems running Sun
Microsystems’ Solaris 2.x (SunOS 5.x) operating system, a tool was developed which captures the
image of the system to one or more volumes of optical media with the first volume being bootable.
The optical media used by this tool is CD (Compact Disc) with hooks put in place for DVD
(Digital Video Disc or Digital Versatile Disc).

This tool was developed with the following objectives in mind: (1) no magnetic media; (2)
bootable media; (3) minimal user interaction; (4) handle multiple volume sets; (5) handle
environments that do not use a Network Information Service (NIS or NIS+); and, (6) handle
environments that do not use Network File System (NFS). The power of this tool is made possible
by utilizing two special features present in the Solaris operating system, namely the installboot
utility and the JumpStart mechanism (as implemented on the Solaris 2.x Install CD).

The complete process of capturing and restoring a Solaris system’s image to bootable optical
media involves five phases: (1) pre-imaging preparation; (2) setup of target host; (3) capture image
of target host; (4) burn image to media; and, (5) restore image to target host. Each of these phases
is controlled by one master Bourne shell script. The overall tool is implemented in 26 Bourne shell
scripts controlled by the 5 master scripts. This tool, known as the ‘‘CART’’ (Capture And
Recovery Tool), was placed on a mobile cart and consisted of the following components:
UltraSparc 10, internal CD-ROM drive, internal floppy drive, 256 MB memory, 2 network
interface cards (NIC), keyboard, mouse, monitor, external SCSI 18 GB disk drive, external SCSI
CD-RW, and external SCSI DLT.

This tool provides the following functions: (1) bare-metal recovery; (2) capture a snapshot of
a system to optical media; (3) cloning a system; and, (4) rollout multiple clones of a system via
optical media. Using the principles discussed in this paper and creating additional Bourne shell
scripts, the CART has been modified to provide the following additional outputs: (1) make copies
of the Solaris Install CD; (2) make customized Solaris Install CD (essentially a customized
JumpStart from CD); and, (3) a specialized bootable CD for disaster recovery that assists third
party Backup and Recovery utilities (Legato Networker and Veritas NetBackup).

Introduction

With the increase of e-commerce on the Internet,
there is an ever-increasing demand to have mission
critical computer systems run 24 hours by 7 days for
long periods between scheduled down times. When a
mission critical system suffers from corrupted disk
data, either software or hardware induced, the disk
data will need to be restored. Software induced data
corruption include application malfunctions that ren-
der data inaccessible or a user accidentally entering a
data destructive keystroke such as rm -r. Hardware
induced data corruption include physical disk crashes.
In the case of physically damaged disk drives, the disk
drive of course will need to be replaced prior to the
restoration of software and data.

When the disk drive in question happens to be
the boot drive, the situation becomes more involved.

One cannot simply run the backup application to
restore the system because there is no longer a viable
operating system running (nor present) on the system.
Under such dire circumstances, rebuilding a boot disk
can take what seems like an inordinate amount of
time. The operating system needs to be installed, stan-
dard packages (clusters) installed, customized pack-
ages installed, patches applied, kernel tuning, and
finally any special or custom configurations need to be
set. To perform all of these tasks could take up to a
couple hours. Even using Sun Microsystems’ auto-
mated install utility, JumpStart, can take what might be
considered too much time, because following the
installation of the operating system and any cus-
tomized packages, the Jumpstart process will still need
to initiate the installation of the desired patch sets. The
application of a large set of patches can take up to a
couple of hours.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 219

Unleashing the Power of JumpStart Amatangelo

Due to the lengthy time it sometimes takes to
patch a system, Hewlett-Packard’s automated install
utility for the HP-UX operating system, ‘‘Ignite-UX,’’
can prove to be more efficient time-wise to install a
system. When Ignite-UX is finished, the system will
be complete with operating system, applications,
patches, kernel modifications, and any specialized
configurations. Ignite-UX uses the concept of saving
an entire system image of a benchmark host, known as
a ‘‘golden image,’’ and then restores the image during
the automated rollout. The Ignite-UX process essen-
tially performs a bit-by-bit copy, and therefore, is
much faster than the JumpStart process, which builds
the target system from the ground up by installing the
operating system, software packages, patches, and any
additional applications and files desired.

Taking the best of both the JumpStart and Ignite-
UX worlds, a tool for providing disaster recovery,
cloning, or snapshotting has been created specifically
for Solaris systems.

The Capture And Restore Tool – The ‘‘CART’’

During its evolution, this tool passed through a
client site that needed to maintain the utmost in secu-
rity. As such, the client site did not run network ser-
vices to ease the administration nightmare of main-
taining the numerous users, hosts, and system admin-
istrative files (usually kept in the /etc directory). Thus,
this client did not use Network Information Services,
NIS, nor its more secure brother, NIS+. This client
also did not use the Network File System, NFS, to
share resources over the network for fear that such a
service was not secure enough for the very confiden-
tial information that was stored on the network. In
order to accommodate this client, the tool was made to
be self-contained and lived on a mobile cart so that the
tool could be easily negotiated through the data center.
The system hosting the tool will be referred to as the
‘‘control host’’ while the system to be imaged will be
referred to as the ‘‘target host.’’ The two hosts will
talk to each other via a directly connected network
cable.

This mobile tool physically consists of the fol-
lowing components: UltraSparc 10, internal CD-ROM
drive, internal floppy drive, 256 MB memory, 2 net-
work interface cards (NIC), keyboard, mouse, moni-
tor, external SCSI 18 GB disk drive, external SCSI
CD-RW, and external SCSI DLT. Additionally, the
system has a network cable attached to one of the
NICs and an RS-232 serial cable attached to serial
Port B. The RS-232 cable was a convenience added to
handle headless hosts via the ‘tip’ utility.

The main purpose of the tool discussed in this
paper is to capture and restore system images. Further-
more, the tool physically resides on a mobile cart.
Because of these two reasons, the tool became known
as, and will be referred to during the rest of this paper,
as the ‘‘Capture And Restore Tool,’’ or simply the

CART. Figure 1 diagrammatically depicts the physical
layout of the CART.

Two Special Solaris Features

The secret and power of the CART is brought
about by two very special features found in the Solaris
2.x operating system. These two features are specifi-
cally the installboot utility and the JumpStart mecha-
nism. The former facilitates the placing of a boot-
block on storage media while the latter facilitates a
way to customize the resultant boot process. These
two features are further explored below.

How to Make Solaris Storage Media Bootable
One of the objectives of the CART was to restore

a system via bootable optical media. The first question
to ask is, ‘‘Is it possible to make bootable media under
the Solaris 2.x operating system?’’ The answer is a
resounding YES! The solution is to use the install-
boot(1M) utility. The installboot utility, uniquely found
in the UNIX command sets distributed in Sun
Microsystems’ Solaris 1.x (SunOS 4.x) and Solaris 2.x
(SunOS 5.x) operating systems, provides the capabil-
ity to install a bootblock on various types of storage
media. Furthermore, the bootblock can be placed on
any of the slices (partitions) on the target media.

The second question to ask is, ‘‘Can a bootblock
be placed on optical media?’’ Again, the answer is a
resounding YES! As a matter of fact, the bootblock
can be placed on various types of bootable media,
such as a floppy diskette, hard disk drive, CD-R, CD-
RW, CD-ROM, DVD-R, DVD-RW, DVD+RW, DVD-
ROM, and DVD-RAM. When the bootblock program
resides in the boot area of a disk partition, the boot-
block program will load the boot(1M) program, also
known as ufsboot. The ufs boot objects are platform-
dependent, and reside in the /usr/platform/‘uname
-i‘/lib/fs/ufs directory, where ‘uname -i‘ gets the correct
platform-name. The full command syntax for install-
boot is as follows:
installboot bootblock raw-disk-device

where:
bootblock is the name of the bootblock code.
raw-disk-device is the name of the disk device onto

which the bootblock code is to be installed; it
must be a character device which is readable
and writable. Naming conventions for a SCSI
or IPI drive are of the format: c?t?d?s? . Nam-
ing conventions for an IDE drive are of the for-
mat: c?d?s? .

For a thorough explanation of the installboot utility, see
the Man Pages on installboot(1M). In short, the install-
boot utility was used to install the necessary boot-
blocks so that the CART could handle the various Sun
Microsystems platform architectures. More on how
this was accomplished later.

A Brief Discussion on JumpStart
There are plenty of books on the subject of Jump-

Start [1, 3, 6], and as such, the scope of this paper is

220 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Amatangelo Unleashing the Power of JumpStart

not to teach JumpStart. However, a brief discussion of
JumpStart will help elucidate its role and importance as
implemented in the CART. The JumpStart feature was
introduced by Sun Microsystems and SunSoft in 1992
and first appeared in the Solaris 2.x operating system
[3]. The JumpStart feature is primarily used to install
multiple client hosts over the network simultaneously
with the intent to lessen this tedious and time-consum-
ing task. The various hosts can have their own unique
configuration if desired or groups of hosts can have
like configurations. JumpStart is a utility to help facili-
tate the ease of rolling out the Solaris operating system
to new hosts (or existent hosts to be upgraded) in an
environment and is especially useful for rolling out a
large number of installs across an enterprise [2, 5].

control host target host

DLT Tape Drive

CD - RW

Image Disk

Ethernet

 The "CART"
Hardware Configuration

RS-232 Serial Cable

S
C
S
I

S
C
S
I

SCSI

Figure 1: CART hardware configuration.

Typically, JumpStart is used over a network to
allow the automated software installation rollout of
multiple hosts simultaneously. Once configured, the
JumpStart mechanism is very much hands off. To facil-
itate the JumpStart mechanism over a network, a net-
worked JumpStart server is needed. But JumpStart
servers are not the only place that one will find the
implementation of JumpStart. Sun Microsystems has
also incorporated the JumpStart mechanism on the
bootable installation media (i.e., the Solaris 2.x Install
CD) as the means for installing the Solaris operating
system.

The JumpStart mechanism has four main parts:
(1) a BEGIN script which performs pre-processing
actions to take place prior to the software installation;
(2) a PROFILE which defines how Solaris is to be
installed on a particular client; (3) a FINISH script
which performs any post-processing actions following

the software installation; and, (4) a rules file (rules.ok)
that dictates which BEGIN script, PROFILE, and FIN-
ISH script to use.

Because JumpStart offers the following three
characteristics: (1) can be configured to have minimal
user interaction; (2) can be placed on optical media;
and, (3) can be invoked seamlessly following a boot,
JumpStart was selected hands down as the method of
choice for the CART.

As will be described in the next section, the
CART ended up customizing JumpStart in a com-
pletely different way and was able to unleash the true
power of JumpStart!

The ‘‘CART’’ in a Nutshell

To make use of the existent JumpStart technology
as implemented on the Solaris Install CD, the CART
performs the following steps: (1) partitions a hard disk
drive (which will be referred to as the ‘‘image disk’’)
to have slices that mimic (size and location) the
Solaris Install CD; (2) creates filesystems on the
slices; (3) copies select contents of the Solaris Install
CD to the corresponding slices on the ‘‘image disk’’;
(4) opens up the permissions on the directory and files
where the JumpStart mechanism resides; (5) replaces
the standard issue JumpStart BEGIN script, PROFILE,
FINISH script, and RULES.OK file with its own
highly customized versions; and, (6) installs the
appropriate platform-specific bootblock that corre-
sponds to the platform of the ‘‘target host.’’ See Figure
1 for a quick overview of CART’s hardware configu-
ration.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 221

Unleashing the Power of JumpStart Amatangelo

At this point, if the contents of the ‘‘image disk’’
is burned to optical media, that optical media will be
bootable and will go through an automated install
based on instructions in the customized JumpStart files,
specifically the customized BEGIN script and the
RULES.OK file. The customized BEGIN script ends
with a system call to reboot the system. This reboot
essentially causes the normal JumpStart process of
loading packages, patches, etc. not to occur. In short,
the CART makes use of the Solaris Install CD Jump-
Start mechanism only as a means to provide the auto-
matic running of a script following the boot from opti-
cal media. It was decided not to reinvent the wheel but
instead to modify an existent proven technology. The
steps just described are what truly give the CART its
power.

This technique can be used for producing a wide
range of useful applications, some of which will be
discussed later in this paper. The final implementation
of the CART did not use a PROFILE or a FINISH
script. However, a customized FINISH script could be
implemented to initiate backup software to restore
variable data from the latest backup of the system.

After the ‘‘image disk’’ has been prepared suc-
cessfully, the next task of the CART is to capture the
entire system image of the ‘‘target host.’’ To accom-
plish this task, a private network is setup between the
‘‘control host’’ and the ‘‘target host’’ with NFS
mounts established between the ‘‘target host’’ and the
‘‘image disk’’ (located on the ‘‘control host’’). Next,
the ‘‘target host’’ is interrogated to determine its num-
ber of disk drives. The partition table of each disk
drive is logged capturing the slices used and the sizes
of those slices. The CART then methodically runs
through each disk drive and captures an image of each
slice. As the image for each slice is captured, the
CART logs the size of the slice image to a file. The
size of each slice is captured for two reasons. First, to
determine if an individual slice image will be able to
fit on a single optical media volume. This is important
in the case when saving to CD because a single vol-
ume can only hold 650 MB. The second reason is to
determine how many optical media volumes will be
required to save the entire system image of the ‘‘target
host.’’

Once the entire system image of the ‘‘target
host’’ is captured, which typically will be comprised
of several individual slice images, the entire system
image must be burned to the optical media of choice.
The log containing the size information of the individ-
ual slice images is used to determine which slices get
placed on which volume. The user of the tool will be
informed how many volumes will be required to burn
the entire system image and as each volume is burned
the user is requested to remove the volume and insert
the next volume.

Once all of the optical media volumes have been
successfully burned, the result will be a snapshot of
the entire ‘‘target system’’ captured onto a set of

optical media, with the first volume being bootable
and having the smarts to recreate the ‘‘target host.’’

The last step to complete this eventful saga is to
perform the restore of the image from the bootable
media, either to the original ‘‘target host’’ or to an
identical host with as large or larger disk drives. The
restore takes place at the Open Boot PROM (OBP)
level by booting from the optical media.

The Five Phases of the ‘‘CART’’

The capture and restore of a Solaris system
image using the CART involves five distinct phases.
Phase 1, the pre-imaging preparation of ‘‘image

disk’’ phase, prepares a buffer area (hard disk
space) known as the ‘‘image disk.’’ The
‘‘image disk’’ will have appropriate slices (par-
titions) and filesystems created for holding
select directories and files of the Solaris Install
CD, as shown in Table 2. These select directo-
ries and files contain the JumpStart mechanism
and the bootblocks for the various Sun
Microsystems architectures. In addition, the
‘‘image disk’’ will have a separate slice to hold
log files during the capture phase and another
slice to receive the compressed filesystem
images from the target host.

Phase 2, the setup of target host phase, establishes
a private network connection and NFS mounts
between the ‘‘target host’’ and the ‘‘control
host’’ that has access to the ‘‘image disk.’’

Phase 3, the capture image of target host
phase, determines the number of disks on the
target host, the number of partitions on each
disk, and then proceeds to capture (andufsdump)
compress (compress or gzip) each filesystem
found. All disks, partitions, and compressed
image file sizes are logged during the process.
These logs will be used during the following
‘‘burn’’ and ‘‘restore’’ phases.

Phase 4, the burn image to optical media
phase, creates a bootable volume and any addi-
tional volumes required for holding the com-
plete system image. If the optical media is CD-
R and the entire set of compressed images from
the target host exceeds 650 MB, then the appro-
priate number of additional CD-R volumes will
be created. If the optical media is DVD-R and
the entire set of compressed images from the
target host exceeds 3.9 GB, then the appropriate
number of additional DVD-R volumes will be
created.

Phase 5, the restore image phase, involves restor-
ing the system image to the same or equivalent
target host via bootable media. The boot pro-
cess of the restore proceeds through a highly
customized JumpStart process located on the
bootable media itself. If the entire system
image is contained on more than one volume,
then an additional CD drive or DVD drive

222 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Amatangelo Unleashing the Power of JumpStart

(depending on which optical media is being
used) will need to be attached to the host
receiving the image.

Commands for the Five ‘‘CART’’ Phases

The commands to invoke each of the five phases
of the CART are listed below:
Phase 1: Pre-Imaging Preparation of ‘‘Image

Disk’’. The command for this phase is entered
on the ‘‘control host’’ and can be run prior to
connecting the ‘‘control host’’ to the ‘‘target
host’’:
prepare_image_disk

Phase 2: Setup of Target Host. The command for
this phase is entered on the ‘‘target host’’ after
installing the ‘‘setup’’ floppy diskette, CD, or
DVD:
setup

Phase 3: Capture Image of Target Host. The com-
mand for this phase is forked on the ‘‘target
host’’ by the Setup phase (if the setup process is
successful):
capture_system_image

Phase 4: Burn Image to Optical Media. The com-
mand for this phase is entered on the ‘‘control
host’’:
burn_system_image

Phase 5: Restore Image. The command entered at
the open boot PROM ‘ok’ prompt on the origi-
nal ‘‘target host’’ or a similar host that is to
receive the image:
ok boot cdrom

or
ok boot dvd

(The second option currently being developed
by Sun Microsystems as a standard option in
the OBP.)

A Closer Look at the Solaris Install CD

The Solaris Install CD was reverse-engineered to
determine how it boots and goes through its JumpStart
process. The first area looked at was the logical layout
of the Solaris Install CD itself. Table 1 reports this lay-
out, specifically for the Solaris 2.6 Install CD.

The first volume in the set of media containing
the system image of the target host will emulate the
Solaris Install CD layout above with three minor mod-
ifications. First, ‘‘slice 0’’ is trimmed down to contain
only the bare essentials to have the CD boot and run
through the customized JumpStart process. Second, a
seventh slice, ‘‘slice 6,’’ is added to the CD. This slice
will contain the log files generated during the image
capture phase. Third, an eighth slice, ‘‘slice 7,’’ is
added to the CD to hold some (if not all) of the com-
pressed image files from the ‘‘target host.’’ The emu-
lation of the Solaris Install CD with these

modifications is captured on the ‘‘image disk’’ and is
reported in Table 2.

Slice Partition Contents Size
0 a 600 MBInstallation and

Distribution
1 b Miniroot 40 MB
2 c Boot Info, sun4c* 1 cyl.
3 d Boot Info, sun4m* 1 cyl.
4 e Boot Info, sun4d* 1 cyl.
5 f Boot Info, sun4u* 1 cyl.

Table 1: Solaris Install CD Layout.
* Note that these slices contain the boot information
(bootblock) for the various hardware architectures of
Sun Microsystems’ products that run Solaris. Also
contained in these slices is the file .SUNW-boot-redi-
rect which contains a single byte, the character ‘1’, to
direct the firmware boot PROM program to look for
the kernel on ‘‘slice 1’’ of the boot device.

Slice Part. Contents Size
0 a 200 MBInstallation and Dis-

tribution
1 b Miniroot 40 MB
2 c 1 cylBootInfo – sun4c *
3 d 1 cylBootInfo – sun4m *
4 e 1 cylBootInfo – sun4d *
5 f 1 cylBootInfo – sun4u *
6 g Log Files 11 MB
7 h Rem’drCompressed Image

Files

Table 2: Image Disk layout.
* The contents of these slices are as described in the
note in Table 1.
Also note that the CART implemented an 18 GB disk
drive for the ‘‘image disk.’’ The size of the ‘‘image disk
(or disks)’’ is determined by the size of disk space on
the target host.

Location of the JumpStart files on the Solaris Install
CD and the ‘‘CART’’

During the ‘‘pre-imaging preparation’’ (Phase 1),
select portions of the Solaris Install CD are copied to
the ‘‘image disk.’’ Two specific portions are copied:
(1) all of ‘‘slice 1,’’ which contains the miniroot (the
operating system); and, (2) parts of ‘‘slice 0,’’ which
contains the pertinent files to allow the JumpStart
mechanism to function. The location for these files is
as follows:
/s0/Solaris_2.6/Tools/Boot/usr/

sbin/install.d/install_config

The pertinent standard issue JumpStart files are the fol-
lowing:

rules.ok Install JumpStart ‘‘RULES’’ file
install_begin Install JumpStart ‘‘BEGIN’’ script;

called out by the ‘‘rules.ok’’ file
devsyn_finish Install JumpStart ‘‘FINISH’’ script;

called out by the ‘‘rules.ok’’ file

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 223

Unleashing the Power of JumpStart Amatangelo

How the ‘‘CART’’ Customized JumpStart

Since, the JumpStart files (listed in the section
above) now exist on the ‘‘image disk,’’ and the tool
runs as ‘root’ user, the permissions on the location and
the files themselves can be modified. Once the permis-
sions are changed, the files can be modified (replaced)
with highly customized versions, which is precisely
the approach taken by the CART to highly customize
the restore (Phase 5).

The customization involved replacing the
‘‘rules.ok’’ file and adding a custom JumpStart BEGIN
script, named ‘‘restore_system_image_begin,’’ to the
JumpStart location on the ‘‘image disk.’’ The CART
did not use the standard issue JumpStart files
‘‘install_begin’’ and ‘‘devsyn_finish.’’ Furthermore,
the CART did not need a custom JumpStart FINISH
script at all. All the actions the CART needed to
accomplish were performed in the custom BEGIN
script ‘‘restore_system_image_begin.’’ These actions
included verifying all of the appropriate disks are pre-
sent, the disks then get partitioned, filesystems get cre-
ated, and one by one, the filesystem images get
restored. As additional volumes containing the system
image are needed, the user is instructed to remove the
current volume and insert the next. When all of the
filesystems are restored and an appropriate bootblock
has been installed, the customized BEGIN script
reboots the system. When the ‘‘target host’’ finishes
rebooting, it will look like the original host. The
reboot at the end of the customized BEGIN script also
has another side effect, it aborts the rest of the Jump-
Start process. Thus, the system does not try to load the
distribution, packages, nor patches. Instead, the com-
pleted process looks more like an Ignite-UX ‘‘golden
image’’ restore.

Functional Details of the Five ‘‘CART’’ Phases

For those who want to know the nitty-gritty
details of the entire CART process, the functional
details for all five phases are itemized below.

Phase 1: Pre-Imaging Preparation of the ‘‘Image
Disk’’

1. Requests user to perform physical setup
2. Unmounts the ‘‘image disk’’
3. Partitions the ‘‘image disk’’
4. Creates filesystems
5. Makes mount points for mounting the ‘‘image

disk’’
6. Mounts the ‘‘image disk’’
7. Places proper permissions on the ‘‘image disk’’
8. Copies the contents of the ‘‘Solaris Install CD’’

to the ‘‘image disk’’
9. Removes the ‘‘lost+found’’ directories from

slices s0-s7
10. Installs the various architecture bootblocks
11. Opens the permissions on the JumpStart loca-

tions in slice s0 on the ‘‘image disk’’

12. Creates additional directories with proper per-
missions in the miniroot filesystem (slice s1) of
the ‘‘image disk’’

13. Share the ‘‘image disk’’ and other local shares
for the NFS mounts from the target host

Phase 2: Setup of Target Host
1. Creates the work directory on the target host
2. Saves the original /etc/hosts file
3. Reassigns a temporary IP Address
4. Determines the network interface type
5. Saves the original network interface settings
6. Creates a virtual network interface
7. Establishes a network connection between the

target host and the master control host
8. Logs all changes so the original configuration

can be re-established when complete
9. Forks the execution of the ‘‘capture image’’

script

Phase 3: Capture Image of Target Host
1. Determines the physical device name of the

optical media (CD or DVD) drive
2. Saves /etc/vfstab file information
3. Determines the number of disk drives on the

system using format
4. Saves the partition information of each disk

drive using prtvtoc
5. Performs ufsdumps of the individual filesystems
6. Compresses the filesystem dump files
7. Calculates the number of media volumes that

will be required to hold the entire image (com-
pressed dump files) of the system

8. Places the appropriate bootblock on the ‘‘image
disk’’

9. Copies the customized JumpStart BEGIN script
to the JumpStart location on slice s0 of the
‘‘image disk’’

10. Copies the customized ‘‘rules.ok’’ file to the
JumpStart location on slice s0 of the ‘‘image
disk’’

11. Restores the original /etc/hosts file
12. Restores the original network interface settings

Phase 4: Burn Image to Optical Media
1. Kills the volume management if it is running
2. Checks that the ‘‘image disk’’ is mounted
3. Reads the number of volumes to create from

the log files
4. Puts files in ISO-9660 format
5. Creates (burns) the bootable first volume
6. Writes a label on the first volume indicating

Volume 1 of ‘x’ number of volumes and target
host name

7. Creates (burns) all additional volumes
8. Writes a label on each volume indicating Vol-

ume ‘y’ of ‘x’ number of volumes and target
host name

Phase 5: Restore Image
1. The target host to receive the image is booted

from the first volume of the optical media set

224 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Amatangelo Unleashing the Power of JumpStart

2. Customized JumpStart located on the first vol-
ume of the optical media automatically gets ini-
tiated

3. Mounts slice 6 of the optical media to /log_dir
4. Uses ‘fmthard’ to recreate the VTOC of the

original disks to the target host disks
5. Creates new filesystems on the appropriate

slices of the new disks to match the filesystems
from the original disks

6. Mounts one at a time the intended slices on the
new disk to the mount point /mnt

7. Uncompresses and ufsrestores the compressed
image files

8. Places the pertinent bootblock on the boot
device

Handling the CD Mounts During Installation

This paper would be remiss if it did not describe
the manner in which the CART mounts the bootable
first volume upon a restore of the image (Phase 5).
The mounting of the bootable CD is identical to how a
Solaris Install CD gets mounted during an install. This
information is important because it elucidates one of
the limitations of the CART, that being that if the
CART produces a multi-volume set during the burning
of the media (Phase 3), then an additional CD drive
will be required during the restore of the image (Phase
5).

The details on how the contents of the bootable
CD get mounted at boot time, is shown in Table 3.

/tmp /tmp
/proc /proc
/devices /tmp/devices
/dev /tmp/dev
/ /devices/pci@1f,0/pci@1,1/

ide@3/atapicd@2,0:b
/cdrom /devices/pci@1f,0/pci@1,1/

ide@3/atapicd@2,0:a
/dev/fd fd

Table 3: The boot-time mounts of the CART bootable
CD.

Note: The information in this table is for an Enterprise
250. The / and /cdrom mounts will vary depending
upon the hardware platform being used.

Table 3 reports that the miniroot (slice b on the
optical media) represented by the line ending with a
‘‘:b,’’ is being mounted to the / root mount point. The
miniroot is the operating system being used for the
restoration (in the case of the CART) or the installa-
tion (in the case of the Solaris Install CD). Since the
operating system must always be present, the first vol-
ume must always be mounted during the entire restore
(or install) process. Thus, a second media (CD or
DVD) drive must be attached to the ‘‘target host’’ in
order to restore a system image contained on a multi-
volume set.

When booting from a CART generated bootable
first volume or from a Solaris Install CD, the CD will
get mounted as in Table 3.

Optical Media

The optical media used by the CART is CD and
DVD.

CD technology is attractive because it is inex-
pensive. DVD technology is attractive because it can
hold much larger capacities.

After speaking with several vendors [10, 11, 12,
14], the same message was echoed that there is really
only one vendor, Pioneer, that provides a DVD writer.
The vendors that provide CD/DVD recording solu-
tions (hardware & software) use the DVD writer spec-
ifications from Pioneer.

In terms of the writable media, there is a dra-
matic increase in cost going from CD to DVD: ˜$1 per
650 MB CD vs. ˜$35 per 3.95 Billion Bytes DVD
(which is not really 3.95 GB in the computer sense of
the word but rather in the true mathematical sense of
the word – which is a marketing ploy; see the note
under the ‘‘DVD Technology Capacity and Compati-
bility’’ section below).

So far, Young Minds, Inc., (YMI), a leading CD
recording technology vendor, is the only vendor I
found working on a DVD solution for UNIX. In early
2000, YMI was awaiting hardware and specifications
from Pioneer. Furthermore, the current CD solution
from YMI is scalable to handle DVD; all that is
required is a DVD writer and a PROM update to the
YMI CD Studio hardware.

Unlike the CD technologies, where the CD-R,
CD-ROM, and CD-RW versions all have the same
capacity, each version of DVD technology has a dif-
ferent capacity. See tables below. The varying capaci-
ties of DVD technology will become a source of con-
fusion for the consumer primarily because the various
DVD technologies will not be compatible with one
another. Currently, for non-video applications, the
DVD technology market still needs to sort itself out.
On the other hand, the CD technology market is well
established.

To learn more about CD and DVD technology,
turn to the web [7, 8].

CD Technology Capacity and Compatibility

Currently, there are four CD versions: CD-R,
CD-RAM, CD-ROM, and CD-RW. All have the same
capacity and are compatible with one another:

Type Capacity
CD-R 650 MB
CD-RAM 650 MB
CD-ROM 650 MB
CD-RW 650 MB

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 225

Unleashing the Power of JumpStart Amatangelo

DVD Technology Capacity and Compatibility
The DVD standards committee is still trying to

decide on the DVD standards [7, 14]. Currently, there
are five DVD versions: DVD-R, DVD-RAM, DVD-
ROM, DVD-RW, and DVD+RW. These versions have
varying capacities, and thus, are mostly incompatible
with one another:

Type Capacity
DVD-R 3.95-4.7 Billion bytes
DVD-RAM 2.6-4.7 Billion bytes
DVD-ROM 4.7 Billion bytes
DVD-RW 4.7 Billion bytes
DVD+RW 3.0-4.7 Billion bytes

As an aside, these capacities are truly in billions
(1,000,000,000) of bytes and not a Gigabyte (GB) in
the computer sense of the word, where a GB is defined
as 1024 x 1024 x 1024 or 1,074,790,400 bytes.

Where Do We Go From Here

There are a couple of areas that the author would
like to explore and develop in the very near future.
First, modify the CART to work in a networked envi-
ronment. Second, develop similar tools for other *NIX
operating systems.

Implementing the ‘‘CART’’ in a Networked Envi-
ronment
To implement the CART in a networked environ-

ment running NIS or NIS+ and NFS would have been
much simpler. The ‘‘control host’’ could be placed on
the network, and if a naming service is running, then
all hosts will know about each other. Three types of
CART servers can be placed on the network: (1) a
standalone CART server; (2) a JumpStart server pro-
viding only CART functionality; and, (3) a JumpStart
server providing both CART functionality and Jump-
Start functionality. A method for altering the BEGIN
script to perform the restore (clone) can be imple-
mented fairly easily. Thus, the JumpStart server can be
used to perform site-specific JumpStarts as well as the
CART method of imaging. Instead of maintaining the
images of ‘‘target hosts’’ on optical media, the images
can be stored on network disk space and accessed
through NFS. Again, this would be an entirely differ-
ent way to unleash the power of JumpStart.
Implementing the ‘‘CART’’ in Other *NIX Operat-

ing Systems
One of the obvious next steps is to investigate

implementing this tool in other *NIX operating sys-
tems such as HP-UX, IRIX, AIX, Digital UNIX,
FreeBSD, BSDI, and Linux. The first operating sys-
tem to tackle on the list will be HP-UX, since it
already has the fully developed Ignite-UX utility.

Limitations of the ‘‘CART’’

1. The biggest limitation to the CART is encoun-
tered when the target host contains relatively
large filesystems (greater than 1 GB) and CD-R

is chosen as the optical media to store the sys-
tem image. The limitation lies in the maximum
carrying capacity of a CD-R which is 650 MB.
By using compression utilities (compress or
gzip) in this tool, and assuming about 60%
compression efficiency, the maximum filesys-
tem size that can be captured is about 1000 MB
or 1 GB. So, when capturing to CD the system
image of a target host that contains at least one
filesystem larger than 1 GB, the CART will
report and error. The error is due to the resul-
tant compressed file for the filesystem exceed-
ing the carrying capacity of the CD. However,
there still is hope for systems containing
filesystems larger than 1 GB. The system image
could and should be captured to DVD-R, since
the carrying capacity of a DVD-R media is
about 4 GB. Again, assuming about 60% com-
pression efficiency, a filesystem on the order of
about 7 GB can be imaged.

2. A system image saved to a multi-volume set
requires an additional optical media drive for
the restore operation to work.

3. The system being restored must not only have
the same kernel architecture but also the same
platform architecture as the system that was
imaged. As an example, even though an Enter-
prise 250 and an Enterprise 450 have the same
kernel architecture (sun4u), they have different
hardware platforms. When the image from one
is restored onto the other, the resultant system
will not be bootable.

4. When restoring a system or cloning to a like
system, the disk drives in the host being
restored must be as big or bigger than the disk
drives in the original host imaged.

5. Currently, the CART cannot capture system
images of target hosts that have mirrors or
RAID volumes (created by Veritas Volume
Manager or Solstice Disksuite) on disk drives
larger than 1 GB. When such logical volumes
exist, the entire disk must be captured using the
dd utility to ensure the private region on the
disk is captured. By having to capture the entire
disk as one image file, even after compressing,
the resultant file would not fit on one CD vol-
ume. This limitation goes away if the CART is
implemented in a networked environment.

6. Currently, the CART is only implemented for
the Solaris operating system.

Additional By-Products That Arose From the
‘‘CART’’ or Its Technology

Several by-products resulted from the develop-
ment of this tool. The possibilities are wide open for
many more. The more useful of these by-products are
identified below and how they were accomplished.
Make Copies of the Solaris Install CD. How many

times have you not been able to locate your
Solaris Install media because there were too

226 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Amatangelo Unleashing the Power of JumpStart

few to begin with and they are all checked out
(or locked in the office of the other system
administrator)? Well, now you can make as
many copies as you like (keeping in mind copy-
right laws). Make a slight modification to the
Bourne shell script used during Phase 1 that
copies select portions of the Solaris Install CD
to the ‘‘image disk,’’ to have the script copy the
entire CD. (Actually, during the initial stages of
developing the CART, the original script copied
the entire Solaris Install CD to the ‘‘image
disk’’ anyway.) Following the completion of
the copy, go straight to the burn phase (Phase
3). While the ‘‘image disk’’ is in this state, as
many copies that are desired can be burned off,
one at a time. Using the CART configuration
described earlier in this paper, it took about 30
minutes to copy the entire Solaris Install CD to
the ‘‘image disk’’ and about five minutes to
burn off a copy.

Make A Customized Solaris Install CD or CD
Set. Instead of having the generic Install CD as
provided by Sun Microsystems, place some of
your Customized JumpStart configurations on
the CD. This essentially makes your JumpStart
come off of the CD instead of a JumpStart
server. Who would want to do this? How about
an experienced JumpStart administrator who
finds him/herself in a non-networked environ-
ment and is faced with a task of rolling out a
large number of host installs or upgrades. If
there are several additional packages and tar-
balls needed for your intended JumpStart, addi-
tional CDs may be required. By using the same
technology incorporated into the CART, having
additional CD volumes will not be a problem.
However, just like with the CART, an addi-
tional CD drive will be needed to perform the
JumpStart from CDs.

Make A Specialized Bootable CD. An industry
authority on UNIX Backup and Recovery, (W.
Curtis Preston) has asked to have a bootable
CD built that will contain enough of an operat-
ing system to allow third party backup and
recovery software (Legato Networker and Veri-
tas NetBackup) to run. Very customized scripts
automatically invoked on the CD will prompt
the user for certain information. Based on the
information provided, the backup software
selected will proceed to perform backups over
the network to restore a complete system
image. The intent of making the CD bootable is
for the situation of a boot disk crash. For such
situations, this specialized tool will perform a
bare-metal recovery (disaster recovery on a vir-
gin disk drive) and will result in bringing the
system to the state of its last good backup. The
development of this tool is currently in progress
and looks quite promising.

Resources

The following freeware products from Joerg
Schilling [9] were used in the development and imple-
mentation of the CART:

cdrecord A program for creating single/mul-
tiple session CD-R on a SunOS,
Solaris, Linux, *BSD/SGI, HP-UX,
AIX, NeXT-Step, or Apple-Rhap-
sody system.

sformat A program to format/analyze/repair
SCSI hard disks on a SunOS,
Solaris, or Linux system.

scg A driver to send any SCSI com-
mand to any SCSI device on a
SunOS or Solaris system.

fbk A driver to mount a file containing
a filesystem; (File simulates Block
device on Solaris).

mkisofs Puts files in ISO-9660 format.

A ‘‘Smart and Friendly’’ CD-RW 426 Deluxe
CD-Recorder was used in the development and final
implementation. No issue arose with the use of this
CD-RW device during the development and use of the
CART.

Other CD-R recording hardware and software
products (i.e., Young Minds, Inc., HyCD, Gear to
name a few) could have been integrated into the
CART as well. However, the price of ‘‘cdrecord’’ and
its associated products could not be beat. There were
not any issues encountered with the installation or use
of the ‘‘cdrecord’’ products or with the use of the
‘‘Smart and Friendly’’ CD-RW 426 Deluxe CD-
Recorder. Both of these products receive a high
endorsement from the author.

Acknowledgements

First, I thank the Collective Intellect of Collec-
tive Technologies who provided an invaluable
resource and wealth of knowledge on many areas dur-
ing the development of the CART.

Second, I thank Joerg Schilling. Indispensable in
the creation and final product of the CART were sev-
eral shareware products provided by Joerg Schilling.

Third, I thank Adelaida Esquivel, Senior Com-
puter Programmer, who spent countless hours support-
ing the process of writing and provided the proofread-
ing of this paper.

Author Information

Lee ‘‘Leonardo’’ Amatangelo was graduated
from the University of California, Irvine in 1983 with
a B.S. in Molecular Biology and in 1985 with a B.A.
in Anthropology. He has been working in the com-
puter industry since 1981. Currently, he is a systems
management consultant specializing in Solaris and
disaster recovery for Collective Technologies. He can
be reached via email at leonardo@colltech.com and by

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 227

Unleashing the Power of JumpStart Amatangelo

physical mail at Collective Technologies, 9433 Bee
Caves Road, Building III, Austin, TX 78733.

References

[1] Sun Microsystems, Solaris 2.6 – Solaris
Advanced Installation Guide, Mountain View
CA, Part No. 802-5740-10, August 1997, Revi-
sion A).

[2] Heiss, J., ‘‘Enterprise Rollouts with JumpStart,’’
LISA XIII Conference Proceedings, 1999.

[3] Kasper, P. A. & McClellan, A. I. Automating
Solaris Installations – A Custom JumpStart
Guide, SunSoft Prentice Hall, 1995.

[4] Nemeth, E., Snyder, G., Seebass, S., & Hein, T.,
UNIX System Administration Handbook, 2nd
Edition, Prentice Hall, 1995, Ch. 9.

[5] Shaddock, M. E., Mitchell, M. C., & Harrison,
H. E., ‘‘How to Upgrade 1500 Workstations on
Saturday, and Still Have Time to Mow the Yard
on Sunday,’’ LISA IX Conference Proceedings,
1995.

[6] Zuberi, A., ‘‘JumpStart in a Nutshell,’’ Inside
Solaris, February 1999, Ch. 1

[7] http:/dvddemystified.com/dvdfaq.html .
[8] http://www.fadden.com/cdrfaq/faq00.html#[0-1] .
[9] http://www.fokus.gmd.de/research/cc/glone/

employees/joerg_schilling/private/ .
[10] http://www.gearcd.com/ .
[11] http://www.hycd.com/ .
[12] http://www.pioneerusa.com/ .
[13] http://www.smartandfriendly.com/ .
[14] http://www.ymi.com/ .

228 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

